

���������	
����

����������	
���

������
����������������	
���

��� �������
��� ����
�

�������

���������
������������������������	�
	���
	����������
���������������������

������
�����������������	
���

��� ��� ����
��� ����
�

�
��������
���������������	
���

����������
�������
�

������
�������������� ������ �	
�
����� ��� ���	������� �����	

���������������	����������� �	
�
����� ���!����"��
�
� �	�� �	���"��
�
�� �
����	
�

�������������������������	
���

��� �������
��� ����
�

������
����� ��������������
��� ���	
�����	
���

��������
�

������!��������!����� ���
		� ���	
�����	
���

�����
��	
�

�������
���"��#��� ���
		� ���	
�����	
���

�����
��	
�

�������������"���������	
���

��� �������
�������
�

������
����$��#���� ���
		� ���	
�����	
���

�����
��	
�

���������	
�������
�
�������
������������
�

����	����������������	
������������
����
��������������
�
����
��	��

��
���
��
��	���	�������	
	�������
�

 ���
��������������
�
�!�"##$

 �%&'�()*&*+*%*,!���
�������	
�!�"##$

&%%)�-$#./"-0.

&%1)�223$/..#/--/.

�45�##$

��4��3-$

����
	 ��	����
���

����
�
��
	 �������

 ** .

��
���
 ** 3

�
	 �
��������
� *** --

������ ���	
��� �
�
���� ������ �
�
�� �����

��� ��
������� ���������
�
��

6�����
���� ����7�
�
���������8�� 9��
�1�
:� ������8�4�
�� &�
����
����;	��� ************************* -<

��
� ���� �������

�
�� �!
"
�� '� =�	���
��� '������:�
�� =������
��

>���
��
�
���� ��� 7����
� 7����
��� 4�
������ *** <-

#�$�
�!� #
��
�
�%&��%	�����9	�� 4�
������ &�
����
����
:��	�:� ���8� �������
��� *********************** $.

�
�%� ��%��
�'��7�
�
���
���� �9� ���
��	�	�� ?	������ �@� ���	���� ��9������ ******************************** A"

���
��'� �
'

��%
�� ���
��'� ���'&�� ��
��
�
���/������ B	��@� CD��	
���

��� E��� C������
��
 *** .3

(���
� �

���
�
��� ���
�� ���
%���� C�:������� =������:����� B	�����

��� ;���
������ 4�
������� 8�
:�
:��)��
��� %�
� ;�������
�
��� *** 2<

��� ��� �������� ���)
�*��+
*
�
'�� (�� ������
����'�� '	
�
�
��

6�����
���� �9� +���
��� ���� %�9�� F������
����� ��� ������
	��� 4�
������ 4����� ******************** -#2

�
	������������ ** -"<

�!�*��� �

*�
�!��'�� 7	
�	
� %�:�
�� 9��� +	�
�
����� 4�
�� ��� +	�
�
����

4�
������ %@�
�
� *** -"0

,�
�� ����%���
��� ����	����
� �����G� 7����
������ CD
������� ** -<$

����� ��'������ �*
��&� ���!�
��� ���
�� ���
%���� F:�� +�����8���� %	����

9��� ������
���@� ��� 4��
���	
��� +������ '������
���� *** -$0

���	���	�������
� ** -A-

��������� ��%���&�� #���
*
�� -
$�
%�� '� +�
��D� +����� 9��� H+�� 4�
� ************************************* -A<

�.�
�����*� ��*��
*
�� ��������� ��%���&�� B	��@���

=�
��������	�� 4��
���	
��� H+�� 4�
� ** -..

����
&�
*�����%&�� C���	
���� �9� %�:�
�� �9� H+�/���	
��
�

%
����� ��� �� ;���
������ 4�
����� *** -2"

����	������	���	����	���
������� *** "#0

��'
/� 0������� �.!��!� (��
���� '������
���� �9� 4�
�� +������ +�
:���� 9��� 1��

4��
� ;������@� ���
:�� =���
:����� &��	�
�@ *** "#.

������'� ��.
��� -�.
��� 1�
*.
��� �������)'
$���� %
�����

%
�	�
	���� 9��� %:������ 4�
�� ��� +	�
��������� 4�
�� E���:�	�� *** "-3

�
�

��
� �*
��� �
/���)������� >��
� F�
������ 4�
�� +������ ���

E��� +������ F�� F�
������ E��� +����� ** "<"

�
����� (���
�
��� (���
� ����
�
��� �
$�� ���	���
�
��� �
�
� ������

��!�� -�
�
���� �

�*��� 0
��
��� +�������� ���� &
���
��
����
:�� 4�
�

+������ �������� ������ �� F�	�@� %
��8���� '������: *** "$A

��
��
�� ��� �������'������
���� ;	��� +������ +��
�� >	��
�����

4�����������G� F:�� '�/>4� '�����
:
 ** "03

A 4'F'1'%C%� ')4� &)>7;+'F&7)� %I%FC+%

���
%�1�$�

�!�"�%
�����

$� 0�%�'
"
�'��4�
��+������B	��@

%�:��	����� 9��� '������� ��

��� ��	�
��� *** ".#

-
��!� �
�� �
�������� �.
�
� -�.��
���� ,*��� ������
��� 2��
��� �
���&
.*

7�'�G� '�)�8� 7�'�� 7����
��� 1����� ��� �� 4�
��+������+�
:�� *** "3"

(�
��� �

��
�
�� (
��� +����*��
�� ���
�������� �������
�� 4�
�� E���:�	��

��
�� 8�
:���
:�� ��
����� ** "2#

��
����������� ** <#.

�
��
%��� ����
�
�
���� +
�*����� ����
%���� ���� �9� 5��8������ C����������

F��:��?	��� 9��� ����
���� ���� '���@���� �9� '������
�� %����9���
���� ** <#2

��.
�����)�	�
��%���� �
�
��� +��	
���
�� �� '� F�D���
@� �9� �:����
����
���

�� ����	�
�� �����9���
���� ����	���� ** <"-

���
�	��������������� ** <<.

����
�� ����
���� ���
�� ���'�
���� �������)
�*���+����� F����9��
�
���

����	���� +7�'G� CD
������ ��

���� ** <<2

(
���)
	��

�
�� (
��� �
*���
�
�� 4������ &���������
� +�������� �9

&�9��
�
���� %@�
�
�� ������ �+�� ���� 7�� *** <0.

��
$��� ���������� ,�
���� #��
�
����� F����9��
�
���� �9� �	������� �	���

������ ��� ��9��
�
���� �@�
�
�� �������
��
� ������� *** <.<

3�
��� ���������;������� C����������� �9� ;���
������ 4�
�������
�� 7����
� 4�
������ **************** <30

����
�� ����

%���+4'G� ������
����� �9� +����� F����9��
�
����� J

F:�� ������ +#� �:���
���� ** $#-

+���
�� ���'�
���� +4'� ��� �� F�����

	����
�����)�
8���� 4��	
��
�
���� F��� **************** $-<

 �������
� ** $"<

����
�%� (�*.�
��� �
� �����+������� 4'+�K7&�� 7�
������� *** $"0

�
�
���
���������
������� >�'� ���� ������������	���

9��� 7�
����@� ;�������
�
��� *** $<A

 ��
� ��%%���
�
��� (
��
��� �
����� �
�
� ���
��� +�����*�
���
�

C���	�
����
:�� B	���
@� �9�E��/1����� 7�
����@� 1	�������+�
:���G

'�>��
�8���� ���� �������%
	�@ *** $0-

!����������	 �"��
��	 ���	 �
�����" ** $A.

���*�� -�.���� �!��� ���$��� �/C4�� J� '�� ��9��
�
���� �@�
�
� 9��

�/��������� �������� ** $A2

)��*
��)���
����� ��� ���4� -���
��
'�� ����� ��� �����
���� ���
�)�
*��
��

�����
��)���
$��� -���� 2
�����
'�� '� ���
���	
����
�� E��� 4���
��

'��:���� &�
����
���� 9��
�
:�� ������
��
��@� +�����
��
� %@�
�
� L%&'�M ************************** $3-

�
�!�
��)!�
���//
������
�'��
������ %	����
���� %��	��
@� ��� ��

C���
������ +����
� %@�
�
� ���
:�� 1���� �9� E��� %������� *** $2.

.

����
�
��
	 �������

��#����"	�������

N�����1	�����!�%8����

'����%�������!�)��8�@

��������
	��$������

N�����1�������!���
���

'����
�������������!���
:	����

;	�����>��������!���
���

 ���������	��$������

N	����1������!���
���

&�����7�
���!���
���

��$����������

':
��5����!�C�
����

%�	��	��+������	���!���
:	����

��������
	�������

E�
����'���
�8���!������� %�	��	��+������	���!���
:	����

+��:����'	�	�
��!��%' +�::����+�
����!�)��8�@

N�����1��������!���
��� 1�����)������!�;	����

N�:����C���!�'	�
��� +������7�
!�C�
����

=���/4��
���C:���:!�6��
��@ '������������
��!��5

N������>���:���)������!�4��
��� N���������
!�C�
����

N�����6�	���������!���
��� N��������������@!�����:�;��	����

;�
����	��6	�
��!�%8���� 6	�
���%����!�6��
��@

=���/+���=���!�C�
���� 5��	�/4��
���%�:�8�!�)�8�O������

&����5����:���!���
��� N����F������!�C�
����

�������5������:����!�;	���� 1���:����F:��:��
!�6��
��@

':
��5����!�C�
���� C���F@	�	!�C�
����

'	�����5������!���
��� 7���������������!���
:	����

+���
��5�������!���
��� 1���
�E������!�%8����

��
�������
���D!�%8���� +	�������E@��!��%'

N���9�+*�O	����!��%' '����@�O�������@!�'	�
�����

���9������� ��

�

��

3 4'F'1'%C%� ')4� &)>7;+'F&7)� %I%FC+%

����������	%
�
�

�

��
���':�����:
!�6��
��@ ��:	��5�
���!�C�
����

'����'�����!�C�
���� '����������	���
��!���
:	����

����1����	��!�%8���� +�������:
���!�'	�
���

4
�
�@�1����:��!�;	���� 5����)�	
���!�6��
��@

'���4�:��
��
!�%8���� 5��������������!���
���

;������C���
���!�6��
��@ 7���������	����!�;	����

%�����C���
���!�6��
��@ C����%�:����:�!�6��
��@

N�����C��	��!���
��� &����%�:
�

!�6��
��@

+�:�
���+��:�
�6����!�'	�
����� '����%����!�C�
����

+����=���������!�>������ '����@�%�
������@!�;	����

=�����=���9���!�6��
��@ C���%�����
��
!�%8����

������N��������!�%8���� +�

����%
����!�%8����

��	����5��	�
�!���
��� '��D���F��
�����!�)�8�O������

+���	��5���:����!�)�8�O������ �������F	��
!�C�
����

�:���
����5�������!�'	�
��� N	����������!���
���

�����	 ���������	�������

N�����1������� 4�����5	���

N�����1���9���� ����������

'�����'
�����1������ &������+������

N�����1�������� ������)�����
�

������1����� &�����7�
���!���/�:���

N	����1������!���/�:��� +��
����7�
����

C���������
� ;��
��������	��

'�������4	�������� 7������%���	�����/4	�������

'��
��C�
	�� 4�����%
�
�

;	�����>�������� '����� %
���

+��
����6���� +�����F���
����

&���=���
����� ���������
�����

+����
��5������� '����������O��������

N�����O	
���

����
�
��
	�
��
���"

C���������
�!���
���

2

��
���

%�������9�1��
���41P&%������	������9��������8����
��
������-22$*�F:�������:��

������	����
����@�N�����1	�����!���*�����'����%�������*�&
�8���
:��
�
��8:���1��
��

�
�
�����
	�����
��
:��C	��������������:���

	��
@*�F:��9���
����9�������8���:���

���F������Q-22$R!�
:���9����8������9�����������F�������Q-22AR!�;����Q-223R!������	��Q"###R

�������������F�������Q"##"R*�'�����8�@�	�����8����
��
��;����
��
:��%�D
:�&�
����/

������1��
������9����������4�
�����������&�9��
�
����%@�
�
��Q1��
���41P&%M"##$R*

1��
���41P&%M"##$���������������@�
:��&��
�
	
���9�+�
:�
�
����������
�	
��

%���������������
@��9���
���!�4����

��
��9���
�	
���%�������Q��������
@��9���
���R!

;����&�9��
�
����F��:�����@�&��
�
	
��Q��
���R�����
:��&��
�
	
���9�+�
:�
�
�������

&�9��
�
����Q��
:	����R*

4	�����
:���������!�1��
���41P&%����9��������:�������
���������
����
������9�/

�	
���9�:��:������
�9������
�����9��������
������������
�
������� ���
:��9������9���
�/

����������
��������9��
�
�����@�
�
�*

F:��������

����

�

����9�1��
���41P&%M"##$�������
����9�<0�
�
�����9��

-$���	�
����*�02��������9��
�-.���	�
�����8�����	�
�

���9���
�������9�����������".

������� 9��
�0� ��	�
����� 9���4��
�����������
�	
*�C��:� ���9������� ������8��� ��/

���8����@�
:������9�����!�������	���9��
���99����
���	�
����!�������
�9��
�
:����	�
�@

�9�
:���	
:����9�
:�������*�'�������	�
!�<0��������8���������
���9���
�������9������*

F:��������������� ����	�������
:�����9������������������*

F:���������������
���������� ���	�
�� �����
������
��:��������!� ��
������ �������/

����!���
��
����������8���:�	����!�
�����
����9��
�
�����Q+4'R!������9���
����!

��
�������!� ��9��
�
�����@�
�
���������	��
@*

F:�����9��������������������@�������@�4��
�����������
�	
*�'����
���4����/

�������������	���������������
�����	
���9������������*

F:��1��
���41P&%M"##$� �:����� ��
�� ��������� �����
:��� ����
��8�
:�
:�� -A
:

&�
����
���������9����������'��������&�9��
�
����%@�
�
��C�����������Q�'�%CS#$R

8:��:���������:�������;���!�N	���./--*

E�� �D������ �	��8��
��
�
:�����
�� ���� �	
:����8:�� ���
���	
���
��
:�� ���9��/

����*�E���������
�9	��
��
�
������9�
:��������

����

�

�������
:������
�����

��9������ 9��� ����9	��@� �����8����
:�� �	�
�������*�E��8�	��� ����� �����
��
:����
:�

�����������
��
!����������@�C���������
��9���
:������
��:������8���*

E���D�������	�����@���������
:�����
���	�����������8:��:����
����
:������9��/

����� ��������*

���
!��	
���
�����
!�8��
:�����������
������
��8:�������@�
����
:�����9������*

N	����1������ N�����1�������

7������������

�

�����/�:��� ������

����

�

�����/�:���

���9���

-# 4'F'1'%C%� ')4� &)>7;+'F&7)� %I%FC+%

���������	
	���

Generating and Optimising Views from
Both as View Data Integration Rules

Edgar Jasper
�
, Nerissa Tong

�
, Peter Mc.Brien

�
, and Alexandra Poulovassilis

�

�
School of Computer Science and Information Systems, Birkbeck College,

Univ. of London,
�
edgar,ap � @dcs.bbk.ac.uk�

Dept. of Computing, Imperial College,
�
nnyt98,pjm � @doc.ic.ac.uk

Abstract. This paper describes the generation and logical optimisation of views
in the AutoMed heterogeneous data integration framework, which is based on

the use of reversible schema transformation sequences called both as view (BAV)

rules. We show how views can be generated from such sequences, for global as

view (GAV), local as view (LAV) and GLAV query processing. We also present

techniques for optimising these generated views, firstly by optimising the trans-

formation sequences, and secondly by optimising the view definitions generated

from them.

1 Introduction

Data integration is a process by which several databases, with associated local schemas,
are integrated to form a single virtual database with an associated global schema.
The two most common data integration approaches are global as view (GAV) (used
in TSIMMIS [4], InterViso [19] and Garlic [18]), and local as view (LAV) (used in IM
[9] and Agora [11]). In GAV, the constructs of a global schema are described as views

over the local schemas. These view definitions are used to rewrite queries over a global

schema into distributed queries over the local databases. In LAV, the constructs of the

local schemas are defined as views over the global schema, and processing queries over

the global schema involves rewriting queries using views [8].

Both LAV and GAV lack a certain degree of expressiveness. GAV is unable to fully

capture data integration semantics where a source schema construct can be defined by a

non-reversible function over global schema constructs. For example, if source schema

attributemoney is the sum of global schema attributes coins and notes, neither coins
nor notes in the global schema can be defined by views over the source schema. Thus a
query on the global schema asking for the sum of coins and notes cannot be answered
even though the answer (money) is present in the source schema. In LAV, the attribute
money can be defined by a view as the sum of global schema attributes coins and
notes. Reversing the presence of the attributes, so that coins and notes are in the local
schema and money in the global schema, leads to a situation which GAV can express
but LAV cannot.

GLAV [5] is a variation of LAV that allows the head of the view definition rules to

contain conjunctions of relations from a source schema as a natural join, and is thus able

to capture situations where a non-reversible function is a natural-join between attributes.

In [10] GLAV was extended to allow any source schema query in the head of the rule,

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '()(�� 	�

'� �
�
*
����
��� ������
����� �������

and hence is able to express the case where a single source schema is used to define the

global schema constructs referenced in the body of the rule.

We have developed a richer integration framework which is based on the use of

reversible sequences of primitive schema transformations, called transformation path-
ways. In [15] we showed how these pathways incorporate the semantics of GAV rule
definitions and LAV rule definitions, and hence termed our approach both as view
(BAV). We have implemented the BAV data integration approach within the AutoMed
system (see http://www.doc.ic.uk/automed).
Since BAV integration is based on sequences of primitive schema transformations,

it could be argued that the pathways resulting from BAV are likely to be more costly to

reason with and process (e.g. for global query processing) than the corresponding LAV,
GAV or GLAV view definitions would be. However, in Section 5 of this paper we show

how BAV pathways are amenable to considerable simplification. Moreover, standard

query optimisation techniques can be applied to the view definitions derived from BAV

pathways.

The outline of this paper is as follows. Section 2 gives a review and examples of

the BAV integration approach, and compares it with the GAV, LAV and GLAV ap-

proaches. Section 3 shows how view definitions can be generated from BAV pathways

for GAV, LAV or GLAV query processing. Section 4 presents techniques for optimising

these generated views, and Section 5 gives techniques for optimising the BAV pathways

themselves. Section 6 gives our concluding remarks and directions of further work.

2 The BAV Integration Approach

In previous work (see http://www.doc.ic.uk/automed) we have developed a
framework to support schema transformation and integration in heterogeneous database

architectures. The framework consists of a low-level hypergraph-based data model
(HDM) and a set of primitive schema transformations defined for this model. Higher-
level data models and primitive schema transformations for them are defined in terms

of this lower-level common data model.

In BAV, schemas are incrementally transformed by applying a sequence of primi-

tive transformations � � � 	 	 	 � � � , where each � � adds, deletes or renames just one schema
construct. Each add or delete transformation is accompanied by a query, expressed in
the intermediate query language (IQL), specifying the extent of the new or deleted
construct in terms of the rest of the constructs in the schema. All primitive transforma-

tions have an optional additional argument which specifies a constraint (also expressed

in the IQL) on the current schema extension that must hold if the transformation is to

be applied.

A composite transformation is a sequence of primitive transformations. We term
the composite transformation defined for transforming schema � � to schema � � a trans-
formation pathway � � � � � . All source schemas, intermediate schemas and global
schemas, and the pathways between them are stored in AutoMed’s metadata reposi-

tory [1].

AutoMed supports a variety of methodologies for performing data integration and

hence forming a network of pathways joining schemas together. For example, Figure 1
illustrates the integration of � local schemas, � � � � 	 	 	 � � � � , into a global schema � � .

'+��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

In order to integrate these � local schemas, each � � � is first transformed into a “union”
schema � � � . These � union schemas are syntactically identical, and this is asserted by
creating a sequence of id transformation steps between each pair � � � and � � � � � , of
the form id (� � � � , � � � � � �) for each schema construct.

id is an additional type of primitive transformation, and the notation � � � � is used
to denote construct appearing in schema � � � . These id transformations are gener-
ated automatically by the AutoMed software. An arbitrary one of the � � � can then be
selected for further transformation into a global schema � � . This is where constructs
sourced from different local schemas can be combined together by unions, joins, outer-

joins etc.
There may be information within a � � � which is not semantically derivable from the

corresponding � � � . This is asserted by means of extend transformation steps within the
pathway � � � � � � � . Conversely, not all of the information within a local schema � � �
need be transferred into � � � , and this is asserted by means of contract transformation
steps within � � � � � � � . These extend and contract transformations behave in the
same way as add and delete, respectively, except that they indicate that only partial
information can be derived about the new or deleted construct. Rather than a single

query, they take a pair of queries which specify a lower and upper bound on the extent

of the new or deleted construct. The lower bound query may be the constant Void if no
lower bound can be specified, and the upper bound query may be the constant Any if
no upper bound can be specified.

() � () � () + . . . () - . . . () / local
schemas

01 01 01 01 01

2) � 2) � 2) + . . . 2) - . . . 2) /id 45 id 45 5 4 5 4 union
compatible

schemas

01

6) global

schema

Fig. 1. A general AutoMed Integration

Each primitive transformation � has an automatically derivable reverse transfor-
mation � . In particular, each add or extend transformation is reversed by a delete
or contract transformation with the same arguments, and vice versa, while each re-
name or id transformation is reversed by another rename or id transformation with
the two arguments swapped. This holds for the primitive transformations of any mod-
elling language defined in AutoMed. In [12] we show how this reversibility of schema

transformations allows automatic data query translation between schemas.

In [13] we described how our framework can be applied to different high-level mod-

elling languages such as relational, ER and UML, and more recently we have extended

AutoMed to also support semi-structured data models (flat file, XML, RDF). For our ex-

amples in this paper we will use a simplified relational data model. However, we stress

'� �
�
*
����
��� ������
����� �������

that the techniques that we describe here are equally applicable to any data modelling

language supported by AutoMed.

In our simple relational model, there are two kinds of schema construct: Rel and
Att (see [13] for an encoding of a richer relational data model, including the modelling
of constraints).

The extent of aRel construct 7 7 8 9 9 is the projection of the relation 8 onto its primary
key attributes ; � � 	 	 	 � ; � . The extent of each Att construct 7 7 8 � ? 9 9 where ? is an attribute
(key or non-key) is the projection of relation 8 onto ; � � 	 	 	 � ; � � ? . For example, a relation
student(id,sex,dname) would be modelled by a Rel construct 7 7 C E F H I J E 9 9 , and three
Att constructs 7 7 C E F H I J E � L H 9 9 , 7 7 C E F H I J E � C I N 9 9 and 7 7 C E F H I J E � H J O P I 9 9 .

S T U V
W � W /. . . X

�
X

Y
. . .

Z

Fig. 2. A simple relational data model

Once the constructs of modelling language [have been defined in terms of the

HDM (via the API of AutoMed’s metadata repository [1]), a set of primitive schema

transformations for [are automatically available. For the simple relational model

above, these would be as follows:

– addRel(7 7 8 9 9 �]) adds to the schema a new relation 8 . The query] specifies the
set of primary key values in the extent of 8 in terms of the already existing schema
constructs.
– addAtt(7 7 8 � ? 9 9 �]) adds to the schema an attribute ? (key or non-key) for relation

8 . The query] specifies the extent of the binary relationship between the primary
key attribute(s) of 8 and this new attribute ? in terms of the already existing schema
constructs.
– deleteRel(7 7 8 9 9 �]) deletes from the schema the relation 8 (provided all its at-
tributes have first been deleted). The query] specifies how the extent of 8 can be
restored from the remaining schema constructs.
– deleteAtt(7 7 8 � ? 9 9 �]) deletes from the schema attribute ? of relation 8 . The query] specifies how the extent of the binary relationship between the primary key at-
tribute(s) of 8 and ? can be restored from the remaining schema constructs.
– renameRel(7 7 8 9 9 � 7 7 8 ^ 9 9) renames the relation 8 to 8 ^ in the schema.
– renameAtt(7 7 8 � ? 9 9 � 7 7 8 � ? ^ 9 9) renames the attribute ? of 8 to ? ^ .
There is also a set of extendRel, extendAtt, contractRel and contractAtt primitive
transformations.

2.1 An Example Integration

Figure 3 gives some specific schemas to illustrate the integration approach of Figure 1.

Primary key attributes are underlined, foreign key attributes are in italics and nullable

attributes are suffixed by a question mark.

'���� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

a b c
staff(id,name,dname)
male(id)
female(id)

a b e
university(uname)
campus(cmname,uname)
dept(deptname,cmname)
degree(dcode,title,dtype,deptname)

a b f
student(id,name,sex)
enrolled(id,from,to,dcode)
degree(dcode)

a b g
university(uname)
college(cname,uname)
dept(dname,street,cname)

h b j
university(uname)
campus(cmname,uname)
dept(dname,street,cmname)
degree(dcode,title,dtype,dname)
staff(id,name,sex,dname)
student(id,name,sex)
enrolled(id,from,to,dcode)

k b
university(uname)
campus(cmname,uname)
dept(dname,street,cmname)
degree(dcode,title,dtype,dname)
person(id,name,sex,dname?)
enrolled(id,from,to,dcode)

Fig. 3. Example schemas

In Example 1, transformations l � – l m use a composite transformation extendTable to
state that the tables student, enrolled, university, campus and degree in n o q cannot
be derived from r o q . The definition of extendTable is:

I N E I J H t O u v I w 7 7 8 � ? � � 	 	 	 � ? � 9 9 x y I N E I J H | I v w 7 7 8 9 9 � � � L H � � J � x �
I N E I J H � E E w 7 7 8 � ? � 9 9 � � � L H � � J � x � 	 	 	 � I N E I J H � E E w 7 7 8 � ? � 9 9 � � � L H � � J � x
Then transformations l � – l � use the dname attribute of staff to derive the dept table

in n o q , and use extend transformations for the two attributes street and uname that
cannot be derived from r o q . Finally, in l � � – l � � the male and female relations of r o q
are restructured into the single sex attribute of staff.
The queries accompanying the add and delete transformations are expressed in our

IQL intermediate query language. In IQL, ++ is the bag union operator and the construct� � � � � � 	 	 	 �
� � is a comprehension [2]. The expressions

� � to
�

� are termed qual-
ifiers, each qualifier being either a filter or a generator. A filter is a boolean-valued
expression. A generator has syntax � � where � is a pattern and is a bag-valued
expression. In IQL, the patterns � are restricted to be single variables or tuples of vari-
ables.

Example 1 Pathway r o q � n o q
l � I N E I J H t O u v I w 7 7 C E F H I J E � L H � J O P I � C I N 9 9 x
l � I N E I J H t O u v I w 7 7 F J L � I � C L E � � F J O P I 9 9 x
l + I N E I J H t O u v I w 7 7 � O P � F C � � P J O P I � F J O P I 9 9 x
l � I N E I J H t O u v I w 7 7 H I � � I I � H � � H I � E L E v I � H E � � I � H J O P I 9 9 x
l m I N E I J H t O u v I w 7 7 I J � � v v I H � L H � � � � P � E � � H � � H I 9 9 x
l � O H H | I v w 7 7 H I � E 9 9 � �

N
�

w � � N x � 7 7 C E O � � H J O P I 9 9 � x
l � O H H � E E w 7 7 H I � E � H J O P I 9 9 � �

w N � N x
�

N � 7 7 H I � E 9 9 � x
l � I N E I J H � E E w 7 7 H I � E � C E � I I E 9 9 � � � L H � � J � x
l � I N E I J H � E E w 7 7 H I � E � F J O P I 9 9 � � � L H � � J � x

'0 �
�
*
����
��� ������
����� �������

l � � O H H � E E w 7 7 C E O � � C I N 9 9 � �
w N � ‘M’ x

�
N � 7 7 P O v I 9 9 � ++

�
w N � ‘F’ x

�
N � 7 7 � I P O v I 9 9 � x

l � � H I v I E I � E E w 7 7 P O v I � L H 9 9 � �
w N � N x

�
N � 7 7 P O v I 9 9 � x

l � � H I v I E I | I v w 7 7 P O v I 9 9 � �
N

�
w N � ‘M’ x � 7 7 C E O � � C I N 9 9 � x

l � + H I v I E I � E E w 7 7 � I P O v I � L H 9 9 � �
w N � N x

�
N � 7 7 � I P O v I 9 9 � x

l � � H I v I E I | I v w 7 7 � I P O v I 9 9 � �
N

�
w N � ‘F’ x � 7 7 C E O � � C I N 9 9 � x

The pathway r o £ � n o £ contains extend steps to add the missing staff, student,
and enrolled tables. It then renames deptname, and adds the missing attributes of
dept:

Example 2 Pathway r o £ � n o £
l � m I N E I J H t O u v I w 7 7 C E F H I J E � L H � J O P I � C I N 9 9 x
l � � I N E I J H t O u v I w 7 7 C E O � � L H � J O P I � C I N � H J O P I 9 9 x
l � � I N E I J H t O u v I w 7 7 I J � � v v I H � L H � � � � P � E � � H � � H I 9 9 x
l � � � I J O P I � E E w 7 7 H I � E � H I � E J O P I 9 9 � 7 7 H I � E � H J O P I 9 9 x
l � � � I J O P I � E E w 7 7 H I � � I I � H I � E J O P I 9 9 � 7 7 H I � � I I � H J O P I 9 9 x
l � � I N E I J H � E E w 7 7 H I � E � C E � I I E 9 9 � � � L H � � J � x
l � � I N E I J H � E E w 7 7 H I � E � F J O P I 9 9 � � � L H � � J � x

The pathway r o ¦ � n o ¦ contains a sequence of extend steps for its missing in-
formation. The pathway r o § � n o § creates in l � � a new attribute 7 7 H I � E � F J O P I 9 9 by
joining the dept and college relations, and then deletes in l � +

– l � m the college table
that can be recovered from the remaining 7 7 H I � E � � J O P I 9 9 attribute. Transformation l � �
is unable to put any restriction on the values of 7 7 H I � E � � J O P I 9 9 , since that association
cannot be recovered from the global schema. Transformations l � � – l + � then perform the
logical inverse of l � � – l � � to partially extract the campus table from the direct associa-
tion between departments and universities represented by 7 7 H I � E � F J O P I 9 9 .

Example 3 Pathway r o § � n o §
l � � O H H � E E w 7 7 H I � E � F J O P I 9 9 �

�
w N � � x

�
w N � ¨ x � 7 7 H I � E � � J O P I 9 9 � w ¨ � � x � 7 7 � � v v I � I � F J O P I 9 9 � x

l � + H I v I E I � E E w 7 7 � � v v I � I � F J O P I 9 9 �
�

w N � � x
�

w ¨ � N x � 7 7 H I � E � � J O P I 9 9 � w ¨ � � x � 7 7 H I � E � F J O P I 9 9 � x
l � � H I v I E I � E E w 7 7 � � v v I � I � � J O P I 9 9 � �

w N � N x
�

N � 7 7 � � v v I � I 9 9 � x
l � m H I v I E I | I v w 7 7 � � v v I � I 9 9 � �

�
�

w N � � x � 7 7 H I � E � � J O P I 9 9 � x
l � � � � J E � O � E � E E w 7 7 H I � E � � J O P I 9 9 � � � L H � � J � x
l � � I N E I J H � E E w 7 7 H I � E � � P J O P I 9 9 � � � L H � � J � x
l � � O H H | I v w 7 7 � O P � F C 9 9 � �

�
�

w N � � x � 7 7 H I � E � � P J O P I 9 9 � x
l � � O H H � E E w 7 7 � O P � F C � � P J O P I 9 9 � �

w N � N x
�

N � 7 7 � O P � F C 9 9 � x
l + � O H H � E E w 7 7 � O P � F C � F J O P I 9 9 �

�
w N � � x

�
w ¨ � N x � 7 7 H I � E � � P J O P I 9 9 � w ¨ � � x � 7 7 H I � E � F J O P I 9 9 � x

l + � H I v � E E w 7 7 H I � E � F J O P I 9 9 �
�

w N � � x
�

w N � ¨ x � 7 7 H I � E � � P J O P I 9 9 � w ¨ � � x � 7 7 � O P � F C � F J O P I 9 9 � x
l + � I N E I J H t O u v I w 7 7 C E F H I J E � L H � J O P I � C I N 9 9 x
l + + I N E I J H t O u v I w 7 7 C E O � � L H � J O P I � C I N � H J O P I 9 9 x
l + � I N E I J H t O u v I w 7 7 I J � � v v I H � L H � � � � P � E � � H � � H I 9 9 x

'1��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

Finally, we list in Example 4 the pathway from the union schema n o q to the global
schema ª o . The pathway from n o £ , n o ¦ or n o § would be identical.

Example 4 Pathway n o q � ª o
l + m O H H | I v w 7 7 � I � C � J 9 9 � 7 7 C E O � 9 9 ++

�
N

�
N � 7 7 C E F H I J E 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � x

l + � O H H � E E w 7 7 � I � C � J � L H 9 9 � 7 7 C E O � � L H 9 9 ++�
w N � � x

�
w N � � x � 7 7 C E F H I J E � L H 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � x

l + � O H H � E E w 7 7 � I � C � J � J O P I 9 9 � 7 7 C E O � � J O P I 9 9 ++�
w N � � x

�
w N � � x � 7 7 C E F H I J E � J O P I 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � x

l + � O H H � E E w 7 7 � I � C � J � C I N 9 9 � 7 7 C E O � � C I N 9 9 ++�
w N � � x

�
w N � � x � 7 7 C E F H I J E � C I N 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � x

l + � O H H � E E w 7 7 � I � C � J � H J O P I 9 9 � 7 7 C E O � � H J O P I 9 9 x
l � � � � J E � O � E � E E w 7 7 C E F H I J E � L H 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � L H 9 9 �
J � E w P I P u I � N 7 7 C E O � 9 9 x � � �

w N � � x
�

w N � � x � 7 7 � I � C � J � L H 9 9 � x
l � � � � J E � O � E � E E w 7 7 C E F H I J E � J O P I 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � J O P I 9 9 �
J � E w P I P u I � N 7 7 C E O � 9 9 x � � �

w N � � x
�

w N � � x � 7 7 � I � C � J � J O P I 9 9 � x
l � � � � J E � O � E � E E w 7 7 C E F H I J E � C I N 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � C I N 9 9 �
J � E w P I P u I � N 7 7 C E O � 9 9 x � � �

w N � � x
�

w N � � x � 7 7 � I � C � J � C I N 9 9 � x
l � + � � J E � O � E | I v w 7 7 C E F H I J E 9 9 x � �

N
�

N � 7 7 � I � C � J 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � �
�

N
�

N � 7 7 � I � C � J 9 9 � x
l � � H I v I E I � E E w 7 7 C E O � � L H 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � L H 9 9 � P I P u I � N 7 7 C E O � 9 9 � x
l � m H I v I E I � E E w 7 7 C E O � � J O P I 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � J O P I 9 9 � P I P u I � N 7 7 C E O � 9 9 � x
l � � H I v I E I � E E w 7 7 C E O � � C I N 9 9 � �

w N � � x
�

w N � � x � 7 7 � I � C � J � C I N 9 9 � P I P u I � N 7 7 C E O � 9 9 � x
l � � H I v I E I � E E w 7 7 C E O � � H J O P I 9 9 � 7 7 � I � C � J � H J O P I 9 9 x
l � � H I v I E I | I v w 7 7 C E O � 9 9 � �

N
�

w N � � x � 7 7 � I � C � J � H J O P I 9 9 � x

We assume in this example integration that a person may be both a member of

staff and a student. For such people, their information in the staff table is preferred
for propagation to the global person table in steps l + m – l + � above. Thus, there is not
sufficient information in the global schema to totally derive the student table, and only
contract statements can be given in steps l � � – l � +

, where as a lower bound we know all

persons not in the staff table are students, but as an upper bound know that all persons

could be in student (if it were the case that all staff members were former students).
Conversely, there is sufficient information to totally derive the staff table.

2.2 Comparison of BAV with GAV, LAV and GLAV

We see from the above example that the add and extend steps in the transformation
pathways from the local schemas to the global schema correspond to GAV, since it

is these steps that are incrementally defining global constructs in terms of local ones.

Similarly, it is the delete and contract steps in the transformation pathways from the
local schemas to the global schema that correspond to LAV, since it is these steps that are

incrementally defining local constructs in terms of global ones. We will see in Section 3

how these pathways can be traversed to derive GAV and LAV views.

If a GAV view is derived from solely add steps it will be exact in the terminology of
[7]. If, in addition, it is derived from one or more extend steps using their lower-bound

�� �
�
*
����
��� ������
����� �������

(upper-bound) queries, then the GAV view will be sound (complete) in the terminology
of [7]. Similarly, if a LAV view is derived solely from delete steps it will be exact.
If, in addition, it is derived from one or more contract steps using their lower-bound
(upper-bound) queries, then the LAV view will be complete (sound) in the terminology
of [7]. For example, in pathway n o q � ª o above, we could enhance l � +

above to:

� � J E � O � E | I v w 7 7 C E F H I J E 9 9 � �
N

�
N � 7 7 � I � C � J 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � � 7 7 � I � C � J 9 9 � x

asserting that 7 7 C E F H I J E 9 9 contains the set of people who are not staff (completeness)
and is contained by the whole set of people (soundness).

As we discussed in the introduction, BAV is a more expressive data integration lan-

guage than LAV, GAV or GLAV, since it allows for the expression of mappings in both

directions, and since it is not limited on how many source schemas are associated by

a mapping. Indeed, in the context of peer-to-peer integration, [3] has suggested using

GLAV rules in both directions in a similar manner to BAV, in order to overcome weak-

nesses of using GLAV alone.

As discussed in [14, 15], a further advantage of BAV over GAV and LAV is that it

readily supports the evolution of both global and local schemas, by allowing pathways

and schemas to be incrementally modified as opposed to having to be regenerated.

A further difference between BAV and GAV, LAV or GLAV (including the approach

of using GLAV in each direction of [3]) is that statements about the relationships be-

tween global and local schemas are made at a finer level of detail, i.e. at the level
of individual attributes as opposed to entire tables. So we can assert exact knowledge

about some attributes of a table, and sound or complete knowledge about other at-

tributes. We are also able to introduce intermediate constructs in the mapping, such as

in r o § � n o § .

3 Generating Views

We now present a general technique for generating GAV, LAV and GLAV view defini-

tions from a BAV pathway. This ability to generate any of these kinds of view definitions

from a single BAV pathway means that we can select a query processing technique that

can vary between queries as appropriate.

To define a construct in � « in terms of the constructs in schema � ¬ , we consider
in turn the transformations of � « � � ¬ . The only transformations that are significant
are those that delete, contract or rename a construct1. These transformations are sig-
nificant because the current view definitions may query constructs that no longer exist

after such a transformation. Each of these types of transformation is handled as follows

if it is encountered during the traversal of � « � � ¬ :

– delete: This has an associated query which shows how to reconstruct the extent
of the construct being deleted. Any occurrence of the deleted construct within the

current view definitions is replaced by this query.

– contract: Any occurrence of the contracted construct within the current view def-
initions is replaced by either the lower-bound or the upper-bound query accompa-

1 Note that this is equivalent to considering the add, extend and rename steps in the reverse) ­ ®) °

�'��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

nying this transformation step, depending on whether sound or complete views are

required.

– rename: All references to the old construct in the current view definitions are re-
placed by references to the new construct.

3.1 Generating GAV Views

To generate the set of GAV views for a global schema, the pathways from it to each lo-

cal schema are retrieved from AutoMed’smetadata repository. For some part of the start

of their length these pathways may be the same, as may be seen from the tree structure

of Figure 1. Each node of this transformations tree is a schema (global, intermediate

or local) linked to its neighbours by a single transformation step. View definitions for

each global schema construct are derived by traversing the tree from top to bottom. Ini-

tially, each construct’s view definition is just the construct itself. Each node in the tree

is then visited in a downwards direction, and delete, contract and rename transfor-
mations are handled as described above. In particular, if a contract transformation step
is encountered, any occurrence of the contracted construct within the current GAV view

definitions is replaced by the lower-bound query accompanying this transformation step

(so that sound GAV views will be generated).

At some points the tree may branch. When this happens, constructs of the parent

schema are semantically identical to constructs that have the same scheme within the

child schemas. The possibility of using all paths is retained within the view definitions

by replacing each construct of the parent schema by a disjunction (OR) of the corre-
sponding constructs in the child schemas.

The tree is traversed in this fashion from the root to the leaves until all the nodes are

visited. The resulting view definitions are the GAV definitions for the global schema

constructs over the local schemas. Referring again to the example of Section 2.1, con-

sider the construct ª o � 7 7 � I � C � J � C I N 9 9 in the global schema. The pathway ª o � n o q
would be processed first (i.e. the reverse of the pathway n o q � ª o listed in Sec-
tion 2.1). The only significant transformation is l + � that deletes 7 7 � I � C � J � C I N 9 9 , resulting
in an intermediate view definition:

ª o � 7 7 � I � C � J � C I N 9 9 :- n o q � 7 7 C E O � � C I N 9 9 ++�
w N � � x

�
w N � � x � n o q � 7 7 C E F H I J E � C I N 9 9 � J � E w P I P u I � N n o q � 7 7 C E O � 9 9 x �

at one copy, n o q , of the four union schemas. Traversing the pathways n o q � r o q and
n o q � n o £ , we replace the body of the view definition with:

w
�

w N � ‘M’ x
�

N � r o q � 7 7 P O v I 9 9 � ++
�

w N � ‘F’ x
�

N � r o q � 7 7 � I P O v I 9 9 � ² |
n o £ � 7 7 C E O � � C I N 9 9 x

++ w
�

w N � � x
�

w N � � x � Void ² | n o £ � 7 7 C E F H I J E � C I N 9 9 �
J � E w P I P u I � N w r o q � 7 7 C E O � 9 9 ² | n o £ � 7 7 C E O � 9 9 x x � x

Traversing next n o £ � r o £ and n o £ � n o ¦ , we get:
w

�
w N � ‘M’ x

�
N � r o q � 7 7 P O v I 9 9 � ++

�
w N � ‘F’ x

�
N � r o q � 7 7 � I P O v I 9 9 � x ² |

Void ² | n o ¦ � 7 7 C E O � � C I N 9 9 x
++ w

�
w N � � x

�
w N � � x � Void ² | Void ² | n o ¦ � 7 7 C E F H I J E � C I N 9 9 �

J � E w P I P u I � N w r o q � 7 7 C E O � 9 9 ² | Void ² | n o ¦ � 7 7 C E O � 9 9 x x � x
Continuing with n o ¦ � r o ¦ , n o ¦ � n o § and finally n o § � r o § , we obtain the view
definition:

�� �
�
*
����
��� ������
����� �������

�(��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

Note however that the BAV integration would still hold if r o § were fragmented,
with campus and departments held on separate sources, whereas GLAV would cease to

be valid in this situation.

4 Logical Optimisation of the Generated Views

The view definitions generated by the process described above can be simplified by a

process of logical optimisation, where redundant parts of the query are removed. This

saves later work for the query optimiser, when these definitions are substituted into

specific global queries for query processing. It also generates views that are similar to

the views that would have been specified directly in a GAV, LAV or GLAV framework.

4.1 The ¸ ¹ Operator and Void

The Void value represents a construct that is unobtainable from a data source. We thus
define I ² | Void y Void ² | I y I for any IQL expression I . Applying this simplifica-
tion to the GAV view definition derived in Section 3.1 results in:

ª o � 7 7 � I � C � J � C I N 9 9 :-
w

�
w N � ‘M’ x

�
N � r o q � 7 7 P O v I 9 9 � ++

�
w N � ‘F’ x

�
N � r o q � 7 7 � I P O v I 9 9 � x x

++ w
�

w N � � x
�

w N � � x � r o ¦ � 7 7 C E F H I J E � C I N 9 9 � J � E w P I P u I � N w r o q � 7 7 C E O � 9 9 x x � x
It may be the case that two data sources supply information for a single schema

construct. For example, the global schema attribute 7 7 F J L � I � C L E � � F J O P I 9 9 has the GAV
view definition:

ª o � 7 7 F J L � I � C L E � � F J O P I 9 9 :- r o £ � 7 7 F J L � I � C L E � � F J O P I 9 9 ² | r o § � 7 7 F J L � I � C L E � � F J O P I 9 9
which expresses the fact that either r o £ or r o § can be used to extract information about
university names. This leads to several possibilities for operational semantics that may

be used for the ² | operator:

1. ident semantics would choose one of the expressions to evaluate, since the in-
tegration rules specify that they are the same. This may be defined by the rule

I ¼ ² | I ½ y I ¼ y I ½ .
2. intersect semantics would determine that a value should be returned only if it is
present in all data sources, defined by I ¼ ² | I ½ y L J E I � C I � E I ¼ I ½ .

3. append semantics would determine that all values in all data sources should be
returned, defined by I ¼ ² | I ½ y I ¼ ¿ ¿ I ½ .

4. union semantics would determine that one copy of a value should be returned if
present in any data source, defined by I ¼ ² | I ½ y H L C E L J � E w I ¼ ¿ ¿ I ½ x .

Option (1) is that which should be used if it is known that the data sources obey the

semantics specified by the data integration rules i.e. that their extents are identical and
there are no distributed data integrity violations. In this circumstance, the ² | operator
may also be used during distributed data integrity checking, where both expressions are

evaluated, and the results compared to determine if the data sources contain consistent

data.

Options (2)–(4) provide different mechanisms for handling situations where the data

sources are possibly inconsistent, and thus may not share information that they should

�� �
�
*
����
��� ������
����� �������

share. Option (3) provides a result that may be used to derive Options (2) and (4), and

therefore is the default semantics provided by the AutoMed’s view generation algo-

rithm. Note also that Option (4) gives the same result as Option (1) if the data sources

are identical.

4.2 Other IQL Operators

The AutoMed intermediate query language IQL supports several primitive operators

for manipulating lists. The list append operator, ¿ ¿ , concatenates two lists together.
The distinct operator removes duplicates from a list. The monus operator Ã Ã sub-
tracts each instance of the second list from the first. For example,

�
¼ � ½ � Ä � ½ � Å � Ã Ã� Å � Å � ½ � ¼ � y

� Ä � ½ � . The fold operator applies a given function � to each element of
a list and then ‘folds’ a binary operator � � into the resulting values, and is defined as
follows:� � v H � � � I

�
� y I

� � v H � � � I
�

N � y � N
� � v H � � � I w u ¼ ¿ ¿ u ½ x y w � � v H � � � I u ¼ x � � w � � v H � � � I u ½ x
Other IQL list manipulation operators may be defined using � � v H together with the

usual set of built-in operators and also the support of lambda abstractions. For exam-
ple, the IQL functions sum and � � F J E are equivalent to the SQL SUM and COUNT
aggregation functions and are defined respectively as C F P y � � v H w L H x w ¿ x É and

� � F J E y � � v H w v O P u H O N 	 ¼ x w ¿ x É .
The function Ì O E P O � applies a list-valued function � to each member of a list u

and is defined as Ì O E P O � � u y � � v H � w ¿ ¿ x
�

� u . Ì O E P O � can in turn be used to
define selection, projection, join and, more generally, the comprehension syntax used

in the view definitions of the previous section. For example, the list comprehension�
N

�
N � 7 7 C E F H I J E 9 9 � J � E w P I P u I � N 7 7 C E O � 9 9 x � translates to:

Ì O E P O � w v O P u H O N 	 L � w J � E w P I P u I � N 7 7 C E O � 9 9 x x E Ï I J
�

N � I v C I
�

� x 7 7 C E F H I J E 9 9
Optimisations for � � v H apply to all the operators defined in terms of it. Regarding

the view definitions generated from BAV pathways there are two particular optimisa-

tions that can be applied to them. First, any instances of � � v H applied to � � L H can be
simplied by treating � � L H as identical to the empty bag, so that � � v H � � � I � � L H y I
for any � � � � � I . Second, due to the step-wise specification of our schema transfor-
mations, loop fusion may be applicable. This replaces two successive iterations over a
collection by one iteration provided the operators in question satisfy certain algebraic

properties. A simple instance of loop fusion is the standard relational query optimisation
Ñ Ò w Ñ Ó w 8 x x y Ñ Ò Ô Ó w 8 x . Loop fusion does not arise in the schema integration example
of Section 2.1 but consider the following fragment of an AutoMed pathway. This first

joins two schemes 7 7 8 � ? 9 9 and 7 7 8 � Õ 9 9 , creating an intermediate relation 7 7 Ö 9 9 , and then
projects onto the ? and Õ attributes, creating a relation 7 7 × 9 9 , and finally deletes 7 7 Ö 9 9 :

addRel w 7 7 Ö 9 9 � �
w Ø � Ù � Ú x

�
w Ø � Ù x � 7 7 8 � ? 9 9 � w Ø � Ú x � 7 7 8 � Õ 9 9 � x

addRel w 7 7 × 9 9 � �
w Ù � Ú x

�
w Ø � Ù � Ú x � 7 7 Ö 9 9 � x

deleteRel w 7 7 Ö 9 9 � �
w Ø � Ù � Ú x

�
w Ø � Ù x � 7 7 8 � ? 9 9 � w Ø � Ú x � 7 7 8 � Õ 9 9 � x

The view definition generated for 7 7 × 9 9 would be�
w Ù � Ú x

�
w Ø � Ù � Ú x �

�
w Ø � Ù � Ú x

�
w Ø � Ù x � 7 7 8 � ? 9 9 � w Ø � Ú x � 7 7 8 � Õ 9 9 � � x

and the generator w Ø � Ù � Ú x � in the outer comprehension can be fused with the head

�+��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

expression of the inner comprehension, giving:� w Ù � Ú x � w Ø � Ù x � 7 7 8 � ? 9 9 � w Ø � Ú x � 7 7 8 � Õ 9 9 �
There are a range of other standard algebraic optimisations that could be performed

on the view definitions e.g. pushing down selections and projections. However, these
kinds of optimisations will also be applied later, when a specific global query is refor-

mulated by substituting into it the view definitions. Further optimisations and rewrites

will be applied at this stage e.g. to bring constructs from the same local schemas to-
gether into sub-queries which can be posed entirely on one local schema and it is these

sub-queries (appropriately translated) that will be sent to local data sources for evalua-

tion.

We finally note that, although IQL is list-based, if the ordering of elements within

lists is ignored then its operators are faithful to the expected bag semantics. Moreover,

use of the H L C E L J � E operator can be used to obtain set semantics as needed. We refer
the reader to [17, 6] for more details of IQL and for references to work on fold-based

functional query languages and optimisation techniques for such languages.

5 Validating and Optimising Pathways

One important feature of the AutoMed approach is that once a set of schemas have

been joined in a network of pathways, data and queries may be translated or migrated

between any pair of schemas in the network. Such networks may be complex to analyse,

so we need to support automated validation that a network is well-formed. We also need

to support automated optimisation of the pathways between schemas, since they may

contain redundant transformations.

To support such validation and optimisation of pathways, we have developed the

TransformationManipulation Language (TML) [20, 21], which represents each trans-
formation in a form suited to analysis of the schema constructs that are created, deleted

or are required to be present for the transformation to be correct. Our definitions below

require two functions Û and Ü . Given a query] on schema � containing � number of
constructs, Û determines all schema constructs that must exist in � if the query is valid,

Ü determines all schema constructs in � referencing the constructs in] . For the IQL
language constructs used in our earlier examples, Û and Ü are defined as:

Û w 7 7 � 9 9 x y 7 7 � 9 9
Û w 7 7 � � O 9 9 x y Þ 7 7 � 9 9 � 7 7 � � O 9 9 à

Û w �] � � 	 	 	 �] � � x y Û w] � x á 	 	 	 á Û w] � x
Û w] � ++] � x y Û w] � x á Û w] � x

Û w �] �] � � 	 	 	 �] � � x y Û w] x á Û w] � x á 	 	 	 á Û w] � x
Ü w 7 7 � 9 9 x y ã � ä � ä � � w � å � æ 7 7 � 9 9 å Û w � x x

Note that as a shorthand, we will write the pair of queries] è �] é in extend or con-
tract as just] , with the semantics in such cases that Û w] è �] é x y Û w] è x á Û w] é x . The
TML formalises each transformation l -

of schema � � into schema � � � � as having four
conditions ? �� � Õ ì� � �� � í ì� :
– The positive precondition ? �� is the set of constructs that � � implies must be present
in � � . It comprises those constructs that are present in the query of the transforma-
tion (given by Û w] x) together with any constructs implied as being present by the
construct :

�� �
�
*
����
��� ������
����� �������

l - å Þ add w �] x � extend w �] x à � ? �� y w Û w x Ã x á Û w] x
l - å Þ delete w �] x � contract w �] x � id w � ^ x à � ? �� y Û w x á Û w] x
l - y rename w � ^ x � ? �� y Ü w x

– The negative precondition Õ ì� is the set of constructs that � � implies must not be
present in � � . It comprises those constructs which the transformation will add to
the schema, and thus must not already be present:

l - å Þ add w �] x � extend w �] x � id w ^ � x à � Õ ì� y
l - å Þ delete w �] x � contract w �] x à � Õ ì� y î
l - y rename w � ^ x � Õ ì� y Þ ï ^ à Ü w x

– The positive postcondition �� is the set of constructs that � � implies must be present
in � � � � , and is derived in the same way as ? �� (i.e. the positive precondition of the
l -
):

l - å Þ add w �] x � extend w �] x � id w ^ � x à � �� y Û w x á Û w] x
l - å Þ delete w �] x � contract w �] x à � �� y w Û w x Ã x á Û w] x
l - y rename w � ^ x � �� y Þ ï ^ à Ü w x

– The negative postcondition í ì� is the set of constructs that � � implies must not be
present in � � � � , and is derived in the same way as Õ ì� :
l - å Þ delete w �] x � contract w �] x � id w � ^ x à � í ì� y ,
l - å Þ add w �] x � extend w �] x à � í ì� y î
l - y rename w � ^ x � í ì� y Ü w x

Below we show how the compounded transformation l � and the primitive transfor-
mation l � are represented in the TML.

l � ñ � � � î � Þ 7 7 C E F H I J E 9 9 à � Þ 7 7 C E F H I J E 9 9 à � î �
l � ñ � � �

î � Þ 7 7 C E F H I J E � L H 9 9 à � Þ 7 7 C E F H I J E 9 9 � 7 7 C E F H I J E � L H 9 9 à � î �
l � ñ + � � î � Þ 7 7 C E F H I J E � L H 9 9 à � Þ 7 7 C E F H I J E 9 9 � 7 7 C E F H I J E � C I N 9 9 à � î �
l � ñ � � � î � Þ 7 7 C E F H I J E � L H 9 9 à � Þ 7 7 C E F H I J E 9 9 � 7 7 C E F H I J E � H J O P I 9 9 à � î �
l � � � Þ 7 7 C E O � 9 9 � 7 7 C E O � � H J O P I 9 9 à � Þ 7 7 H I � E 9 9 à � Þ 7 7 H I � E 9 9 � 7 7 C E O � 9 9 � 7 7 C E O � � H J O P I 9 9 à � î �

5.1 Well-formed Transformation Pathways

A pathway ò from schema � ó to � � is said to be well-formed if for each transforma-
tion step l - � � � � � � � � within it:

– The only difference between the schema constructs in � � � � and � � is those con-
structs specifically changed by transformation l -

, implying that � � � � y w � � á �� x Ã
í ì� and � � y w � � � � á ? �� x Ã Õ ì�

– The constructs required by l -
are in the schemas, implying that ? �� ô � � , Õ ì� ö � � y

î , �� ô � � � � and í ì� ö � � � � y î

The above definition leads to the recursive definition of a well-formed pathway, ÷ ø ,
given below. The first rule applies each transformation step in turn, and the second rule

ensures that the schema that results from applying all the transformation steps is equal

to the schema at the end of the pathway (equal both in terms of the schema constructs

found in each schema and the extent of the schemas). Note that any implementation

����� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

may use these rules in two ways. Firstly, given a schema � ó representing a data source,
and pathway ù , a new data source schema � � and its extent can be derived. Secondly,
if � � exists as a data source already, a check can be made to verify that ù correctly
derives its schema and extent from that of � ó .

÷ ø w � ó � � � � �
l Y � l Y ú � � 	 	 	 � l / û � � x � ? �ó ô � ó æ Õ ìó ö � ó y î æ

÷ ø w w � ó á �ó x Ã í ìó � � � � �
l Y ú � � 	 	 	 � l / û � � x

÷ ø w � ó � � � � �
� x � � ó y � � æ þ Ø � w � ó x y þ Ø � w � � x

5.2 Reordering of Transformations

Certain transformations may be performed in any order, whilst others must be per-

formed in a specific order. For example, in r o q � n o q , l � � must be performed before
l � � , since the attribute 7 7 P O v I � L H 9 9 must be deleted before the 7 7 P O v I 9 9 relation is deleted.
However the sub-pathway l � � , l � � could be performed before or after the sub-pathway
l � +
, l � � since it does not matter which of the 7 7 P O v I 9 9 or 7 7 � I P O v I 9 9 relations is deleted

first.

In the TML, this intuition is expressed by stating that transformations may be

swapped provided the pathway remains well-formed. This may be verified by inspect-

ing the conditions of each transformation. In particular, a pair of transformations l -
, l - ú �

may be reordered to l - ú � , l -
provided:

1. l -
does not add a construct required by l - ú � , and l - ú � does not add a construct

required by l -
, i.e. w �

� Ã ? �
� x ö ? �

� � � y î and w ? �
� � � Ã �

� � � x ö �
� y î

2. l -
does not delete a construct required not to be present by l - ú � , and l - ú � does not
delete a construct required not to be present by l -

, i.e. í �
� ö Õ �

� � � y î
3. if l -

is preceded by l - û � , the preconditions of l - ú � do not conflict with the postcon-
ditions of l - û � , i.e. �

� ì � ö Õ ì� � � y î and í ì� ì � ö ? �
� � � y î

4. if l - ú � is followd by l - ú � , the preconditions of l - ú � do not conflict with the postcon-
ditions of l -

, i.e. �
� ö Õ ì� � � y î and í ì� ö ? �

� � � y î

We can now formalise the two examples given above from r o q � n o q . For l � � , l � � ,
(1) is broken, and hence they may not be swapped. The changing of l � � , l � � , l � +

, l � � to
l � +
, l � � , l � � , l � � may be performed by iteratively swapping pairs of transformations. Con-

sidering first l � � , l � +
, we find neither rule is broken, and they may be reordered to l � +

, l � � .
Then l � � , l � � breaks neither rule, and may be reordered to l � � , l � � . This leaves a sub-
pathway l � � , l � +

, l � � , l � � , and a similar argument allows l � � swap with l � +
and then l � � , to

give the sub-pathway l � +
, l � � , l � � , l � � .

5.3 Redundant anad Partially Redundant Transformations

Two transformations � « and � ¬ in a well-formed pathway ò are redundant if ò may
be reordered such that � « and � ¬ become consecutive within it, and ò remains well-
formed if they are then removed. Such redundant transformations will occur if a source

schema evolves to model information in the same way as the global schema when

previously it modelled the information in a different way. For example, suppose r o q
is evolved by transformations l � � , l m � , l m � , l m � , l m +

, textually identical to transformations

l � � , l � � , l � � , l � +
, l � � , to model the gender of staff as a single sex attribute in a new version

�0 �
�
*
����
��� ������
����� �������

of the schema r o ^ q . By reversing these transformation steps we can derive the pathway
from the new to the old schema r o ^ q � r o q :

Example 5 Pathway r o ^ q � r o q
l m + O H H | I v w 7 7 � I P O v I 9 9 � � N � w N � ‘F’ x � 7 7 C E O � � C I N 9 9 � x
l m � O H H � E E w 7 7 � I P O v I � L H 9 9 � � w N � N x � N � 7 7 � I P O v I 9 9 � x
l m � O H H | I v w 7 7 P O v I 9 9 � � N � w N � ‘M’ x � 7 7 C E O � � C I N 9 9 � x
l m � O H H � E E w 7 7 P O v I � L H 9 9 � � w N � N x � N � 7 7 P O v I 9 9 � x
l � � H I v I E I � E E w 7 7 C E O � � C I N 9 9 � � w N � ‘M’ x � N � 7 7 P O v I 9 9 � ++

� w N � ‘F’ x � N � 7 7 � I P O v I 9 9 � x

If we inspect the entire path r o ^ q � n o q , consisting of r o ^ q � r o q followed by
r o q � n o q , it may be reordered to contain the sub-pathway:
l m � O H H | I v w 7 7 P O v I 9 9 � � N � w N � ‘M’ x � 7 7 C E O � � C I N 9 9 � x
l m � O H H � E E w 7 7 P O v I � L H 9 9 � � w N � N x � N � 7 7 P O v I 9 9 � x
l � � H I v I E I � E E w 7 7 C E O � � C I N 9 9 � � w N � ‘M’ x � N � 7 7 P O v I 9 9 � ++

� w N � ‘F’ x � N � 7 7 � I P O v I 9 9 � x
l � � O H H � E E w 7 7 C E O � � C I N 9 9 � � w N � ‘M’ x � N � 7 7 P O v I 9 9 � ++

� w N � ‘F’ x � N � 7 7 � I P O v I 9 9 � x
l � � H I v I E I � E E w 7 7 P O v I � L H 9 9 � � w N � N x � N � 7 7 P O v I 9 9 � x
l � � H I v I E I | I v w 7 7 P O v I 9 9 � � N � w N � ‘M’ x � 7 7 C E O � � C I N 9 9 � x
Clearly l � � , l � � forms a redundant pair, because we are adding and deleting the same

constructwith the same extent since the query is the same. Once this has been performed
l m � , l � � may be removed for the same reason, and then l m � , l � � . Once all other redundant
pairs have been removed, r o ^ q � n o q would comprise of just l � – l � .
Using the TML, we can identify redundant transformations as satisfying:

w ? �« y �¬ x æ w Õ ì« y í ì¬ x æ w �« y ? �¬ x æ w í ì« y Õ ì¬ x æ þ Ø � w �« � ? �« x y þ Ø � w �¬ � ? �¬ x
where w Ø � Ù x y w Ø Ã Ù x á w Ù Ã Ø x , and thus serves to find all the constructs being
added or deleted by the pair of transformations. In practice, this rule means that any

pair of transformations which add/extend and then delete/contract (in either order) the

same construct are redundant, providing the query can be demonstrated to result in the

same extent.

Two transformations � « and � ¬ in a well-formed pathway ò are partially redundant
if ò may be reordered to make � « and � ¬ consecutive, and ò remains well-formed if they
are then replaced by a single transformation � « ¬ .
The pathway r o q � r o £ has a pair of such partially redundant transformations,

since it can be reordered to obtain the sub-pathway:
l � O H H � E E w 7 7 H I � E � H J O P I 9 9 � � w N � N x � N � 7 7 H I � E 9 9 � x
l � � � I J O P I � E E w 7 7 H I � E � H J O P I 9 9 � 7 7 H I � E � H I � E J O P I 9 9 x
This may be replaced by the new transformation given below, which leaves a fully

optimised pathway r o q � r o £ .
l m � O H H � E E w 7 7 H I � E � H I � E J O P I 9 9 � � w N � N x � N � 7 7 H I � E 9 9 � x
Using the TML, we can identify partially redundant transformations as satisfying

the following rules, where
�
indicates the exclusive-or operator:

w w ? �« y �¬ x æ ? �«
�y î � w Õ ì« y í ì¬ x æ Õ ì«

�y î æ í ì« ö Õ ì¬ y î æ í ì«
�y î æ Õ ì¬

�y î
The simplifications for removing partially redundant and fully redundant transfor-

mations are summarised in the table below. The table shows what simplifications may

be applied where a pair of transformations is found to operate on the same construct

 . NWF denotes ‘not well-founded’ and � � denotes the removal of the pair. The table
would remain correct if extend were to replace add, contract replace delete, and id

�1��� �����	
� ��� �
��
� ��� ����	���
� ��� �
��
���������� ,���#��%�-� �� � �.�%$%�%�-�
%�/�� ��

replace rename. Further details of redundant and partially redundant transformations
may be found in [20, 21].

� ¬

add(c,q) delete(c,q) rename(c,c’)
add(c,q) NWF

�
� add(c’,q)

� « delete(c,q)
�

� NWF NWF
rename(c’,c) NWF delete(c’,q)

�
�

rename(c”,c) NWF delete(c”,q) rename(c”,c’)

6 Concluding Remarks

In this paper we have described view generation and view optimisation in the Au-

toMed heterogeneous database integration framework. We have shown how the Au-

toMed schema pathways and views generated from them are amenable to considerable

simplification, resulting in view definitions that look much like the views that would

have been specified directly in a GAV, LAV or GLAV framework.

Since BAV integration is based on sequences of primitive schema transformations,

it could be argued that data integration using it is more complex than with GAV, LAV or

GLAV. However, the integration process can be greatly simplified by specifying well-

known schema equivalences as higher-level composite transformations. We gave such

an example, extendTable, in Section 2.1 above, and further examples are given in [15].
Moreover, we are working on techniques for semi-automatically generating transfor-

mation pathways to convert a source schema expressed in one modelling language into

an equivalent target schema expressed in another modelling language, based on well

known schema equivalences. We are also investigating schema matching techniques to

automatically or semi-automatically integrate two specific schemas.

Finally, it should be noted that BAV is well-suited to peer-to-peer data integration

(see [16]) since it lacks the directionality inherent in LAV, GAV and GLAV, all of which

are tied to the concept of there being a global schema which may not always be the case

in peer-to-peer environments.

References

1. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A

BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, 2004.
2. P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.
3. D. Calvanese, E. Damagio, G. De Giacomo, M. Lenzerini, and R. Rosati. Semantic data

integration in P2P systems. In Proc. DBISP2P, Berlin, Germany, 2003.
4. S.S. Chawathe et al. The TSIMMIS project: Integration of heterogeneous information
sources. In Proc. 10th Meeting of the Information Processing Society of Japan, pages 7–
18, October 1994.

5. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration. In Proc.16th
National Conf. on AI, pages 67–73. AAAI Press, 1999.

6. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and Migrating Data

in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

(� �
�
*
����
��� ������
����� �������

7. M. Lenzerini. Data integration: A theorectical perspective. In Proc. PODS02, pages 247–
258, 2002.

8. A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views. In

Proc. PODS’95, pages 95–104. ACM Press, May 1995.
9. A.Y. Levy, A. Rajamaran, and J.Ordille. Querying heterogeneous information sources using

source description. In Proc. VLDB’96, pages 252–262, 1996.
10. J. Madhavan and A.Y. Halevy. Composing mappings among data sources. In Proc. 29th
Conference on VLDB, pages 572–583, 2003.

11. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on heterogeneous

data sources. In Proc. VLDB’01, pages 241–250, 2001.
12. P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database appli-

cations — a schema transformation approach. In Proc. ER’99, LNCS 1728, pages 96–113,
1999.

13. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In

Proc. CAiSE’99, LNCS 1626, pages 333–348, 1999.
14. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database architec-

tures, a schema transformation approach. In Proc. CAiSE’02, LNCS 2348, pages 484–499,
2002.

15. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation

rules. In Proc. ICDE’03, 2003.
16. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view

rules. In Proc. DBISP2P, Berlin, Germany, 2003.
17. A. Poulovassilis. The AutoMed Intermediate Query Language. Technical report, AutoMed

Project, 2001.

18. M.T. Roth and P. Schwarz. Don’t scrap it, wrap it! A wrapper architecture for data sources.

In Proc. VLDB’97, pages 266–275, Athens, Greece, 1997.
19. M. Templeton, H.Henley, E.Maros, and D.J. Van Buer. InterViso: Dealing with the complex-

ity of federated database access. VLDB Journal, 4(2):287–317, 1995.
20. N. Tong. Database schema transformation optimisation techniques for the AutoMed system.

Technical report, AutoMed Project, 2002.

21. N. Tong. Database schema transformation optimisation techniques for the AutoMed system.

In Proc. BNCOD’03, volume 2712 of LNCS, pages 157–171. Springer, 2003.

� � � � � �
 � � � � � � � � � � � � � � � � � � � � � $

& � � ' (� � � � � � � , . 0 � � � , � � � � � 8 9 � � � . �
 �

; < = ? @ B C E @ < I J L = N P N R S T V N X N

[\ ^ ^ _ ` a b c e _ h ^ c j ` m o _ r \ h j t _ b j u v w b v u h t \ j c u b z ` ^ j _ t ^ |
w b v u h t \ j c u b z ~ c _ b ~ _ � _ ^ _ \ h ~ � � _ b j h _

� h c e \ j _ � \ � � � � � � m � \ � t _ h ^ j u b � u h j � m � _ � � _ \ � \ b �
� � � t \ � � � � � ^ ~ � _ � _ � � t \ ^ ^ _ ` � \ ~ � b �

� � � � � � � � o c ^ j h c ¡ ¢ j c u b � _ ^ c � b v u h � \ j \ ¡ \ ^ _ ^ c b e u � e _ ^ v h \ � t _ b j \ j c u b m
\ � � u ~ \ j c u b \ b � h _ r � c ~ \ j c u b � ¥ � c ^ r \ r _ h \ � � h _ ^ ^ _ ^ v h \ � t _ b j \ j c u b c b j � _
~ u b j _ ¨ j u v \ ^ j h ¢ ~ j ¢ h \ � � ` h c ~ � u ¡ ª _ ~ j u h c _ b j _ � � \ j \ t u � _ � � ¬ u h c � u b j \ �
\ b � e _ h j c ~ \ � v h \ � t _ b j \ j c u b u r _ h \ j c u b ^ \ h _ _ ¨ j _ b � _ � v h u t j � _ h _ � \ j c u b \ �
� \ j \ t u � _ � j u j � _ u ¡ ª _ ~ j u h c _ b j _ � � \ j \ t u � _ � m \ b � \ j � c h � v h \ � t _ b j \ °

j c u b u r _ h \ j c u b ~ \ � � _ � ^ r � c j j c b � c ^ c b j h u � ¢ ~ _ � � ¥ � _ � u u � b _ ^ ^ u v \ � c ^ j h c °
¡ ¢ j c u b � _ ^ c � b ^ � u ¢ � � ¡ _ \ ^ ^ _ ^ ^ _ � ¡ ` j � _ r _ h v u h t \ b ~ _ u v \ ^ ` ^ j _ t � ² u h
j � c ^ � _ r h _ ^ _ b j \ ³ ¢ _ h ` r h u ~ _ ^ ^ c b � ~ u ^ j t u � _ � j u _ e \ � ¢ \ j _ j � _ r _ h v u h °
t \ b ~ _ u v \ ^ ` ^ j _ t � ¥ � _ ~ u h _ u v j � _ r \ r _ h c ^ \ � _ ¢ h c ^ j c ~ \ r r h u \ ~ � v u h
� u h c � u b j \ � v h \ � t _ b j \ j c u b m � � c ~ � ¢ ^ _ ^ j � _ ~ u ^ j t u � _ � \ b � c ^ j \ h � _ j _ � \ j
� � u ¡ \ � � ` t c b c t c ^ c b � j � _ ^ _ ~ u ^ j ^ �

´ µ ¶ · ¸ � ¹ � v h \ � t _ b j \ j c u b m � c ^ j h c ¡ ¢ j c u b � _ ^ c � b m ~ u ^ j t u � _ � m � _ ¢ h c ^ j c ~
r h u ~ _ � ¢ h _

» ¼ ½ ¾ ¿ À Á Â Ã ¾ Ä À ½

Å P = I T Æ Ç Ç Æ È E É @ T T N Ê P N Ë P V @ P P V N Ë N I = Ì È Æ Í Ë = I P R = Î < P N Ë Ë @ P @ Î @ I N I N Ï P N È Ë I P V N
Ë N I = Ì È Æ Í T N È P R @ E = I N Ë Ë @ P @ Î @ I N I Î É P V R N N @ Ë Ë = P = Æ È @ E @ T P = Ò = P = N I Ó Í R @ Ì Ç N È P @ P = Æ È B
@ E E Æ T @ P = Æ È @ È Ë R N Ê E = T @ P = Æ È Ô Ö B × Ø Ù Ú Û R @ Ì Ç N È P @ P = Æ È R N Ê E @ T N I R N E @ P = Æ È I T V N Ç @ P @ Æ R
T E @ I I N I = È @ Ì = Ò N È Ë @ P @ Î @ I N I T V N Ç @ Î É I N Ò N R @ E È N X R N E @ P = Æ È I T V N Ç @ P @ Æ R T E @ I I N I

X = P V Æ < P E Æ I = È Ì Æ R @ Ë Ë = È Ì = È Í Æ R Ç @ P = Æ È Ú Þ E E Æ T @ P = Æ È @ I I Æ T = @ P N I X = P V N @ T V Í R @ Ì Ç N È P
@ È Æ Ë N = È P V N T Æ Ç Ê < P N R È N P X Æ R ß Ú à V < I B Í R @ Ì Ç N È P @ P = Æ È @ È Ë @ E E Æ T @ P = Æ È P Æ Ì N P V N R

R N Ê E @ T N @ Ì E Æ Î @ E Ë @ P @ Î @ I N I T V N Ç @ Î É E Æ T @ E Ë @ P @ Î @ I N I T V N Ç @ P @ Í Æ R N @ T V È Æ Ë N Æ Í
P V N È N P X Æ R ß Ú Å È @ Ë Ë = P = Æ È B R N Ê E = T @ P = Æ È @ E E Æ X I @ Í R @ Ì Ç N È P P Æ Î N I P Æ R N Ë È Æ P á < I P Æ È
Æ È N È Æ Ë N B Î < P Æ È I N Ò N R @ E Æ È N I B X V = T V = Ç Ê @ T P I Æ È P V N X @ É â < N R = N I @ È Ë < Ê Ë @ P N I
< I = È Ì R N Ê E = T @ P N Ë Í R @ Ì Ç N È P I V @ Ò N P Æ Î N R N @ E = I N Ë Ú

à V N Ç @ = È Æ Î á N T P = Ò N Æ Í Ë = I P R = Î < P = Æ È Ë N I = Ì È = I P Æ = Ç Ê R Æ Ò N P V N Æ Ò N R @ E E Ê N R Í Æ R J
Ç @ È T N @ È Ë R N E = @ Î = E = P É Æ Í @ Ë = I P R = Î < P N Ë Ë @ P @ Î @ I N I É I P N Ç Ú Å Ç Ê R Æ Ò N Ë Ê N R Í Æ R Ç @ È T N
T @ È Î N @ T V = N Ò N Ë Î É @ Ò Æ = Ë = È Ì Æ R @ P E N @ I P R N Ë < T = È Ì < È È N T N I I @ R É Ë @ P @ P R @ È I Ê Æ R P
Î N P X N N È P V N È Æ Ë N I Æ Í P V N È N P X Æ R ß Ú

Û R @ Ì Ç N È P @ P = Æ È @ È Ë @ E E Æ T @ P = Æ È V @ Ò N Ç @ = È E É Î N N È = È Ò N I P = Ì @ P N Ë = È P V N T Æ È P N Ï P
Æ Í P V N R N E @ P = Æ È @ E Ë @ P @ Ç Æ Ë N E Ú ; Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Ô å B × Ö B × æ Ù N Ï Ê E Æ = P I R N E @ J

P = Æ È I Î N = È Ì I N P I Æ Í P < Ê E N I Ú à V N I N I N P I @ R N Ê @ R P = P = Æ È N Ë < I = È Ì I N E N T P = Æ È Ê R N Ë = T @ P N I Ú

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '()��� 	�

'� �
�
*
����
��� ������
����� �������

L N Ê N È Ë = È Ì Æ È X V N P V N R P V N I N I N E N T P = Æ È Ê R N Ë = T @ P N I @ R N Î @ I N Ë Æ È P V N R N E @ P = Æ È

I T V N Ç @ @ P V @ È Ë Æ R Æ È @ È Æ P V N R R N E @ P = Æ È X N Ë = I P = È Ì < = I V Î N P X N N È Ê R = Ç @ R É @ È Ë

Ë N R = Ò N Ë V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Ú � N R P = T @ E Í R @ Ì Ç N È P @ P = Æ È Ô × � B × Ø Ù I P @ R P I Í R Æ Ç

R N E @ P = Æ È I T V N Ç @ P @ @ I I N P I Æ Í @ P P R = Î < P N I Ú Û R @ Ì Ç N È P I @ R N Ë N � È N Ë Î É Ê R Æ á N T P = Æ È I

Æ È P Æ I < Î I N P I @ È Ë P V N Æ R = Ì = È @ E R N E @ P = Æ È = I R N T Æ Ò N R N Ë Î É @ È @ P < R @ E á Æ = È Ú à V = I á Æ = È

Ç < I P Î N E Æ I I E N I I B X V = T V = I < I < @ E E É @ T V = N Ò N Ë Î É E N P P = È Ì @ I N E N T P N Ë Ç = È = Ç @ E Î N Ê @ R P

Æ Í @ E E Í R @ Ì Ç N È P R N E @ P = Æ È I T V N Ç @ P @ Ú Þ E P N R È @ P = Ò N E É B @ È @ Ë Ë = P = Æ È @ E Ò = R P < @ E @ P P R = Î < P N

T @ È Î N < I N Ë Ú Þ E E Æ T @ P = Æ È Ô � Ù @ I I = Ì È I P V N Í R @ Ì Ç N È P I P Æ P V N È Æ Ë N I = È @ È N P X Æ R ß Ú

? Æ R N Ì N È N R @ E E É B X N Ç @ É N Ï P N È Ë @ E E Æ T @ P = Æ È P Æ @ I I Æ T = @ P N È Æ Ë N I @ E I Æ P Æ @ E E = È P N R J

Ç N Ë = @ P N â < N R É R N I < E P I B Î < P P Æ Æ < R ß È Æ X E N Ë Ì N P V = I Ì N È N R @ E = I N Ë Ò = N X V @ I È Æ P É N P

Î N N È @ Ê Ê R Æ @ T V N Ë Ú Å È Ç Æ I P X Æ R ß = È P V N E = P N R @ P < R N Í R @ Ì Ç N È P @ P = Æ È @ È Ë @ E E Æ T @ P = Æ È

@ R N I P < Ë = N Ë I N Ê @ R @ P N E É B Î < P = È I Æ Ç N Ê @ Ê N R I P V N I N @ T P = Ò = P = N I @ R N P R N @ P N Ë á Æ = È P E É

Ô × å Ù Ú

S N @ R T V @ P P V N L � 	 � Ë = Ì = P @ E Î = Î E = Æ Ì R @ Ê V É I N R Ò = T N
 I N N � � � � � � � � � � � ! # $

& � ' $ (' � (+ I V Æ X I P V @ P Ë = I P R = Î < P = Æ È Ë N I = Ì È V @ I Î N N È @ V Æ P R N I N @ R T V P Æ Ê = T = È P V N

N @ R E É É N @ R I Æ Í E @ I P Ë N T @ Ë N B Î < P P V N = È P N R N I P = È P V N P Æ Ê = T V @ I Ë N T R N @ I N Ë Ë N I Ê = P N

P V N Í @ T P P V @ P P V N Ê R Æ Î E N Ç I I P = E E È N N Ë Í < R P V N R = È Ò N I P = Ì @ P = Æ È Ú , I Ê N T = @ E E É B X = P V P V N

@ Ë Ò N È P Æ Í T Æ < Ê E = È Ì Ë @ P @ Î @ I N I @ È Ë X N Î J Î @ I N Ë I É I P N Ç I < I = È Ì - ? 	 B X N Æ Î Ò = Æ < I E É

T R N @ P N Ë = I P R = Î < P N Ë Ë @ P @ Î @ I N I B Î < P P V N X @ É X N Ë Æ = P = I Ç Æ R N @ Ë J V Æ T P V @ È Ê E @ È È N Ë

@ È Ë I É I P N Ç @ P = T @ E E É Ú à V = I T < R R N È P P R N È Ë @ E I Æ = È Ë = T @ P N I P V N È N N Ë Í Æ R < È Ë N R I P @ È Ë = È Ì

Ë @ P @ Î @ I N Ë = I P R = Î < P = Æ È Æ È P V N Î @ I = I Æ Í Ç Æ R N I Æ Ê V = I P = T @ P N Ë Ë @ P @ Ç Æ Ë N E I P V @ È P V N

R N E @ P = Æ È @ E Æ È N B = È Ê @ R P = T < E @ R Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Ç Æ Ë N E I @ È Ë I = Ç = E @ R E É I N Ç = J

I P R < T P < R N Ë Ë @ P @ @ È Ë - ? 	 Ú ; Æ X N Ò N R B Ç Æ I P Æ Í P V N R N I N @ R T V Æ È Ë = I P R = Î < P = Æ È Ë N I = Ì È

= I I P = E E Î @ I N Ë Æ È P V N R N E @ P = Æ È @ E Ç Æ Ë N E B @ È Ë Ò N R É E = P P E N @ P P N È P = Æ È = I Ê @ = Ë P Æ Æ P V N R

Ë @ P @ Ç Æ Ë N E I B N I Ê N T = @ E E É Æ Î á N T P Æ R = N È P N Ë Ç Æ Ë N E I Ú

à V N X Æ R ß = È Ô Ø B 0 B æ B × 0 Ù Ì N È N R @ E = I N I V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È P Æ P V N Æ Î á N T P

Æ R = N È P N Ë T @ I N Ú à V N X Æ R ß = È Ô 3 B 4 B × × B × 0 Ù Ë Æ N I P V N @ È @ E Æ Ì < N Í Æ R Ò N R P = T @ E Í R @ Ì Ç N È J

P @ P = Æ È Ú à V N X Æ R ß = È Ô × 7 Ù T Æ È P @ = È I � R I P I P N Ê I P Æ T @ R R É Í R @ Ì Ç N È P @ P = Æ È Æ Ò N R P Æ

- ? 	 Ú Å È @ È < P I V N E E B T Æ Ç Ç Æ È V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È P N T V È = â < N I I P @ R P Í R Æ Ç

I = Ç Ê E N I N E N T P = Æ È Ê R N Ë = T @ P N I Í Æ < È Ë = È P V N Ç Æ I P Í R N â < N È P â < N R = N I @ È Ë P V N = R < I @ Ì N

= È P V N I N â < N R = N I Ú à V N Í R @ Ì Ç N È P I @ R N Ë N � È N Ë Î É T E < I P N R = È Ì P V N I N I = Ç Ê E N Ê R N Ë J

= T @ P N I < I = È Ì N = P V N R Ì R @ Ê V = T @ E P N T V È = â < N I Ô × Ö Ù Æ R Ò @ R = @ È P I Æ Í P V N � Æ È Ë , È N R Ì É

Þ E Ì Æ R = P V Ç
 � , Þ + Ô × æ Ù B X V = T V V @ I Æ R = Ì = È @ E E É Î N N È < I N Ë = È P V N T Æ È P N Ï P Æ Í Ò N R P = T @ E

Í R @ Ì Ç N È P @ P = Æ È Ú � N R P = T @ E Í R @ Ì Ç N È P @ P = Æ È = I Î @ I N Ë Æ È P V N T E < I P N R = È Ì Æ Í @ P P R = Î < P N I

< I = È Ì P V N @ > È = P É Î N P X N N È P V N Ç Ú Þ Ì @ = È B @ Ê Ê R Æ @ T V N I @ R N Ì R @ Ê V J Î @ I N Ë Ô × � Ù Æ R < I N

� , Þ Ô × Ø Ù Ú ? Æ I P Æ Í P V N X Æ R ß Æ È V Æ R = ä Æ È P @ E @ È Ë Ò N R P = T @ E Í R @ Ì Ç N È P @ P = Æ È Í Æ E E Æ X I

P V N I N Î @ I = T = Ë N @ I Ú

à V N N Ï = I P = È Ì @ Ê Ê R Æ @ T V N I P Æ Í R @ Ì Ç N È P @ P = Æ È = È P V N T Æ È P N Ï P Æ Í Æ Î á N T P Æ R = N È P N Ë

Ë @ P @ Î @ I N I I < ? N R I Í R Æ Ç P V R N N Ç @ á Æ R Ë R @ X Î @ T ß I Ó

@
à V N @ I I < Ç N Ë Ë @ P @ Ç Æ Ë N E = I < I < @ E E É N Ï P R N Ç N E É I = Ç Ê E = � N Ë = È T Æ Ç Ê @ R = I Æ È P Æ

Ç Æ R N @ Ë Ò @ È T N Ë Ç Æ Ë N E I I < T V @ I P V N B B L ? Ô × 4 Ù Æ R Å F 	 Ô × Ù Ú Å È Ê @ R P = T < E @ R B

P V N É Ç = I I Æ < P Æ È Ë N N Ê E É È N I P N Ë I P R < T P < R N I @ È Ë T Æ È I N â < N È P E É Æ È I Ê E = P P = È Ì @ I

@ Ê R = Ç = P = Ò N Í Æ R Í R @ Ì Ç N È P @ P = Æ È Ô × 0 Ù Ú

''��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

@

L N I Ê = P N P V N Í @ T P P V @ P Ë = I P R = Î < P = Æ È Ë N I = Ì È = I E @ R Ì N E É T Æ È T N R È N Ë X = P V Ê N R Í Æ R J

Ç @ È T N Æ Ê P = Ç = I @ P = Æ È B E = P P E N R N Í N R N È T N = I Ç @ Ë N P Æ P V N @ T P < @ E â < N R É
 @ È Ë P R @ È I J

@ T P = Æ È + T Æ Ç Ê < P = È Ì T Æ I P I Ú Å È P N R Ç N Ë = @ P N R N I < E P I Æ Í P V N â < N R = N I B X V = T V V @ Ò N P Æ

Î N I P Æ R N Ë I Æ Ç N X V N R N = È P V N È N P X Æ R ß @ È Ë P R @ È I Ê Æ R P N Ë P Æ Æ P V N R È Æ Ë N I I V Æ < E Ë

Î N P @ ß N È = È P Æ @ T T Æ < È P Ô æ Ù Ú

@

Þ Ê Ê R Æ @ T V N I R N E É Æ È Ë N Ê N È Ë N È T = N I Î N P X N N È I = Ç Ê E N â < N R = N I B P V Æ < Ì V P V N I N T @ È

V @ R Ë E É Î N Ë N P N R Ç = È N Ë Ú Å È P V N N È Ë P V N Ç @ á Æ R < I N Æ Í P V N I N Ë N Ê N È Ë N È T = N I = I P Æ

Ë N P N R Ç = È N P V N I @ P = I � @ Î = E = P É Æ Í @ T Æ È á < È T P = Æ È Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I X V = T V = I

< È Ë N T = Ë @ Î E N B @ È Ë = Í I @ P = I � @ Î E N P Æ I = Ç Ê E = Í É P V N Ç Ú

B < R X Æ R ß V N R N = I @ � R I P @ P P N Ç Ê P P Æ Æ Ò N R T Æ Ç N P V N I N Ë R @ X Î @ T ß I Ú à V N R N J

Ç @ = È Ë N R Æ Í P V N Ê @ Ê N R = I Æ R Ì @ È = I N Ë @ I Í Æ E E Æ X I Ú à V N Í < È Ë @ Ç N È P @ E I Æ Í P V N Æ Î á N T P

Æ R = N È P N Ë Ë @ P @ Ç Æ Ë N E X = E E Î N R N Ò = N X N Ë = È S N T P = Æ È � @ I P V N Ê R N E = Ç = È @ R = N I Æ Í P V N

Í Æ E E Æ X = È Ì Ë = I T < I I = Æ È Ú Å È S N T P = Æ È Ø X N X = E E R N Ò = N X Í R @ Ì Ç N È P @ P = Æ È P N T V È = â < N I Í Æ R

P V N B B L ? = È Ô × 0 Ù X V = T V E N @ Ë I < I P Æ Ë = I P = È Ì < = I V È Æ P Æ È E É V Æ R = ä Æ È P @ E @ È Ë Ò N R P = T @ E

Í R @ Ì Ç N È P @ P = Æ È B Î < P @ E I Æ I Ê E = P P = È Ì Ú à V N È = È S N T P = Æ È Ö X N Ê R N I N È P @ Ì N È N R @ E â < N R É

Ê R Æ T N I I = È Ì T Æ I P Ç Æ Ë N E @ È Ë < I N = P @ I P V N Î @ I = I Í Æ R @ È N X V N < R = I P = T Ç N P V Æ Ë Í Æ R

T Æ I P Æ Ê P = Ç = I @ P = Æ È Î @ I N Ë Æ È R N Ë < T = È Ì P V N È < Ç Î N R Æ Í R N E N Ò @ È P I = Ç Ê E N Ê R N Ë = T @ P N I

@ È Ë P V < I Í R @ Ì Ç N È P I Ú à V N @ I I < Ç Ê P = Æ È < È Ë N R E É = È Ì P V N V N < R = I P = T I = I P V @ P Î < = E Ë = È Ì

Í R @ Ì Ç N È P I X = P V R N I Ê N T P P Æ P V N Ç Æ I P Í R N â < N È P I = Ç Ê E N Ê R N Ë = T @ P N I X = E E � R I P R N Ë < T N

T Æ I P I B Î < P < I = È Ì P Æ Æ Ç @ È É Æ Í P V N Ç X = E E = È T R N @ I N T Æ I P I @ Ì @ = È Ú à V N @ Ê Ê R Æ @ T V X = E E

Ë N P N R Ç = È N @ I < = P @ Î E N T < P J Æ ? Ê Æ = È P Ú Û = È @ E E É S N T P = Æ È 3 Ê R N I N È P I @ Î R = N Í T Æ È T E < I = Æ È Ú

Å P V @ I Î N N È @ R Ì < N Ë P V @ P Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Î @ I N I @ R N Æ < P Æ Í Ë @ P N @ È Ë @ Í P N R

@ E E V @ Ò N È Æ P Í < E � E E N Ë P V N N Ï Ê N T P @ P = Æ È I Ú � V N P V N R P V = I = I P R < N Æ R È Æ P B P V N Æ Î á N T P

Æ R = N È P N Ë Ç Æ Ë N E X N < I N T @ Ê P < R N I P V N Ì = I P Æ Í - ? 	 B @ È Ë P V < I P V N @ Ê Ê R Æ @ T V P Æ Í R @ Ì J

Ç N È P @ P = Æ È T @ È Î N T @ R R = N Ë Æ Ò N R Ú Å È Ô × 0 Ù = P V @ I @ E R N @ Ë É Î N N È I V Æ X È V Æ X P Æ T @ R R É

Æ Ò N R P V N Í R @ Ì Ç N È P @ P = Æ È Æ Ê N R @ P = Æ È I P Æ I N Ç = J I P R < T P < R N Ë Ë @ P @ Ú Å È Ô × 7 Ù V Æ R = ä Æ È P @ E

Í R @ Ì Ç N È P @ P = Æ È V @ I Î N N È @ Ê Ê R Æ @ T V N Ë Í Æ R - ? 	 Ë Æ T < Ç N È P I Ú

� � Â ½ Á � � 	 ½ ¾ � � � À � ¾ � 	 � � � �

à V N B B L ? = È Ô × 4 Ù = I Î @ I N Ë Æ È @ È < È Ë N R E É = È Ì P É Ê N I É I P N Ç Ú Û Æ R Æ < R Ê < R Ê Æ I N I

V N R N = P = I I < > T = N È P P Æ T Æ È I = Ë N R @ P É Ê N I É I P N Ç Ë N � È N Ë @ I Í Æ E E Æ X I Ó

� � � "
 % ' Ó � ' (* * * (% . Ó � . + 0 � 2
 % ' Ó � ' + 5 7 7 7 5
 % . Ó � . + *

; N R N � R N Ê R N I N È P I Î @ I N P É Ê N I B
 7 + @ R N T Æ R Ë P É Ê N T Æ È I P R < T P Æ R B 0 7 2 @ I N P P É Ê N

T Æ È I P R < T P Æ R B @ È Ë 5 @ < È = Æ È P É Ê N T Æ È I P R < T P Æ R Ú " = I < I N Ë Í Æ R P É Ê N Ò @ R = @ Î E N I B V N R N

Æ È E É Í Æ R P V N Ê < R Ê Æ I N Æ Í Ë N � È = È Ì T E @ I I N I Ú Å È Æ R Ë N R P Æ V @ Ò N Æ Î á N T P = Ë N È P = � N R I B X N

R N â < = R N P V @ P @ Ç Æ È Ì P V N Î @ I N P É Ê N I P V N R N = I @ P E N @ I P Æ È N P É Ê N < > B P V N Ò @ E < N I Æ Í

X V = T V @ R N P V N Æ = Ë J I Ú

? @ A C D F G I J L J J M N P J L J Q J R G R

S Æ X T Æ È I = Ë N R @ P É Ê N X = P V Ò @ R = @ Î E N I " ' (* * * (" . B Î < P X = P V È Æ Æ T T < R R N È T N Æ Í < > Ú

W N Ê E @ T = È Ì @ E E P V N I N Ò @ R = @ Î E N I " X Î É Ê @ = R I Y X Ó [X X = P V I Æ Ç N Ç < P < @ E E É Ë = I P = È T P

'� �
�
*
����
��� ������
����� �������

E @ Î N E I Y X
 T @ E E N Ë � � � � � � � 	 � � + @ È Ë È @ Ç N I [X
 T @ E E N Ë 	
 � � � � � � � � + R N I < E P I = È @

� � � � 	 � � � � � � � � � � � ! � Ú

Þ 	
 � � � T Æ È I = I P I Æ Í @ T E @ I I È @ Ç N [B @ I P R < T P < R N N Ï Ê R N I I = Æ È " " # % B @ È Ë @ I N P

0 [' (* * * ([. 2 Æ Í T E @ I I È @ Ç N I
 T @ E E N Ë P V N � � � � � 	
 � � � � � + Ú Å Í X N R N Ê E @ T N @ E E Y X Ó [X

= È " " # % Î É P V N Î @ I N P É Ê N < > B P V N R N I < E P = È Ì Ê @ R @ Ç N P N R J E N I I P É Ê N + % = I T @ E E N Ë P V N

� � � � � � � � � � � ! � � 1 � � Æ Í P V N T E @ I I [Ú

Þ � 	 2 � � � = I @ � È = P N I N P Æ Í T E @ I I N I P V @ P = I T E Æ I N Ë = È P V N I N È I N P V @ P @ E E T E @ I I

È @ Ç N I @ Ê Ê N @ R = È Ì = È @ I P R < T P < R N N Ï Ê R N I I = Æ È Æ R @ I @ I < Ê N R T E @ I I Ç < I P Î N È @ Ç N I Æ Í

T E @ I I N I Ë N � È N Ë = È P V N I T V N Ç @ Ú

3 � � � �
 � 6 8 : 8 < V Æ Æ I N P V N Í Æ E E Æ X = È Ì I T V N Ç @ @ I @ È N Ï @ Ç Ê E N Ó

> � ? @ @ A B D E G I K � ' ! M �
 È @ Ç N Ó N P R < S U B T N È P R @ E Ó V Ó W E Y [B

T = P = N I Ó 0 T Ó W E Y [2 +

> � ? @ @ W E Y [K � ' ! M �
 È @ Ç N Ó N P R < S U B = È Ó R Ó A B D E G I B Ê Æ Ê < E @ P = Æ È Ó S _ P +

Þ ` � � � c � � � d � Í Æ R @ I T V N Ç @ f @ I I = Ì È I P Æ N @ T V T E @ I I [g f @ � È = P N I N P d �
 [+ Æ Í

Ê @ = R I
 h (i + B X V N R N h = I @ È Æ = Ë B = Ú N Ú @ Ò @ E < N Æ Í P É Ê N < > B @ È Ë i = I @ Ò @ E < N Æ Í P É Ê N � % B

I < T V P V @ P T N R P @ = È T Æ È Ë = P = Æ È I @ R N I @ P = I � N Ë Ú Å È Í Æ R Ç @ E E É B P V N I N T Æ È Ë = P = Æ È I @ R N P V N

< È = â < N È N I I Æ Í = Ë N È P = � N R I B P V N = È T E < I = Æ È Æ Í P V N I N P Æ Í Æ = Ë J I = È @ T E @ I I = È P V N I N P Æ Í

Æ = Ë J I Í Æ R N @ T V Æ Í = P I I < Î T E @ I I N I
 = È T E < I = Æ È = È P N Ì R = P É + B P V N @ Ê Ê N @ R @ È T N Æ Í N @ T V Æ = Ë

Æ T T < R R = È Ì = È @ Ò @ E < N i @ I @ È Æ = Ë h = È P V N R N Í N R N È T N Ë T E @ I I
 R N Í N R N È P = @ E = È P N Ì R = P É + B

@ È Ë
 X N @ ß + Ò @ E < N J = Ë N È P = � @ Î = E = P É Ú Û Æ R @ Í Æ R Ç @ E P R N @ P Ç N È P Æ Í P V N I N T Æ È Ë = P = Æ È I X N

R N Í N R P Æ Ô × 4 Ù Ú

? @ ? l C m I n o G q r G s t l o u G Q s J

Å È Æ R Ë N R P Æ Ë N � È N @ â < N R É @ E Ì N Î R @ X N T Æ < E Ë Í Æ E E Æ X P V N < È = � N Ë @ È Ë Ì N È N R @ E = I N Ë

@ Ê Ê R Æ @ T V = È Ô × 3 Ù B Î < P Í Æ R Æ < R Ê < R Ê Æ I N I V N R N X N T @ È < I N @ I = Ç Ê E N R @ E Ì N Î R @ Ú B P V N R

Æ Ê N R @ P = Æ È I = È T E < Ë = È Ì È N I P = È Ì @ È Ë < È È N I P = È Ì T @ È Î N Ë N � È N Ë N Ï Ê E = T = P E É = È P V = I

I N T P = Æ È Ú

à V N Æ Ê N R @ P = Æ È I Æ Í P V N @ E Ì N Î R @ Ç < I P @ E E Æ X < I P Æ R N Í N R P Æ N E N Ç N È P I Æ Í T E @ I I N I

@ È Ë P V N = R T Æ Ç Ê Æ È N È P I Ú Û Æ R P V = I X N < I N Ê @ P V N Ï Ê R N I I = Æ È I Ú 	 N P [Î N @ T E @ I I X = P V

I P R < T P < R N N Ï Ê R N I I = Æ È " " # % @ È Ë R N Ê R N I N È P @ P = Æ È P É Ê N + % Ú y � � 2 � � � � � � � ! � � Í Æ R

T E @ I I [
 Æ R " " # % + V @ Ò N Æ È N Æ Í P V N Í Æ E E Æ X = È Ì Í Æ R Ç @ P I Ó

@ h d " } � Æ Í P É Ê N Å L B Æ R i % � � " Æ Í P É Ê N + % B

@ Å Í " " # % < I N I @ R N T Æ R Ë P É Ê N B = Ú N Ú " " # % �
 % ' Ó " " # ' (* * * (% . Ó " " # . + B P V N È X N

Ì N P Ê @ P V N Ï Ê R N I I = Æ È I

� i % � � " * % X Æ Í P É Ê N + X X V = T V = I P V N R N Ê R N I N È P @ P = Æ È P É Ê N Í Æ R " " # X @ È Ë × �

h � } B

� i % � � " � % X Æ Í P É Ê N + � = Í % X = I @ R N Í N R N È T N P Æ T E @ I I � B = Ú N Ú % X Ó " " # X � % X Ó � B

� i % � � " * % X * # % � � X X V N R N # % � � X = I @ Ê @ P V N Ï Ê R N I I = Æ È Í Æ R " " # X B

� i % � � " � % X * # % � � X X V N R N % X = I @ R N Í N R N È T N P Æ T E @ I I � B = Ú N Ú % X Ó " " # X � % X Ó �

@ È Ë # % � � X = I @ Ê @ P V N Ï Ê R N I I = Æ È Í Æ R " " # � Ú

'3��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

@

Å Í " " # % < I N @ < È = Æ È P É Ê N B = Ú N Ú " " # % �
 % ' Ó " " # ' + 5 7 7 7 5
 % . Ó " " # . + B P V N È

X N Ì N P Ê @ P V N Ï Ê R N I I = Æ È I

� i % � � " * % X Æ Í P É Ê N + X X V = T V = I P V N R N Ê R N I N È P @ P = Æ È P É Ê N Í Æ R " " # X B

� i % � � " * % X * # % � � X X V N R N # % � � X = I @ Ê @ P V N Ï Ê R N I I = Æ È Í Æ R " " # X Ú

@

Å Í " " # % < I N I @ I N P P É Ê N B = Ú N Ú " " # % � 0 " " # 2 B P V N È X N Æ Î P @ = È Ê @ P V N Ï Ê R N I I = Æ È I

� i % � � " Æ Í P É Ê N + % � 0 " " # 2 B

� i % � � " * # % � � X V N R N # % � � = I @ Ê @ P V N Ï Ê R N I I = Æ È T Æ R R N I Ê Æ È Ë = È Ì P Æ " " # Ú

@

Å Í " " # % < I N I Æ È E É @ R N Í N R N È T N B = Ú N Ú " " # % � Y Ó � B P V N È X N Æ Î P @ = È @ Ê @ P V

N Ï Ê R N I I = Æ È i % � � " � Y * # % � � X V N R N # % � � = I Ê @ P V N Ï Ê R N I I = Æ È Í Æ R P V N T E @ I I � Ú

Å È P V N B B L ? N @ T V â < N R É I V Æ < E Ë R N I < E P = È @ I N P Æ Í Ê @ = R I
 h (i + B X V N R N h = I

@ È = Ë N È P = � N R @ È Ë i = I @ Ò @ E < N Æ Í I Æ Ç N Ê R Æ Ê N R P É Ê N Ú à V N Ò @ E < N i Ç @ É T Æ È P @ = È

= Ë N È P = � N R I B X V = T V Ç < I P @ Ê Ê N @ R = È P V N Ë @ P @ Î @ I N Æ R = È P V N â < N R É R N I < E P Ú

Þ � � � � 1 � Æ È f T Æ È I = I P I Æ Í @ I P R < T P < R N N Ï Ê R N I I = Æ È " " # � T @ E E N Ë @ È I X N R I T V N Ç @

 X = P V @ E E R N Í N R N È T N I Ê Æ = È P = È Ì P Æ T E @ I I N I = È f + @ È Ë @ È @ E Ì N Î R @ N Ï Ê R N I I = Æ È � B = Ú N Ú

@ â < N R É � = I Ë N � È N Ë = È P V N Í Æ R Ç � �
 " " # � (� + Ú à V N Æ Ê N R @ P Æ R I = È P V N â < N R É

@ E Ì N Î R @ P @ ß N Æ È N Æ R P X Æ T E @ I I = È I P @ È T N I @ I @ R Ì < Ç N È P I @ È Ë R N P < R È @ È Æ P V N R T E @ I I

= È I P @ È T N @ I @ R N I < E P Ú

	 N P f Î N @ Ë @ P @ Î @ I N I T V N Ç @ B d � Î N @ Ë @ P @ Î @ I N = È I P @ È T N Æ Ò N R f B h d
 d � + Î N

P V N I N P Æ Í @ E E = Ë N È P = � N R I @ Ê Ê N @ R = È Ì = È d � B d �
 � + Î N P V N R N I < E P = È Ì T E @ I I = È I P @ È T N

Æ Í N Ò @ E < @ P = È Ì â < N R É @ E Ì N Î R @ � �
 " " # � (� + Ú à V N â < N R É @ E Ì N Î R @ Æ Ê N R @ P = Æ È I @ R N

Ë N � È N Ë @ I Í Æ E E Æ X I Ó

@

� � [X = P V [= I @ T E @ I I È @ Ç N @ Ê Ê N @ R = È Ì = È f B R N I < E P = È Ì = È d �
 � + � 0
 h d � (i +

h d � Ó
 � (h d � �g h d
 d � + * � h d Ó
 � *
 h d (i + g d �
 [+ 2 �

@

� �
 i Ó + + X = P V @ P É Ê N + @ È Ë @ Ò @ E < N i Æ Í P É Ê N + @ È Ë � �
 + (� + B R N I < E P = È Ì

= È d �
 � + � 0
 h d � (i + h d � Ó
 � � h d � �g h d
 d � + 2 �

@

� � � � �
 � +
 I N E N T P = Æ È + X = P V @ I N E N T P = Æ È Í Æ R Ç < E @ N � P V @ P = I Ë N � È N Ë N = P V N R @ I

% � � ' � # % � � � Æ R @ I # % � � � i B R N I < E P = È Ì = È d �
 � � + � 0
 h d � (i + h d � Ó

 � � h d � �g h d
 d � + * � h d Ó
 � *
 h d (i + g d �
 � + � �
 i + � � Y � " 2 �

@

� � � " $ & ' $) + + +) " , & ' ,
 � +
 R N È @ Ç = È Ì + R N I < E P = È Ì = È d �
 � � + � 0
 h d � (i + h d � Ó

 � � h d � �g h d
 d � + * � h d Ó
 � *
 h d (i + g d �
 � + 2 X = P V � X @ I @ È N X È @ Ç N Í Æ R

@ P P R = Î < P N % X �

@

� � � 3 � 5
 � +
 Ì N È N R @ E = I N Ë Ê R Æ á N T P = Æ È + X = P V @ È N X I P R < T P < R N N Ï Ê R N I I = Æ È " " # � 5
P V @ P = I @ I < Ê N R I P R < T P < R N N Ï Ê R N I I = Æ È Æ Í " " # � B @ È Ë R N I < E P = È Ì = È d �
 � � + �

0
 h d � (i � + h d � Ó
 � � h d � �g h d
 d � + * � h d Ó
 � *
 h d (i + g d �
 � + * i � � 3
�

� 5
 i + 2 �

@

� � � � ' 8 : < = > � �
 Ì N È N R @ E = I N Ë á Æ = È + X = P V @ T Æ Ç Ç Æ È I < Ê N R I P R < T P < R N N Ï Ê R N I J

I = Æ È B = Ú N Ú " " # � @ � " " # Í Æ R h � × (� B R N I < E P = È Ì = È

d �
 � ' 8 : < = > � � + � 0
 h d � (i + h d � Ó
 � � h d � �g h d
 d � + * � h d Ó
 � *

 h d ' (i ' + g d �
 � ' + *
 h d � (i � + g d �
 � � + * 3 � $< = >
 i ' + � 3 � B< = >
 i � + �

3
� $ E F � B

� $
 i + � i ' � 3
� $ E F � B

� B
 i + � i � 2 �

'� �
�
*
����
��� ������
����� �������

d �
 � � + � 0
 h d � (� + h d � Ó
 � � h d � �g h d
 d � + * � h d Ó
 � *
 h d ' (i ' + g d �
 � + *

3
�

� � < = >
 � + � 3
�

� � < = >
 i ' + � 3 �
< = >
 � + � 0 3 �

< = >
 i � +
 h d � (i � +

g d �
 � + � 3
�

� � < = >
 i ' + � 3
�

� � < = >
 i � + 2 2

X = P V " " # � 5 �
 " " # � � " " # + 5 0 " " # 2 Ú

@
< È È N I P � � �
 < = >
 � +
 < È È N I P Æ Ê N R @ P = Æ È + X = P V " " # @ I @ I N P @ P P R = Î < P N Æ Í �
R N I < E P = È Ì = È

d �
 � � + � 0
 h d � (� + h d � Ó
 � � h d � �g h d
 d � + * � h d Ó
 � *
 h d (i + g d �
 � + *

3
�

� � � < = > �
 � + � 3
�

� � � < = > �
 i + � 3 �< = >
 � + g 3 �< = >
 i + 2

X = P V " " # � 5 �
 " " # � � 0 " " # 2 + 5 " " # Ú

@
P V N < I < @ E I N P Æ Ê N R @ P = Æ È I 5
 < È = Æ È + B �
 Ë = ? N R N È T N + B @ È Ë �
 = È P N R I N T P = Æ È + Ú

F < N R = N I = È P V = I @ E Ì N Î R @ T @ È Î N R N X R = P P N È = È P V N < I < @ E X @ É @ I E @ Î N E E N Ë � � � � 1

� � � � � Ú

? @ � � � s m � � M L J o � s J u I G M L J L m � M

Å È Ô × 0 Ù P V R N N Æ Ê N R @ P = Æ È I Í Æ R Í R @ Ì Ç N È P @ P = Æ È Æ Í Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Î @ I N I V @ Ò N

Î N N È Ë = I T < I I N Ë Ó I Ê E = P P = È Ì B V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È @ È Ë Ò N R P = T @ E Í R @ Ì Ç N È P @ P = Æ È Ú

Å È P V = I @ R P = T E N X N Æ È E É R N Í N R P Æ V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È B X V = T V X N Î R = N � É R N Ò = N X

V N R N Ú

Þ T T Æ R Ë = È Ì P Æ P V N Ë N � È = P = Æ È Æ Í Ë @ P @ Î @ I N I Í Æ R @ È B B L ? I T V N Ç @ B N @ T V T E @ I I

X = E E Î N @ I I Æ T = @ P N Ë X = P V @ I N P Æ Í Ê @ = R I Ú ; N È T N B X N V @ Ò N P V N P R = Ò = @ E Ì N È N R @ E = I @ P = Æ È

Æ Í R N E @ P = Æ È @ E V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Ú

Û Æ R P V = I E N P [Î N I Æ Ç N T E @ I I Ú à @ ß N Î Æ Æ E N @ È Ò @ E < N Ë Í < È T P = Æ È � X I < T V P V @ P Í Æ R

N @ T V Ë @ P @ Î @ I N d � X N Æ Î P @ = È d �
 [+ �
.

X ! '
� � @
 d �
 [+ + X = P V Ë = I á Æ = È P I N P I � � @
 d �
 [+ Ú

� N P V N È R N Ê E @ T N [= È P V N I T V N Ç @ Î É } È N X T E @ I I N I [X B @ E E X = P V " " # % @ � " " # % Ú

; Æ X N Ò N R B @ I P V N R N Ç @ É Î N T E @ I I N I � R N Í N R N È T = È Ì [B = Ú N Ú Y Ó [Æ T T < R I X = P V = È " " # � B

X N V @ Ò N P Æ R N Ê E @ T N P V = I R N Í N R N È T N @ I X N E E Ú à V = I T @ È Î N Ë Æ È N Î É R N Ê E @ T = È Ì Y Ó [
= È " " # � Î É
 % ' Ó Y ' Ó [' (* * * (% . Ó Y . Ó [. + X = P V È N X Ê @ = R X = I N Ë = I P = È T P R N Í N R N È T N

È @ Ç N I Y ' (* * * (Y . Ú

3 � � � �
 � 6 8 6 8 à @ ß N P V N I T V N Ç @ Í R Æ Ç , Ï @ Ç Ê E N � Ú × @ È Ë Í R @ Ì Ç N È P P V N T E @ I I W E Y [

< I = È Ì � ' # È @ Ç N � % � @ R @ Ê @ R @ < Ç < & @ È Ë � � # È @ Ç N ' % � @ R @ Ê @ R @ < Ç < & Ú

à V N È P V N È N X I T V N Ç @ X = E E Î N

> � ? @ @ A B D E G I K � ' ! M �
 È @ Ç N Ó N P R < S U B T N È P R @ E Ó
 E P Ê Ó V ' Ó W E Y [' + 5

 Ì P Ê Ó V � Ó W E Y [� + B T = P = N I Ó 0
 E P Ê Ó T ' Ó W E Y [' + 5
 Ì P Ê Ó T � Ó W E Y [� + 2 +

> � ? @ @ W E Y [' K � ' ! M �
 È @ Ç N Ó N P R < S U B = È Ó R Ó A B D E G I B Ê Æ Ê < E @ P = Æ È Ó S _ P +

> � ? @ @ W E Y [� K � ' ! M �
 È @ Ç N Ó N P R < S U B = È Ó R Ó A B D E G I B Ê Æ Ê < E @ P = Æ È Ó S _ P +

'���� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

� � � 	 Â ¿ Ä � ¾ Ä Ã � 	 ¾ � À Á � À ¿ � À ¿ Ä � À ½ ¾ � � � ¿ � � � 	 ½ ¾ � ¾ Ä À ½

� N È Æ X Ê R N I N È P @ V N < R = I P = T @ Ê Ê R Æ @ T V P Æ V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È = È P V N T Æ È P N Ï P

Æ Í P V N B B L ? Ú à V N Ç @ á Æ R Æ Î á N T P = Ò N Æ Í P V N @ Ê Ê R Æ @ T V = I P Æ Î @ I N P V N Í R @ Ì Ç N È P @ P = Æ È

Ë N T = I = Æ È Æ È P V N N > T = N È T É Æ Í P V N Ç Æ I P Í R N â < N È P â < N R = N I Ú à V < I B X N I P @ R P @ È @ E É I = È Ì

P V N I N E N T P = Æ È Ê R N Ë = T @ P N I < I N Ë = È P V N I N â < N R = N I Ú Å È P V N Ì N È N R @ E E = P N R @ P < R N Ô Ö B × Ø Ù

P V N R N T Æ Ç Ç N È Ë N Ë R < E N Æ Í P V < Ç Î = I P Æ T Æ È I = Ë N R Æ È E É P V N � 7 	 Ç Æ I P Í R N â < N È P

â < N R = N I B @ I P V N I N @ R N I < Ê Ê Æ I N Ë P Æ @ T T Æ < È P Í Æ R @ Î Æ < P å 7 	 Æ Í P V N Ë @ P @ @ T T N I I Ú

� @ A � � s I J o � s G N m D J L G R

	 N P � ' (* * * (� � Î N P V N â < N R = N I X N @ R N = È P N R N I P N Ë = È Ú Þ T T Æ R Ë = È Ì P Æ Æ < R = È P R Æ J

Ë < T P = Æ È Æ Í P V N â < N R É @ E Ì N Î R @ X N Ç @ É @ I I < Ç N P Æ Î N Ì = Ò N È P V N â < N R É P R N N Í Æ R

N @ T V Æ Í P V N Ç Ú Û < R P V N R Ç Æ R N B X N Ç @ É P @ T = P E É @ I I < Ç N P V @ P P V N I N â < N R É P R N N I @ R N

% Æ Ê P = Ç = I N Ë & Î É @ Ê Ê E É = È Ì @ Ê Ê R Æ Ê R = @ P N â < N R É Æ Ê P = Ç = I @ P = Æ È P N T V È = â < N I Ú à V N È P V N

E N @ Ò N I Æ Í P V N I N P R N N I T Æ R R N I Ê Æ È Ë P Æ Î @ I = T â < N R = N I = È P V N Í Æ R Ç [Í Æ R @ T E @ I I È @ Ç N

[B @ È Ë Ç Æ I P Ê R N Ë N T N I I Æ R I Æ Í E N @ Ò N I X = E E T Æ R R N I Ê Æ È Ë P Æ @ I N E N T P = Æ È â < N R É � �
 [+ Ú

à V N I N E N T P = Æ È Ê R N Ë = T @ P N I � = È P V N I N â < N R = N I Ì = Ò N R = I N P Æ I = Ç Ê E N Ê R N Ë = T @ P N I Ú

Å È Ì N È N R @ E B @ � � �
 � � � � ` 	 � � � Í Æ R @ T E @ I I [V @ I P V N Í Æ R Ç # % � � � i X = P V @ Ê @ P V

N Ï Ê R N I I = Æ È # % � � Æ È [B @ Ò @ E < N i Æ Í P V N T Æ R R N I Ê Æ È Ë = È Ì P É Ê N B @ È Ë @ T Æ Ç Ê @ R = I Æ È

Æ Ê N R @ P Æ R � B X V = T V T @ È Î N Æ È N Æ Í � B �� B � B � B ' B � B � B � B �� B �� B g B �g B � B @ È Ë

�� Ú

3 � � � �
 � � 8 : 8 < V Æ Æ I N P V N I T V N Ç @ Æ Í T E @ I I A B D E G I Í R Æ Ç N Ï @ Ç Ê E N � Ú × Ó

> � ? @ @ A B D E G I K � ' ! M �
 È @ Ç N Ó N P R < S U B T N È P R @ E Ó V Ó W E Y [B

T = P = N I Ó 0 T Ó W E Y [2 + Ú

à V N R N = I @ I = Ç Ê E N Ê R N Ë = T @ P N Ë N � È N Ë Æ È = P Í Æ R I N @ R T V = È Ì X V = T V R N Ì = Æ È P V N T = P É

% � @ R @ Ê @ R @ < Ç < & = I = È Ó

� # i % � � " � � h � h " * } % " " � % � @ R @ Ê @ R @ < Ç < &

S Æ X E N P % � 0 � ' (* * * (� ' 2 Ë N È Æ P N @ I N P Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I Æ È @ T E @ I I [Ú

à V N È P V N I N P Æ Í � ! � � �
 � � � ` 	 � � � �) � 0 + ' (* * * (+ . 2 Æ È T E @ I I [= I P V N I N P Æ Í

@ E E I @ P = I � @ Î E N Ê R N Ë = T @ P N I Æ Í P V N Í Æ R Ç + - # � / ' � 7 7 7 � � /' B X V N R N � /X = I N = P V N R � X
Æ R 1 � X Ú

3 � � � �
 � � 8 6 8 à @ ß N P V N T E @ I I I T V N Ç @ W E Y [Í R Æ Ç N Ï @ Ç Ê E N � Ú × Ó

> � ? @ @ W E Y [K � ' ! M �
 È @ Ç N Ó N P R < S U B = È Ó R Ó A B D E G I B Ê Æ Ê < E @ P = Æ È Ó S _ P + Ú

Þ È Æ R Ç @ E Ê R N Ë = T @ P N T @ È Î N Ë N � È N Ë @ I Ó

+ - # i % � � " * } % " " � % ? @ R P Æ È &

2 3 4 6� $

� i % � � " * # 7 # � � % � h 7 } ' 3 7 7 7 7
2 3 4 6� B

S @ Ç N @ I Í Æ R P V N W L ? Ô × Ø Ù P V N È Æ R Ç @ E Ê R N Ë = T @ P N I Ë Æ È Æ P N Ï V @ < I P @ E E Ê Æ I I = Î E N

I N E N T P = Æ È Í Æ R Ç < E @ N Æ È @ T E @ I I [Ú ; Æ X N Ò N R B @ I P V N B B L ? @ E E Æ X I T É T E = T R N Í N R N È T N I

P Æ Î N < I N Ë Æ È @ I T V N Ç @ B P V N R N @ R N = È � È = P N E É Ç @ È É I < T V I N E N T P = Æ È Í Æ R Ç < E @ N Ú , Ò N È

'4 �
�
*
����
��� ������
����� �������

Ç Æ R N B P V N R N @ R N Ê @ P V N Ï Ê R N I I = Æ È I Æ Í @ R Î = P R @ R É E N È Ì P V B I Æ X N V @ Ò N È Æ T V @ È T N P Æ

T @ Ê P < R N P V N T Æ Ç Ê E N P N Ò @ R = N P É Æ Í I N E N T P = Æ È Ú B È P V N Æ P V N R V @ È Ë B X N X @ È P P Æ Ë N � È N

Æ È E É � È = P N E É Ç @ È É Í R @ Ì Ç N È P I Ú S Æ X N Ë Æ È Æ P E Æ I N Ç < T V Î É R N I P R = T P = È Ì Æ < R I N E Í P Æ

È Æ R Ç @ E Ê R N Ë = T @ P N I Ú

B Í T Æ < R I N B P V N È Æ R Ç @ E Ê R N Ë = T @ P N I Ë N R = Ò N Ë Í R Æ Ç P V N I = Ç Ê E N Ê R N Ë = T @ P N I Æ È T E @ I I

[T @ È Î N < I N Ë P Æ Ë N � È N P V N V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P I Æ Í T E @ I I [Ú à V N = Ë N @ Æ Í Æ < R

V N < R = I P = T Ê R Æ T N Ë < R N Í Æ R V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È = I P Æ R N Ë < T N P V N È < Ç Î N R Æ Í I = Ç J

Ê E N Ê R N Ë = T @ P N I P @ ß N È = È P Æ @ T T Æ < È P @ È Ë P V < I P Æ R N Ë < T N P V N È < Ç Î N R Æ Í V Æ R = ä Æ È P @ E

Í R @ Ì Ç N È P I B = Í P V = I R N Ë < T N I P V N â < N R É Ê R Æ T N I I = È Ì T Æ I P I Ú

� @ ? C m � G � J o D r o J L m � M

< R < T = @ E P Æ P V N â < N R É T Æ I P I @ R N P V N I = ä N I Æ Í T E @ I I = È I P @ È T N I Ú S Æ E N P < I � R I P E Æ Æ ß @ P

P V N Ç Ú à V N T @ E T < E @ P = Æ È Æ Í P V N I = ä N

Í Æ R T E @ I I N I = I Ç Æ R N T Æ Ç Ê E = T @ P N Ë = È P V N B B L ? P V @ È P V N T @ E T < E @ P = Æ È Æ Í I = ä N Í Æ R

R N E @ P = Æ È I = È P V N R N E @ P = Æ È @ E Ç Æ Ë N E Ú Å È P V N R N E @ P = Æ È @ E Ç Æ Ë N E B X N Æ È E É < I N P V N R N T Æ R Ë

P É Ê N T Æ È I P R < T P Æ R Ú à V N È P V N I = ä N Æ Í @ R N E @ P = Æ È T @ È Î N T @ E T < E @ P N Ë Î @ I N Ë Æ È P V N

I = ä N Æ Í @ P < Ê E N Ú Å È P V N Æ Î á N T P Æ R = N È P N Ë Ç Æ Ë N E B V Æ X N Ò N R B Æ P V N R P É Ê N T Æ È I P R < T P Æ R I

I < T V @ I I N P @ È Ë Ç @ É Î N I Æ Ç N Æ P V N R Î < E ß P É Ê N T Æ È I P R < T P Æ R I @ R N = È Ò Æ E Ò N Ë Ú à V N

I = ä N T @ E T < E @ P = Æ È Í Æ R T E @ I I N I Î @ I N Ë Æ È P V N R N T Æ R Ë P É Ê N T Æ È I P R < T P Æ R Æ È E É X = E E Æ T T < R

@ I @ I Ê N T = @ E T @ I N = È P V N B B L ? Ú

	 N P < I � R I P T Æ È I = Ë N R P V N I = Ç Ê E N I P I = P < @ P = Æ È Ó @ T E @ I I [X = P V @ R N Ê R N I N È P @ P = Æ È

P É Ê N + % � � B X = P V � = È Ë = T @ P = È Ì @ Î @ I N P É Ê N Ú 	 N P } Ë N È Æ P N P V N È < Ç Î N R Æ Í Æ Î á N T P I

= È @ T E @ I I = È I P @ È T N d �
 [+ Æ Ò N R + % B � � P V N @ Ò N R @ Ì N I Ê @ T N
 = È Î = P I + Í Æ R @ Ò @ E < N Æ Í

P É Ê N � B @ È Ë � X � P V N I = ä N Æ Í @ È = Ë N È P = � N R B = Ú N Ú @ Ò @ E < N Æ Í P É Ê N
 � Ú à V N È P V N @ Ò N R @ Ì N

I = ä N Æ Í d �
 [+ = I % � } 7
 � � � � X � + Ú

S Æ P N P V @ P P V = I Î @ I = T T @ I N @ E R N @ Ë É = È T E < Ë N I R N Í N R N È T N I B X V = T V E N @ Ë I P Æ P V N

P É Ê N � �
 � @ È Ë � �� � � X � Ú

S Æ X E N P [Î N @ T E @ I I Ë N � È N Ë Î É @ R N T Æ R Ë P É Ê N T Æ È I P R < T P Æ R B = Ú N Ú X N V @ Ò N

+ % �
 % ' Ó + ' (* * * (% . Ó + . + Ú à V N T @ E T < E @ P = Æ È Æ Í P V N I = ä N Æ Í @ T E @ I I = I Ò N R É I = Ç = E @ R

P Æ P V @ P = È P V N R N E @ P = Æ È @ E Ç Æ Ë N E Ú 	 N P } Ë N È Æ P N P V N È < Ç Î N R Æ Í Æ Î á N T P I = È @ T E @ I I

= È I P @ È T N d �
 [+ Æ Ò N R + % B � 	 � � X � @ È Ë � X � P V N I = ä N Æ Í @ È = Ë N È P = � N R B @ È Ë � - P V N

@ Ò N R @ Ì N I Ê @ T N
 = È Î = P I + Í Æ R � N E Ë % - Æ Í + % Ú à V N È P V N @ Ò N R @ Ì N I = ä N Æ Í d �
 [+ Æ Ò N R

" " # % = I % � } 7
�

- ! 	

� - Ú

Å Í P V N R N = I @ T E @ I I [X = P V @ I P R < T P < R N N Ï Ê R N I I = Æ È + % � 0 " " # 2 B P V N T @ E T < E @ P = Æ È

Æ Í P V N I = ä N Æ Í N @ T V T E @ I I = È I P @ È T N = I Ë = ? N R N È P Í R Æ Ç P V N � R I P P X Æ T @ I N I Ú 	 N P }

Ë N È Æ P N P V N È < Ç Î N R Æ Í Æ Î á N T P I = È @ T E @ I I = È I P @ È T N d �
 [+ Æ Ò N R + % B � X � Ë N È Æ P N P V N

I = ä N Æ Í @ È = Ë N È P = � N R B " P V N È < Ç Î N R Æ Í Ò @ E < N I Æ Í @ È Æ Î á N T P 7 = È @ T E @ I I = È I P @ È T N

d �
 [+ Æ Ò N R + % B @ È Ë � � P V N @ Ò N R @ Ì N I Ê @ T N
 = È Î = P I + Í Æ R @ Ò @ E < N Æ Ò N R " " # Æ Í @ È

Æ Î á N T P 7 = È @ T E @ I I = È I P @ È T N Ú à V N È P V N @ Ò N R @ Ì N I = ä N Æ Í @ Æ Î á N T P 7 Æ Ò N R + % = I

� X � � " 7 � � @ È Ë P V N @ Ò N R @ Ì N I = ä N Æ Í T E @ I I Æ Ò N R + % = I % � } 7
 � X � � " 7 � � + Ú

; Æ X N Ò N R B P V N T Æ I P Ç Æ Ë N E = I I P = E E È Æ P R N @ E = I P = T Ú , Ò N È = Í X N @ T T N Ê P P V N = È @ T T < J

R @ T É R N I < E P = È Ì Í R Æ Ç < I = È Ì Æ È E É Ç N @ È Ò @ E < N I B = P = I V @ R Ë E É P V N T @ I N P V @ P @ T Æ Ç Ê E N Ï

'5��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

Ò @ E < N X = E E Î N I P Æ R N Ë @ I @ I = Ç Ê E N < È = P B N I Ê N T = @ E E É = Í I N P I @ R N = È Ò Æ E Ò N Ë Ú Å P = I Ç Æ R N

E = ß N E É P Æ < I N Ë @ P @ I P R < T P < R N I ß È Æ X È Í R Æ Ç P V N È N P X Æ R ß Ë @ P @ Ç Æ Ë N E Í Æ R P V = I Ú

Å Í + % = È Ò Æ E Ò N I @ I N P P É Ê N T Æ È I P R < T P Æ R B = Ú N Ú + % �
 % ' Ó + ' (* * * (% X Ó 0 + X 2 (* * * (% . Ó

+ . + B X N X Æ < E Ë I P Æ R N Ò @ E < N I Æ Í P É Ê N + X I N Ê @ R @ P N E É @ I @ E = È ß N Ë E = I P @ È Ë á < I P = È T E < Ë N

@ Ê Æ = È P N R P Æ P V N � R I P N E N Ç N È P Æ Í P V = I E = I P @ I X N E E @ I @ Ê Æ = È P N R Î @ T ß Í R Æ Ç P V N E @ I P

N E N Ç N È P Æ Í P V N E = I P Ú

à V = I Ç N @ È I P V @ P = È I P N @ Ë Æ Í � � X N V @ Ò N P Æ T Æ È I = Ë N R � X � � � � @ I I < Ç = È Ì P V N � X � = I

P V N I = ä N Æ Í @ Ê Æ = È P N R Ú à V N È P V N X V Æ E N I N P Ò @ E < N È N N Ë I P V N I Ê @ T N � X � � " 7
 � X � � � � + B

X V N R N " = I @ Ì @ = È P V N @ Ò N R @ Ì N È < Ç Î N R Æ Í N E N Ç N È P I = È P V N I N P Ú S Æ P N P V @ P P V N I = ä N

Æ Í @ I N P = I " 7 � � �
 " � × + 7 � X � Ú Å P Ç N @ È I P V @ P X N È N N Ë
 " � × + 7 � X � Ç Æ R N I Ê @ T N

P Æ I P Æ R N P V N Ò @ E < N I Æ Í @ I N P = Í X N P R N @ P = P @ I Î N = È Ì I P Æ R N Ë = È @ E = È ß N Ë E = I P X = P V @

Ê Æ = È P N R P Æ @ È Æ Î á N T P 7 Æ Í @ T E @ I I [X V N R N " = I P V N È < Ç Î N R Æ Í Æ Î á N T P I = È P V N I N P Ú

� @ � l q r G s t � s � D G R R m M u � � R L � � N G o

à V N T @ E T < E @ P = Æ È Æ Í I = ä N I Æ Í T E @ I I = È I P @ È T N I @ Ê Ê E = N I @ E I Æ P Æ P V N = È P N R Ç N Ë = @ P N R N I < E P I

Æ Í @ E E â < N R = N I Ú à V N I N = È P N R Ç N Ë = @ P N R N I < E P I T Æ R R N I Ê Æ È Ë P Æ P V N È Æ È J E N @ Í È Æ Ë N I Æ Í

P V N â < N R É P R N N I Ú Å È @ Ë Ë = P = Æ È B P V N I N È Æ Ë N I T Æ R R N I Ê Æ È Ë P Æ @ Ê @ R P = T < E @ R Æ Ê N R @ P = Æ È

Æ Í P V N â < N R É @ E Ì N Î R @ Ú

@ à V N I = ä N Æ Í @ I N E N T P = Æ È È Æ Ë N � � = I # 7 B X V N R N = I P V N I = ä N Æ Í P V N I < T T N I I Æ R È Æ Ë N

@ È Ë × 7 7 # = I P V N @ Ò N R @ Ì N Ê N R T N È P @ Ì N Æ Í Æ Î á N T P I = È P V N I < T T N I I Æ R I @ P = I Í É = È Ì � Ú

@ à V N I = ä N Æ Í @ Ê R Æ á N T P = Æ È È Æ Ë N 3 < = > = I
 × � � X + 7 7
� �

� �
X V N R N � �
 � � + = I P V N @ Ò N R @ Ì N

I = ä N Æ Í @ È Æ Î á N T P Æ Ò N R " " #
 " " # % + Ú = I P V N I = ä N @ I I = Ì È N Ë P Æ P V N I < T T N I I Æ R @ È Ë

� X = I P V N Ê R Æ Î @ Î = E = P É P V @ P P X Æ T E @ I I N I T Æ = È T = Ë N Æ È " " # Ú

@ Û Æ R @ á Æ = È È Æ Ë N P V N @ I I = Ì È N Ë I = ä N = I
 '

� '
7 # 7

 �

� �

 � ' � � � � � + B X V N R N X @ R N P V N

I = ä N I Æ Í P V N I < T T N I I Æ R I B � X @ R N P V N T Æ R R N I Ê Æ È Ë = È Ì Æ Î á N T P I = ä N I B � = I P V N I = ä N Æ Í

@ P < Ê E N Æ Ò N R P V N T Æ Ç Ç Æ È @ P P R = Î < P N I @ È Ë # = I P V N Ç @ P T V = È Ì Ê R Æ Î @ Î = E = P É Ú

@ Û Æ R @ < È = Æ È È Æ Ë N P V N I = ä N = I ' � � � # 7 ' X = P V P V N Ê R Æ Î @ Î = E = P É # Í Æ R @ È

Æ Î á N T P Æ Í [' P Æ T Æ = È T = Ë N X = P V @ È Æ Î á N T P Æ Í [� Ú

@ Û Æ R @ Ë = ? N R N È T N È Æ Ë N P V N @ I I = Ì È N Ë I = ä N = I ' 7
 × � # + X = P V P V N Ê R Æ Î @ Î = E = P É #
Í Æ R @ È Æ Î á N T P Æ Í [' P Æ T Æ = È T = Ë N X = P V @ È Æ Î á N T P Æ Í [� Ú

@ Û Æ R @ R N È @ Ç = È Ì È Æ Ë N P V N @ I I = Ì È N Ë I = ä N = I N Ï @ T P E É P V N I = ä N @ I I = Ì È N Ë P Æ P V N

I < T T N I I Æ R Ú

@ Û Æ R @ È N I P È Æ Ë N P V N I = ä N = I � } 7
 " � × + 7 � X � � } 7
 " � × + � � . X = P V � � . P V N

E N È Ì P V Æ Í P V N < È È N I P N Ë @ P P R = Î < P N I B " P V N @ Ò N R @ Ì N È < Ç Î N R Æ Í N E N Ç N È P I = È P V N

È N I P N Ë I N P B } P V N È < Ç Î N R Æ Í Æ Î á N T P I = È @ T E @ I I = È I P @ È T N d �
 [+ Æ Ò N R + % Ú

@ Û Æ R @ < È È N I P È Æ Ë N P V N I = ä N = I � } 7
 " � × + 7 � X � � } 7
 " � × + � � . X = P V @ Ì @ = È � � .
P V N E N È Ì P V Æ Í P V N < È È N I P N Ë @ P P R = Î < P N I B " P V N @ Ò N R @ Ì N È < Ç Î N R Æ Í N E N Ç N È P I = È

P V N È N I P N Ë I N P B } P V N È < Ç Î N R Æ Í Æ Î á N T P I = È @ T E @ I I = È I P @ È T N d �
 [+ Æ Ò N R + % Ú

Û R @ Ì Ç N È P @ P = Æ È Æ Í @ T E @ I I [R N I < E P I = È @ I N P Æ Í Í R @ Ì Ç N È P I 0 � ' (* * * (� . 2 Æ Í

@ Ò N R @ Ì N I = ä N I ' (* * * (. B = Í P V N È N P X Æ R ß V @ I È Æ Ë N I 	 ' (* * * (� X N V @ Ò N P Æ @ E E Æ T @ P N

P V N I N Í R @ Ì Ç N È P I P Æ P V N È Æ Ë N I B X V = T V Ì = Ò N I R = I N P Æ @ Ç @ Ê Ê = È Ì � Ó 0 × (* * * (} 2 �

�� �
�
*
����
��� ������
����� �������

0 × (* * * (� 2 B X V = T V X N T @ E E @
 ! 	 � � ! � � � � � � � � � � Ú ; Æ X N Ò N R B P V N Í R @ Ì Ç N È P I Æ È E É

@ Ê Ê N @ R Æ È P V N E N @ Ò N I Æ Í â < N R É P R N N I Ú ? Æ R N Ì N È N R @ E E É B X N Ç < I P @ I I Æ T = @ P N @ È Æ Ë N

�
 i + X = P V N @ T V È Æ Ë N i = È N @ T V R N E N Ò @ È P â < N R É P R N N Ú �
 i + = È Ë = T @ P N I P V N È Æ Ë N = È

P V N È N P X Æ R ß B @ P X V = T V P V N = È P N R Ç N Ë = @ P N â < N R É R N I < E P T Æ R R N I Ê Æ È Ë = È Ì P Æ i X = E E Î N

I P Æ R N Ë Ú

� = Ò N È @ E Æ T @ P = Æ È @ I I = Ì È Ç N È P � X N T @ È T Æ Ç Ê < P N P V N P Æ P @ E T Æ I P I Æ Í â < N R É

Ê R Æ T N I I = È Ì Ú 	 N P P V N I N P Æ Í â < N R = N I Î N �
'

� 0 � ' (* * * (� ' 2 Ú F < N R É T Æ I P I @ R N

T Æ Ç Ê Æ I N Ë Æ Í P X Æ Ê @ R P I Ó � � ! � � � � 	 ! � � � @ È Ë � � � � � � ! � � � � ! � 	 ! � � � Ó � 7 � �
 � - + �
 � 7 Y �
 � - + � � Y % } �
 � - + Ú à V N I P Æ R @ Ì N T Æ I P I Ì = Ò N @ Ç N @ I < R N Í Æ R R N P R = N Ò = È Ì P V N

Ë @ P @ Î @ T ß Í R Æ Ç I N T Æ È Ë @ R É I P Æ R @ Ì N B X V = T V = I Ç @ = È E É Ë N P N R Ç = È N Ë Î É P V N I = ä N Æ Í

P V N Ë @ P @ Ú à V N P R @ È I Ê Æ R P @ P = Æ È T Æ I P I Ê R Æ Ò = Ë N @ Ç N @ I < R N Í Æ R P R @ È I Ê Æ R P = È Ì Î N P X N N È

P X Æ È Æ Ë N I Æ Í P V N È N P X Æ R ß Ú

à V N I P Æ R @ Ì N T Æ I P I Æ Í @ â < N R É � - Ë N Ê N È Ë Æ È P V N I = ä N Æ Í P V N = È Ò Æ E Ò N Ë T E @ I I N I Æ R

Í R @ Ì Ç N È P I B R N I Ê N T P = Ò N E É B @ È Ë Æ È P V N @ I I = Ì È N Ë E Æ T @ P = Æ È I X V = T V Ë N T = Ë N P V N I P Æ R @ Ì N

T Æ I P Í @ T P Æ R I Ú Å P T @ È Î N N Ï Ê R N I I N Ë @ I � 7 Y �
 � - + �

�

 � + 7 d � 	 � �
Ú X V N R N � R @ È Ì N I

Æ Ò N R P V N È Æ Ë N I Æ Í P V N â < N R É P R N N Í Æ R � - B
 � + @ R N P V N I = ä N I Æ Í P V N = È Ò Æ E Ò N Ë T E @ I I

= È I P @ È T N I B @ È Ë d X = È Ë = T @ P N I P V N I P Æ R @ Ì N T Æ I P Í @ T P Æ R Í Æ R È Æ Ë N 	 X
 h � × (* * * (� + Ú

à V N P R @ È I Ê Æ R P @ P = Æ È T Æ I P I Æ Í â < N R É � - Ë N Ê N È Ë Æ È P V N I = ä N I Æ Í P V N = È Ò Æ E Ò N Ë

T E @ I I N I Æ R Í R @ Ì Ç N È P I Æ Í T E @ I I N I @ È Ë Æ È P V N @ I I = Ì È N Ë E Æ T @ P = Æ È I X V = T V Ë N T = Ë N

P V N P R @ È I Ê Æ R P T Æ I P Í @ T P Æ R Î N P X N N È N Ò N R É Ê @ = R Æ Í I = P N I Ú Å P T @ È Î N N Ï Ê R N I I N Ë Î É

� Y % } �
 � - + �

�

� 5
� � 	 � 5 � � 	 � �

7
 � � + Ú Þ Ì @ = È P V N I < Ç R @ È Ì N I Æ Ò N R P V N È Æ Ë N I � Æ Í

P V N â < N R É P R N N Í Æ R � - @ È Ë B � � R < È I Æ Ò N R P V N Ê R N Ë N T N I I Æ R I Æ Í � = È P V N â < N R É P R N N B

@ È Ë � X - = I @ P R @ È I Ê Æ R P @ P = Æ È T Æ I P Í @ T P Æ R Í Æ R Ë @ P @ P R @ È I Ê Æ R P Í R Æ Ç È Æ Ë N 	 X P Æ È Æ Ë N

	 -
 h (� g 0 × (* * * (� 2 + Ú

� � � � � � � u ~ \ j c u b u v ² h \ � t _ b j ^ j u ¥ � u z c j _ ^

Û Æ R N @ T V â < N R É � - X N Ì N P @ Ò @ E < N Í Æ R = P I Í R N â < N È T É � Y " � - Ú à V N P Æ P @ E T Æ I P I Æ Í

@ E E P V N â < N R = N I = È �
'

@ R N P V N I < Ç Æ Í P V N T Æ I P I Æ Í N @ T V â < N R É Ç < E P = Ê E = N Ë Î É = P I

Í R N â < N È T É Ú Å P T @ È Î N N Ï Ê R N I I N Ë Î É � 7 � � �
'

- ! '

� 7 � �
 � - + 7 � Y " � - Ú

�(��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

� @ � � F G � s J u I G M L J L m � M � s � D G N r s G

Û R @ Ì Ç N È P @ P = Æ È @ È Ë @ E E Æ T @ P = Æ È @ R N Ì N È N R @ E E É T Æ È I = Ë N R N Ë @ I P X Æ = I Æ E @ P N Ë Ê R Æ Î E N Ç I

= È Ô × Ø Ù @ È Ë Ô Ö Ù Ú Þ Í P N R Í R @ Ì Ç N È P @ P = Æ È B P V N Í R @ Ì Ç N È P I @ R N @ E E Æ T @ P N Ë P Æ R N I = Ë N @ P

Æ È N È Æ Ë N = È @ Ë = I P R = Î < P N Ë Ç @ È @ Ì N Ç N È P I É I P N Ç
 È Æ P T Æ È I = Ë N R = È Ì R N Ê E = T @ P = Æ È @ P

P V = I I P @ Ì N = È P V = I Ê @ Ê N R + Ú à V N R N = I È Æ T Æ I P Ç Æ Ë N E = È Ò Æ E Ò N Ë Í Æ R P V N Í R @ Ì Ç N È P @ J

P = Æ È Ë N I = Ì È = È Ô × Ø Ù Ú � < P X N @ R Ì < N P V @ P P V N Ò @ E < N I Æ Í P V N T Æ I P I Æ Í â < N R = N I @ Í P N R

Í R @ Ì Ç N È P @ P = Æ È X = E E @ ? N T P P V N Ë N T = I = Æ È Æ È X V N P V N R X N È N N Ë P Æ Ê N R Í Æ R Ç Í R @ Ì Ç N È J

P @ P = Æ È Æ R È Æ P Ú Þ T Æ I P Ç Æ Ë N E I V Æ < E Ë Î N < I N Ë P Æ N Ò @ E < @ P N Ë = ? N R N È P Í R @ Ì Ç N È P @ P = È

I Æ E < P = Æ È I Ú 	 N P < I E Æ Æ ß @ P P V N Í Æ E E Æ X = È Ì N Ï @ Ç Ê E N P Æ I N N X V N P V N R Í R @ Ì Ç N È P @ P = Æ È

Æ Í @ T E @ I I @ È Ë @ E E Æ T @ P = È Ì R N I < E P Í R @ Ì Ç N È P I P Æ Ë = ? N R N È P I = P N I X = E E @ T V = N Ò N Î N P P N R

Ê N R Í Æ R Ç @ È T N Ú

3 � � � �
 � � 8 � 8 < Æ È I = Ë N R @ T E @ I I Î N = È Ì Í R @ Ì Ç N È P N Ë = È P Æ P X Æ Í R @ Ì Ç N È P I � ' (� � B @ È Ë

P X Æ â < N R = N I � ' (� � N Ï N T < P = È Ì @ P P X Æ Ë = ? N R N È P I = P N I 	 ' (� P Æ @ T T N I I P V N I N P X Æ

Í R @ Ì Ç N È P I R N Ç Æ P N E É Ú à V N Í R N â < N È T = N I Æ Í � ' @ È Ë � � @ R N � Y " � ' @ È Ë � Y " � � B R N I Ê N T J

P = Ò N E É Ú à V = I Ë N I = Ì È = I I V Æ X È = È Û = Ì < R N × Ú

Å Í P V N I = ä N I Æ Í � ' @ È Ë � � @ R N ' @ È Ë � B R N I Ê N T P = Ò N E É B = Ì È Æ R = È Ì I P Æ R = È Ì T Æ I P I

Í Æ R @ E E P V N Í R @ Ì Ç N È P I B X N V @ Ò N P Æ P @ E â < N R É T Æ I P I Æ Í Ó

� 7 � � $ � � Y % } � $
 � ' + � � Y % } � $
 � � +

� � 7 � Y " � ' 7 � � ' � ' 7 � Y " � � 7 � ' �

X = P V � ' � @ È Ë � � ' @ I P R @ È I Ê Æ R P @ P = Æ È T Æ I P Í @ T P Æ R I Ú � N È N R @ E E É B � ' � I V Æ < E Ë Î N N â < @ E

P Æ � � ' Ú

Å Í â < N R É � ' = I N Ï N T < P N Ë Ç Æ R N Í R N â < N È P E É B I @ É � Y " � ' ' � Y " � � B X N Ë Æ È Æ P

Í R @ Ì Ç N È P P V N T E @ I I @ È Ë Ê < P P V N X V Æ E N T E @ I I @ P I = P N 	 ' B P V N I = P N P V @ P � ' = I

N Ï N T < P N Ë Ú à V = I Ë N I = Ì È = I I V Æ X È = È Û = Ì < R N � Ú

� � � � � � � u ~ \ j c u b u v � � \ ^ ^ j u � b _ z c j _

à V N P Æ P @ E â < N R É T Æ I P I Í Æ R P V N I N T Æ È Ë Ë N I = Ì È @ R N Ó

� 7 � � B � � Y % } � B
 � � + �
 ' � � + 7 � Y " � � 7 � ' �

�� �
�
*
����
��� ������
����� �������

< Æ Ç Ê @ R = È Ì T Æ I P I � 7 � � $ @ È Ë � 7 � � B X N Ì N P � 7 � � $ ' � 7 � � B Ú

Å P T @ È Î N T Æ È T E < Ë N Ë P V @ P Í R @ Ì Ç N È P @ P = Æ È Æ Í T E @ I I N I Ë Æ N I È Æ P @ E X @ É I Ç = È = Ç = ä N

P V N â < N R É T Æ I P Ú Å È Ì N È N R @ E B P V N Ë = I P R = Î < P = Æ È T Æ < E Ë Î N T @ E E N Ë Æ Ê P = Ç @ E B = Í X N � È Ë

@ E Æ T @ P = Æ È @ I I = Ì È Ç N È P � @ È Ë @ Í R @ Ì Ç N È P @ P = Æ È I Æ E < P = Æ È I < T V P V @ P P V N R N I < E P = È Ì

P Æ P @ E â < N R É T Æ I P I @ R N Ç = È = Ç @ E Ú Þ I P V = I Ê R Æ Î E N Ç = I T Æ Ç Ê < P @ Î E É = È P R @ T P @ Î E N B X N

I < Ì Ì N I P P Æ < I N @ V N < R = I P = T @ Ê Ê R Æ @ T V = È I P N @ Ë Ú

Û Æ R @ Ì = Ò N È Ë @ P @ Î @ I N I T V N Ç @ f � 0 [' (* * * ([X (* * * [. 2 B P V N R N = I @ I N P Æ Í

â < N R = N I 0 � ' (* * * (� ' 2 P V @ P @ T T N I I P V N Ë @ P @ Î @ I N Ç Æ I P Í R N â < N È P E É Æ R P V @ P @ R N < I N Ë

Î É P V N Ç Æ I P T R = P = T @ E P R @ È I @ T P = Æ È I Ú à V N È P V N V N < R = I P = T Ê R Æ T N Ë < R N Æ Í V Æ R = ä Æ È P @ E

Í R @ Ì Ç N È P @ P = Æ È = È T E < Ë N I P V N Í Æ E E Æ X = È Ì I P N Ê I Ó

× Ú Å Ë N È P = Í É P V N I N P Æ Í Ç Æ I P Í R N â < N È P â < N R = N I @ T T N I I = È Ì T E @ I I [X @ È Ë R N X R = P N P V N Ç

< I = È Ì P V N â < N R É @ E Ì N Î R @ Ú

� Ú Å Ë N È P = Í É P V N I = P N I @ P X V = T V P V N â < N R = N I X = E E Î N = I I < N Ë Ú à R N @ P â < N R = N I P V @ P @ R N

I P @ R P N Ë @ P I N Ò N R @ E I = P N I @ I I N Ò N R @ E Ë = ? N R N È P â < N R = N I Ú , I P = Ç @ P N Í Æ R N @ T V â < N R É

P V N Í R N â < N È T É Æ Í = P I N Ï N T < P = Æ È Ú

Ø Ú S Æ R P â < N R = N I Î É P V N = R Í R N â < N È T = N I Ú à V N È X N Ì N P @ E = I P Æ Í â < N R = N I Ô � ' (* * * (� - (

* * * (� ' Ù X = P V P V N T Æ R R N I Ê Æ È Ë = È Ì E = I P Æ Í Ò @ E < N I Æ Í Í R N â < N È T = N I �
'

� Ô � Y " � ' (

* * * (� Y " � ' Ù Í Æ R �
'

B = Ú N Ú X N @ E X @ É I Ì N P � Y " � � � ' � � Y " � � Ú

Ö Ú L N P N R Ç = È N Æ Ê P = Ç = ä N Ë â < N R É P R N N I Í Æ R @ E E P V N â < N R = N I Ú , Ï P R @ T P I = Ç Ê E N Ê R N Ë = J

T @ P N I Í R Æ Ç P V N I N P R N N I Ú � N Ì N P @ I N P % Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I � Ú

3 Ú < Æ È I P R < T P @ < I @ Ì N Ç @ P R = Ï Î @ I N Ë Æ È P V N I = Ç Ê E N Ê R N Ë = T @ P N I Æ Î P @ = È N Ë = È P V N

Ê R N Ò = Æ < I I P N Ê I B = Ú N Ú Ë N P N R Ç = È N X V = T V I = Ç Ê E N Ê R N Ë = T @ P N I @ R N < I N Ë Î É X V = T V

â < N R = N I Ú

0 Ú Û R Æ Ç P V N Ç @ P R = Ï Æ Î P @ = È N Ë = È P V N Ê R N Ò = Æ < I I P N Ê X N T @ È Ì N P @ E = I P %
'
X Æ Í I Æ R P N Ë

I = Ç Ê E N Ê R N Ë = T @ P N I %
'
X � Ô � X ' (* * * � X ' Ù X V N R N X N @ E X @ É I Ì N P � Y " � - � ' � � Y " � - Ú

à V N È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I = I � Ú � N Ì N P @ E = I P � � Ô 7 (× (* * * (" ' (* * * (" � (

* * * (� Ù Æ Í = È Ë = T N I Í Æ R P V N I = Ç Ê E N Ê R N Ë = T @ P N I Ú

4 Ú � N R Í Æ R Ç P V N Í Æ E E Æ X = È Ì I P N Ê I = P N R @ P = Ò N E É P Æ � È Ë @ R N @ I Æ È @ Î E N È < Ç Î N R Æ Í I = Ç Ê E N

Ê R N Ë = T @ P N I Í Æ R V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È @ È Ë Í R @ Ì Ç N È P P V N Ì = Ò N È T E @ I I [X Ó

< V Æ Æ I N Í Æ < R È < Ç Î N R I % (� (" ' (" � Í R Æ Ç � X = P V % � " ' � " � � � B = È T E < Ë = È Ì

= È = P = @ E E É P V N P X Æ Î Æ < È Ë I B = Ú N Ú I P @ R P X = P V 7 (" ' (" � (� X = P V 7 � " ' � " � � � Ú

Û Æ R N @ T V È < Ç Î N R " g 0 % (� (" ' (" � 2 X N T @ E T < E @ P N P V N T Æ R R N I Ê Æ È Ë = È Ì â < N R É

T Æ I P I Î É P V N Í Æ E E Æ X = È Ì Ê R Æ T N Ë < R N I Ó

 @ + < V Æ Æ I N � R I P " I = Ç Ê E N Ê R N Ë = T @ P N I = È P V N E = I P %
'

X B = Ú N Ú %
=
X � 0 � X ' (* * * � X = 2

@ È Ë Î < = E Ë P V N T Æ R R N I Ê Æ È Ë = È Ì I N P Æ Í È Æ R Ç @ E Ê R N Ë = T @ P N I +
=

Ú

 Î + Û R @ Ì Ç N È P P V N T E @ I I [X @ T T Æ R Ë = È Ì P Æ P V N I N P +
=

Æ Í È Æ R Ç @ E Ê R N Ë = T @ P N I

Æ Î P @ = È N Ë = È P V N Ê R N Ò = Æ < I I P N Ê Ú 	 N P P V N Í R @ Ì Ç N È P I Î N �
=

' (* * * (�
=

�
Ú

 T + < @ E T < E @ P N P V N Í R N â < N È T = N I � Y " �
-
� Æ Í @ T T N I I P Æ P V N Í R @ Ì Ç N È P I � � Í R Æ Ç

I = P N � B @ È Ë < I N P V = I P Æ Ë N P N R Ç = È N Í R @ Ì Ç N È P @ E E Æ T @ P = Æ È P Æ I = P N I Ú � < P P V N

Í R @ Ì Ç N È P I P Æ P V N È Æ Ë N I P V @ P @ T T N I I P V N Ç Ç Æ I P Í R N â < N È P E É Ú

 Ë + < @ E T < E @ P N P V N P Æ P @ E â < N R É T Æ I P I � 7 � = X = P V P V N T Æ I P Ç Æ Ë N E = È P R Æ Ë < T N Ë

@ Î Æ Ò N Ú

�'��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

� N Ì N P Í Æ < R Ò @ E < N I Í Æ R P V N â < N R É T Æ I P I � 7 � " (� 7 � = $ (� 7 � = B (� 7 � ' Ú 	 N P " h }
Ë N È Æ P N P V N Ç = È = Ç @ E Ò @ E < N @ Ç Æ È Ì P V N I N Í Æ < R Ò @ E < N I Ú < Æ Ç Ê @ R = È Ì P V N I N â < N R É

T Æ I P I X N Ç = Ì V P V @ Ò N P V N Í Æ E E Æ X = È Ì Í Æ < R I = P < @ P = Æ È I Ó

@
Å Í " h } � � 7 � " P V N È I N P � � " ' @ È Ë T V Æ Æ I N P X Æ È N X Ò @ E < N I Í Æ R " ' (" �

I @ P = I Í É = È Ì % � " ' � " � � � Ú Å Í X N T @ È � È Ë I < T V P X Æ È < Ç Î N R I P V N È

T Æ È P = È < N P V N Ê R Æ T N Ë < R N Ú

Å Í X N T @ È Æ È E É Ì N P Æ È N È < Ç Î N R " Í R Æ Ç P V N E = I P � B T @ E T < E @ P N P V N â < N R É

T Æ I P Í Æ R = P Ú Å Í � 7 � = � � 7 � " B P V N È " I V Æ < E Ë Î N P V N È < Ç Î N R Æ Í I = Ç Ê E N

Ê R N Ë = T @ P N I P V @ P X N I V Æ < E Ë < I N P Æ Í R @ Ì Ç N È P P V N T E @ I I [X Ú à V < I B E N P � Ó � " Ú

Å Í � 7 � = ' � 7 � " Æ R P V N R N = I È Æ È < Ç Î N R E N Í P Î N P X N N È P V N È N X % @ È Ë � B P V N È

% = I P V N È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I P V @ P X N X = E E < I N Í Æ R Í R @ Ì Ç N È P @ P = Æ È Ú

à V < I B E N P � Ó � % Ú

@
Å Í " h } � � 7 � = $ B P V N È I N P � � " � @ È Ë T V Æ Æ I N @ È N X È < Ç Î N R Î N P X N N È

% @ È Ë � I Æ P V @ P X N Ì N P È N X È < Ç Î N R I Í Æ R " ' (" � Ú < Æ È P = È < N X = P V P V N

Ê R Æ T N Ë < R N Ú

Å Í X N T @ È È Æ P � È Ë @ È N X È < Ç Î N R Î N P X N N È È N X % @ È Ë � B P V N È " ' = I P V N

È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I P V @ P X N I V Æ < E Ë T V Æ Æ I N Í Æ R Í R @ Ì Ç N È P @ P = Æ È B

P V < I � Ó � " ' Ú

@
Å Í " h } � � 7 � = B B P V N È I N P % � " ' Ú < V Æ Æ I N @ È N X È < Ç Î N R Î N P X N N È % @ È Ë

� I Æ P V @ P X N Ì N P È N X Ò @ E < N I Í Æ R " ' (" � @ È Ë T Æ È P = È < N P V N Ê R Æ T N Ë < R N X = P V

P V N È N X % � " ' � " � � � Ú Å Í X N Ë Æ È Æ P � È Ë I < T V @ È N X È < Ç Î N R B " � X = E E

Î N P V N È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I P V @ P X N È N N Ë Í Æ R Í R @ Ì Ç N È P = È Ì P V N

T E @ I I [X B = Ú N Ú P @ ß N � Ó � " � Ú

@
Å Í " h } � � 7 � ' B P V N È I N P % � " � @ È Ë � È Ë P X Æ È N X È < Ç Î N R I Î N P X N N È

% @ È Ë � I @ P = I Í É = È Ì P V N T Æ È Ë = P = Æ È % � " ' � " � � � Ú Å Í X N T @ È � È Ë I < T V

È < Ç Î N R I B P V N È X N T Æ È P = È < N P V N = P N R @ P = Æ È X = P V P V N È N X Ò @ E < N I Ú

Å Í P V N R N = I Æ È E É Æ È N È < Ç Î N R " E N Í P Î N P X N N È % @ È Ë � B X N T @ E T < E @ P N P V N

T Æ R R N I Ê Æ È Ë = È Ì â < N R É T Æ I P @ È Ë T Æ Ç Ê @ R N = P X = P V � 7 � ' Ú à V N È < Ç Î N R P V @ P

E N @ Ë I P Æ P V N Ç = È = Ç @ E T Æ I P X = E E Î N P V N È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I P V @ P

X N È N N Ë Í Æ R V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È B = Ú N Ú Í Æ R � 7 � = � � 7 � ' X N T V Æ Æ I N

� Ó � " B Æ P V N R X = I N � Ó � � Ú

Å Í P V N R N = I È Æ È < Ç Î N R Î N P X N N È % @ È Ë � E N Í P = È � B P V N È � = I P V N È < Ç Î N R

Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I È N N Ë N Ë Í Æ R Í R @ Ì Ç N È P = È Ì [X Ú à V < I B � Ó � � Ú

à V N R N I < E P = I P V N I N P % �X � 0 � X ' (* * * � X
�

2 Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I Ú à @ ß N P V N

T Æ R R N I Ê Æ È Ë = È Ì I N P + � Æ Í È Æ R Ç @ E Ê R N Ë = T @ P N I Í Æ R Í R @ Ì Ç N È P = È Ì [X Ú

S Æ P N P V @ P % (� (" ' (" � @ R N < Ê Ë @ P N Ë = È N @ T V E Æ Æ Ê Ú S N @ R T V = È Ì R N â < = R N I Æ È E É Æ È N

Æ R P X Æ È N X Ê Æ = È P I = È N @ T V E Æ Æ Ê Ú B È E É Í Æ R P V N I N È N X Ê Æ = È P I B â < N R É T Æ I P I V @ Ò N

P Æ Î N T @ E T < E @ P N Ë Ú à V N Ê R Æ T N Ë < R N I P Æ Ê I X V N È P V N R N Ç @ = È = È Ì = È P N R Ò @ E
 % (� +

Æ È E É T Æ È P @ = È I Æ È N È < Ç Î N R Æ R = I N Ç Ê P É Ú

à V N @ Î Æ Ò N Ê R Æ T N Ë < R N = I @ V N < R = I P = T Æ È N Î @ I N Ë Æ È P V N @ I I < Ç Ê P = Æ È P V @ P @

R N @ I Æ È @ Î E N Í R @ Ì Ç N È P @ P = Æ È I T V N Ç @ T @ È Î N Æ Î P @ = È N Ë Î É E Æ Æ ß = È Ì @ P Ç Æ I P Í R N â < N È P E É

< I N Ë I = Ç Ê E N Ê R N Ë = T @ P N I Ú B < R @ Ê Ê R Æ @ T V X = P V P V N @ Î Æ Ò N I P N Ê I T @ È R @ Ê = Ë E É I N @ R T V

Í Æ R @ R N @ I Æ È @ Î E N È < Ç Î N R Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I X V = T V R N I < E P I = È Ê R N I < Ç @ Î E É E Æ X

P Æ P @ E â < N R É T Æ I P I Ú

�� �
�
*
����
��� ������
����� �������

� @ � l M J o t R m R

Å È P V = I I N T P = Æ È V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Í Æ R Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Î @ I N I V @ I Î N N È

Ë = I T < I I N Ë = È Ç Æ R N Ë N P @ = E Ú L N � È = P = Æ È I Í Æ R I = Ç Ê E N Ê R N Ë = T @ P N I @ È Ë È Æ R Ç @ E Ê R N Ë = J

T @ P N I V @ Ò N Î N N È Æ < P E = È N Ë Ú Þ V N < R = I P = T V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Ê R Æ T N Ë < R N V @ I

Î N N È Ê R Æ Ê Æ I N Ë Î @ I N Ë Æ È @ T Æ I P Ç Æ Ë N E Ú à V N V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È @ Ê Ê R Æ @ T V

Ê R N I N È P N Ë = È P V = I I N T P = Æ È Ê @ Ê N R = I I < Ê N R = Æ R P Æ P V @ P Ê R N I N È P N Ë = È Ô × Ø Ù @ È Ë P V N Æ È N

Î É Ô 0 Ù Ú < V @ R @ T P N R = I P = T I @ È Ë Ê Æ P N È P = @ E Î N È N � P I Æ Í P V N @ Ê Ê R Æ @ T V Ê R N I N È P N Ë = È P V = I

I N T P = Æ È B @ È Ë Ë = ? N R N È T N I P Æ Æ P V N R @ Ê Ê R Æ @ T V N I = È P V N E = P N R @ P < R N T @ È Î N I < Ç Ç @ R = ä N Ë

@ I Í Æ E E Æ X I Ó

Û = R I P E É B P V N @ Ê Ê R Æ @ T V T @ È Ë N @ E X = P V Î Æ P V I = Ç Ê E N @ È Ë T Æ Ç Ê E N Ï @ P P R = Î < P N I

< I = È Ì P V N I @ Ç N Ê R Æ T N Ë < R N Ú Å È Ô 0 Ù B I = Ç Ê E N @ È Ë T Æ Ç Ê E N Ï @ P P R = Î < P N I @ R N P R N @ P N Ë

X = P V Ë = ? N R N È P @ E Ì Æ R = P V Ç I Ú S = Ç Ê E N @ P P R = Î < P N I R N Í N R P Æ P V N @ P P R = Î < P N I Æ Í Ê R = Ç = P = Ò N

@ P P R = Î < P N P É Ê N I Æ È E É B = Ú N Ú P V Æ I N P V @ P Ë Æ È Æ P T Æ È P @ = È Æ P V N R T E @ I I N I @ I Ê @ R P Æ Í

P V N Ç Ú < Æ Ç Ê E N Ï @ P P R = Î < P N I V @ Ò N P V N Ë Æ Ç @ = È Æ Í @ P P R = Î < P N @ I @ È Æ P V N R T E @ I I Ô 0 Ù Ú Å È

Æ < R @ Ê Ê R Æ @ T V B @ P P R = Î < P N I @ R N Ë N � È N Ë < I = È Ì P V N < È Ë N R E É = È Ì Æ Î á N T P Æ R = N È P N Ë P É Ê N

I É I P N Ç Ú Þ P P R = Î < P N I Ë N � È N Ë Æ È P V N @ Î I P R @ T P = Ë N È P = � N R P É Ê N
 � @ R N P R N @ P N Ë @ I

Î N = È Ì Ë N � È N Ë Æ È Æ È N Æ Í P V N Î @ I N P É Ê N I Ú B < R @ Ê Ê R Æ @ T V = I Ç Æ R N < È = Ò N R I @ E P V @ È

Æ P V N R I = È P N R Ç I Æ Í Ë N @ E = È Ì X = P V @ P P R = Î < P N I Æ Í Ë = ? N R N È P P É Ê N I B @ È Ë = I Ç Æ R N N @ I = E É

Ê < P = È P Æ Ê R @ T P = T @ E < I N Ú

S N T Æ È Ë E É B P V N N Ï Ê R N I I = Æ È Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I = I N Ï P N È Ë N Ë I < T V P V @ P I = Ç Ê E N

Ê R N Ë = T @ P N I T @ È Î N Ë N � È N Ë Æ È = Ë N È P = � N R I @ I X N E E @ I Æ È Ò @ E < N I Ú à V N N Ï Ê R N I I = Æ È Æ Í

I = Ç Ê E N Ê R N Ë = T @ P N I Æ È Ò @ E < N I = I @ E I Æ N Ï P N È Ë N Ë P Æ I < = P Ò @ R = Æ < I P É Ê N T Æ È I P R < T P Æ R I

= È P V N < È Ë N R E É = È Ì P É Ê N I É I P N Ç Æ Í P V N Æ Î á N T P Æ R = N È P N Ë Ç Æ Ë N E Ú Å È Ô 0 Ù B P V N Ë N � È = J

P = Æ È Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I = I @ Ë Æ Ê P N Ë Í R Æ Ç Ô × Ø Ù X = P V Æ < P @ È É @ Ë @ Ê P = Æ È Ú ; Æ X N Ò N R B

P V N Í Æ R Ç @ P Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I = È Ô × Ø Ù T @ È È Æ P Ë N @ E X = P V P V N I = P < @ P = Æ È P V @ P @

I = Ç Ê E N Ê R N Ë = T @ P N = I Ë N � È N Ë Æ È @ T Æ Ç Ê E N Ï P É Ê N T Æ È I P R < T P Æ R B = Ú N Ú @ � È = P N I N P P É Ê N

T Æ È I P R < T P Æ R Ú Å È P V N @ Ê Ê R Æ @ T V Ê R N I N È P N Ë B P V N Í Æ R Ç @ P Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I = I N Ï J

P N È Ë N Ë = È @ X @ É P V @ P I = Ç Ê E N Ê R N Ë = T @ P N I T @ È Î N Ë N � È N Ë È Æ P Æ È E É Æ È R N T Æ R Ë P É Ê N

T Æ È I P R < T P Æ R I Æ R Î @ I N P É Ê N T Æ È I P R < T P Æ R I Î < P @ E I Æ Æ È � È = P N I N P P É Ê N T Æ È I P R < T P Æ R I Ú

S Æ P N P V @ P P V N Ë Æ Ç @ = È Æ Í P V N Ò @ E < N I Í Æ R P V N T Æ Ç Ê @ R = I Æ È Æ Ê N R @ P Æ R � V @ I Î N N È N Ï J

P N È Ë N Ë P Æ = È T E < Ë N I Æ Ç N I N P T Æ Ç Ê @ R = È Ì Æ Ê N R @ P = Æ È I Ú � @ P V N Ï Ê R N I I = Æ È I V @ Ò N Î N N È

= È P R Æ Ë < T N Ë P Æ R N Í N R P Æ @ È É N E N Ç N È P I Æ Í @ T E @ I I Ú

à V = R Ë E É B = È I P N @ Ë Æ Í < I = È Ì Ç = È P N R Ç Ê R N Ë = T @ P N I @ I Í Æ < È Ë = È Ô × Ø Ù @ È Ë Ô 0 Ù B X N

= È P R Æ Ë < T N Ë È Æ R Ç @ E Ê R N Ë = T @ P N I Æ È T E @ I I N I @ I P V N I @ P = I � @ Î E N Ç = È P N R Ç Ê R N Ë = T @ P N I Ú

; Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È Æ Ê N R @ P = Æ È I Î @ I N Ë Æ È @ I N P Æ Í È Æ R Ç @ E Ê R N Ë = T @ P N I T Æ < E Ë

P V N R N Í Æ R N Î N Ì < @ R @ È P N N Ë P Æ I @ P = I Í É P V N T V @ R @ T P N R = I P = T I Æ Í Í R @ Ì Ç N È P @ P = Æ È Ë = I T < I I N Ë

= È Ô × Ø Ù Ú à V N @ Ê Ê R Æ @ T V Ë = Ë È Æ P R N E É Æ È Ë N Ê N È Ë N È T = N I Î N P X N N È I = Ç Ê E N â < N R = N I

@ I = È Ô × Ø Ù B Î N T @ < I N P V N I N T @ È V @ R Ë E É Î N Ë N P N R Ç = È N Ë Ú Å P = I Ò N R É V @ R Ë P Æ < I N

P V N I N Ë N Ê N È Ë N È T = N I P Æ Ë N P N R Ç = È N P V N I @ P = I � @ Î = E = P É Æ Í @ T Æ È á < È T P = Æ È Æ Í I = Ç Ê E N

Ê R N Ë = T @ P N I B Æ R P Æ I = Ç Ê E = Í É P V N Ç = Í P V N É @ R N I @ P = I � @ Î E N Ú

Û Æ < R P V E É B P V N @ Ê Ê R Æ @ T V @ Ê Ê E = N I @ T Æ I P Ç Æ Ë N E Í Æ R V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È

Ë N I = Ì È Ú Å È Ô × Ø Ù B V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È = I Ê N R Í Æ R Ç N Ë X = P V Æ < P N Ò @ E < @ P = È Ì P V N

Æ Ò N R @ E E I É I P N Ç Ê N R Í Æ R Ç @ È T N Ú � N @ R Ì < N P V @ P P V N E @ R Ì N R Ë N Ì R N N Æ Í Í R @ Ì Ç N È P @ P = Æ È

Ë Æ N I È Æ P È N T N I I @ R É E N @ Ë P Æ P V N Î N P P N R I É I P N Ç Æ Ò N R @ E E Ê N R Í Æ R Ç @ È T N Ú à V N R N N Ï J

�3��� ���� ���	��
��
�
��
� +�,#%��%-�
..#"�-/� �"� +"#%0"���1� �#�2$�����%"�� ��

= I P I @ T < P Æ ? Ê Æ = È P Í Æ R P V N Ë N Ì R N N Æ Í V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È P V @ P P V N I É I P N Ç

V @ I P V N Î N I P Ê N R Í Æ R Ç @ È T N Ú ; Æ X N Ò N R = P = I T Æ Ç Ê < P @ P = Æ È @ E E É = È P R @ T P @ Î E N P Æ � È Ë

P V N Æ Ê P = Ç = ä N Ë Í R @ Ì Ç N È P @ P = Æ È I Æ E < P = Æ È Î É T Æ Ç Ê @ R = È Ì P Æ P @ E T Æ I P I Í Æ R @ E E Ê Æ I I = Î E N

Í R @ Ì Ç N È P @ P = Æ È I T V N Ç @ P @ Ô × Ø Ù Ú à V N V N < R = I P = T Ê R Æ T N Ë < R N Ê R Æ Ê Æ I N Ë = È P V = I I N T P = Æ È

Ê @ Ê N R = I Î @ I N Ë Æ È @ T Æ I P Ç Æ Ë N E X = P V X V = T V P V N I É I P N Ç Ê N R Í Æ R Ç @ È T N T @ È Î N N Ò @ E J

< @ P N Ë Æ È T N @ Ë @ P @ Î @ I N = I Î N = È Ì Í R @ Ì Ç N È P N Ë Ú B È N Æ Í P V N T V @ R @ T P N R = I P = T I Æ Í P V = I

Ê R Æ T N Ë < R N = I P V @ P = P T @ È R @ Ê = Ë E É @ T V = N Ò N @ V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È I T V N Ç @ P V @ P

= I Ë N I = Ì È N Ë P Æ R N I < E P = È E Æ X P Æ P @ E â < N R É T Æ I P B Æ R B = È Æ P V N R X Æ R Ë I B P V N I É I P N Ç & I

Æ Ò N R @ E E Ê N R Í Æ R Ç @ È T N Î N = È Ì = Ç Ê R Æ Ò N Ë Ú

� � À ½ Ã � Â � Ä À ½

Å È P V = I Ê @ Ê N R X N Ê R N I N È P N Ë @ V N < R = I P = T @ Ê Ê R Æ @ T V P Æ V Æ R = ä Æ È P @ E Í R @ Ì Ç N È P @ P = Æ È

Í Æ R Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Î @ I N I Ú à V N Ç @ á Æ R Æ Î á N T P = Ò N = I P Æ Ê R Æ Ò = Ë N @ P R @ T P @ Î E N

@ Ê Ê R Æ @ T V P Æ Ç = È = Ç = I = È Ì P V N â < N R É Ê R Æ T N I I = È Ì T Æ I P I Í Æ R P V N Ç Æ I P Í R N â < N È P â < N R = N I Ú

Å È Ì N È N R @ E B P V = I X Æ < E Ë R N â < = R N P Æ T Æ È I = Ë N R @ E E Ê Æ I I = Î E N Í R @ Ì Ç N È P @ P = Æ È I @ È Ë @ E E

Ê Æ I I = Î E N @ E E Æ T @ P = Æ È I Æ Í = È P N R Ç N Ë = @ P N â < N R É R N I < E P I P Æ P V N È Æ Ë N I Æ Í @ È N P X Æ R ß B

X V = T V = I = È P R @ T P @ Î E N Ú Å È I P N @ Ë Æ Í P V = I X N I < Ì Ì N I P P Æ T Æ È I = Ë N R R N Ë < T = È Ì P V N È < Ç Î N R

Æ Í Í R @ Ì Ç N È P I Î É Ë N P N R Ç = È = È Ì P V N R = Ì V P T < P Ê Æ = È P = È @ E = I P Æ Í I = Ç Ê E N Ê R N Ë = T @ P N I Ú

B < R @ Ê Ê R Æ @ T V = I Î @ I N Ë Æ È @ R @ P V N R I Æ Ê V = I P = T @ P N Ë Ë @ P @ Ç Æ Ë N E B X V = T V = È Ì N È J

N R @ E È N N Ë I Ç Æ R N P V @ È V Æ R = ä Æ È P @ E @ È Ë Ò N R P = T @ E Í R @ Ì Ç N È P @ P = Æ È Í Æ R Ë = I P R = Î < P = Æ È

Ë N I = Ì È Ú Û Æ R P V = I X N = È P R Æ Ë < T N Ë @ P V = R Ë Í R @ Ì Ç N È P @ P = Æ È Æ Ê N R @ P = Æ È T @ E E N Ë I Ê E = P P = È Ì Ú

� N @ R N T < R R N È P E É X Æ R ß = È Ì Æ È Ò N R P = T @ E @ È Ë I Ê E = P P = È Ì Í R @ Ì Ç N È P @ P = Æ È Ú , Ï Ê N R = Ç N È P @ E

N Ò @ E < @ P = Æ È Í Æ R P V N Ê R Æ Ê Æ I N Ë Ê R Æ T N Ë < R N = I = È = P I N @ R E É Ê V @ I N I Ú à V N X Æ R ß Ê R N I N È P N Ë

= È P V = I Ê @ Ê N R = I Æ < R � R I P @ P P N Ç Ê P P Æ Æ Ò N R T Æ Ç N Ë N � T = N È T = N I Æ Í Ë = I P R = Î < P = Æ È Ë N I = Ì È

Í Æ R Æ Î á N T P Æ R = N È P N Ë Ë @ P @ Î @ I N I Ú � N T Æ È I = Ë N R P V N < I N Æ Í @ I = Ç Ê E = I P = T Ë @ P @ Ç Æ Ë N E

@ È Ë P V N È N Ì E N T P = Æ È Æ Í = È P N R Ç N Ë = @ P N â < N R É R N I < E P I @ I P V N Ç Æ I P I P R = ß = È Ì N Ï @ Ç Ê E N I

Æ Í I < T V Ë N � T = N È T = N I Ú

� 	 � 	 ¿ 	 ½ Ã 	 �

� � � � � 	 � � � � � � � � � � � � � � � � � � � � " � $ � � ¡ ª _ ~ j c � _ b j c j ` \ ^ \ ³ ¢ _ h ` � \ b � ¢ \ � _ r h c t °

c j c e _ � w b & (* , . 0 1 2 4 6 8 9 ; = ; ? � @ B @ C m � � [�

� � � D � E " � $ � F � H � o \ j \ \ � � u ~ \ j c u b c b � c ^ j h c ¡ ¢ j _ � � \ j \ ¡ \ ^ _ ^ ` ^ j _ t ^ � J L 4 N (P Q R .

8 P T P V P R X 0 Z R T . 9] ? � @ B B C m � ^ _ ` _ b c �

_ � d � � � � 	 E � f g � � i � � � � E � � D � � � k � � � � � � � � � k � � � 	 � � � � � � u h c j � t ^ \ b � ^ ¢ r r u h j

v u h � u h c � u b j \ � ~ � \ ^ ^ r \ h j c j c u b c b � c b u ¡ ª _ ~ j ° u h c _ b j _ � � \ j \ ¡ \ ^ _ ^ � 8 q R T (q V t T X u P Q u

& P (P x x X x 8 P T P V P R X R = m � ? � b b b C m � z z ` � { @ �

c � | � E � � � � � � � � $ � � � ~ � 	 	 � � H � 8 q R T (q V t T X u 8 P T P V P R X R & (q Q , q � x X R P Q u 0 Z R T X � �

[~ � h \ � ° ¬ c � � m � _ � � u h � m � @ B c �

z � | g � � f g � � � � E � H � � � � � � � H � g � � � � b u e _ h e c _ � u v e _ h j c ~ \ � r \ h j c j c u b c b � c b

u ¡ ª _ ~ j u h c _ b j _ � � \ j \ ¡ \ ^ _ ^ � N � X L * � � t T X (� * t (Q P x � � m � ? � @ @ @ C �

^ � � � � � � � � | � � � � � � � d � E � E � � � � ~ u t r h _ � _ b ^ c e _ \ r r h u \ ~ � j u � u h c � u b j \ � ~ � \ ^ ^

v h \ � t _ b j \ j c u b c b \ � c ^ j h c ¡ ¢ j _ � u ¡ ª _ ~ j ¡ \ ^ _ � ^ ` ^ j _ t � 8 q R T (q V t T X u P Q u & P (P x x X x

8 P T P V P R X R] m _ ? � @ @ z C m � c { ` � { � �

�� �
�
*
����
��� ������
����� �������

{ � � � � � � � � | � � � � � � � d � E � E � � � o c ^ j h c ¡ ¢ j _ � u ¡ ª _ ~ j ¡ \ ^ _ � � _ ^ c � b � � _ h j c ~ \ � v h \ � °

t _ b j \ j c u b u v ~ � \ ^ ^ _ ^ � 8 q R T (q V t T X u P Q u & P (P x x X x 8 P T P V P R X R � m c ? � @ @ B C m _ � { ` _ z b �

B � � g � � � � � � � � � � � � � � � � � � � g � � E � F � � e \ c � \ ¡ c � c j ` \ b � h _ � c \ ¡ c � c j ` c ^ ^ ¢ _ ^ c b � c ^ °

j h c ¡ ¢ j _ � � \ j \ ¡ \ ^ _ ^ ¢ ^ c b � u r j c t \ � � u h c � u b j \ � v h \ � t _ b j \ j c u b � w b 8 P T P V P R X P Q u 	
 �

� X (T 0 Z R T X � R J � � x q , P T q * Q R ? � @ @ @ C m ¥ � � � [� � _ b ~ � ° � \ r u b m � � z u � \ m \ b � � � [�

¥ ª u \ m � � ^ � m e u � � � ^ { { u v � X , T t (X � * T X R q Q L * � � t T X (0 , q X Q , X m z r h c b � _ h m r r � { { � `

{ B b �

@ � F � � � � o c ^ j h c ¡ ¢ j c u b � _ ^ c � b c b u ¡ ª _ ~ j u h c _ b j _ � � \ j \ ¡ \ ^ _ ^ � [\ ^ j _ h � ^ j � _ ^ c ^ m [\ ^ ^ _ `

a b c e _ h ^ c j ` m � b b _ �

� b � F � � � � � � � � � f g � � � � � � � � � ² h \ � t _ b j \ j c u b u v � [� � u ~ ¢ t _ b j ^ � w b & (* , X X u q Q � R

! " 1 1 1 0 q � � #* R q * $ (P R q x X q (* u X $ P Q , * R u X 8 P u * R & 0 $ $ 8 �))] + ? [\ b \ ¢ ^ m � h \ � c � m

� b b _ C m r r � � b b ` � � c �

� � � F � � � � � � " � � � � � � � � | g � E � - � E 	 g . � � � ² h \ � t _ b j \ j c u b j _ ~ � b c ³ ¢ _ ^ v u h � c ^ °

j h c ¡ ¢ j c b � u ¡ ª _ ~ j ° u h c _ b j _ � � \ j \ ¡ \ ^ _ ^ � w b L * Q , X � T t P x 4 * u X x q Q � � 	 2 4 ; 6 ? � @ @ { C m

o � 7 � � t ¡ � _ ` \ b � � � � � � u � � ^ j _ c b m � � ^ � m e u � � � _ _ � u v � X , T t (X � * T X R q Q L * � � t T X (

0 , q X Q , X m z r h c b � _ h m r r � _ c { ` _ ^ b �

� � � � � - � 	 g � � � � d � � � � � = � � F � � _ h j c ~ \ � r \ h j c j c u b c b � v u h � \ j \ ¡ \ ^ _ � _ ^ c � b � � � h \ r � °

c ~ \ � \ � � u h c j � t � J L 4 0 1 2 4 6 8 9 � m c ? � @ B @ C m c c b ` c z b �

� _ � ?A � " � � F � B � � � � � C � � � � E � � � � $ � & (q Q , q � x X R * D 8 q R T (q V t T X u 8 P T P V P R X 0 Z R T X � R �

� � \ b � r j m � _ � � _ h ^ _ ` m � @ @ @ �

� c � = � � F � ¬ u h c � u b j \ � r \ h j c j c u b c b � v u h � c ^ j h c ¡ ¢ j _ � � \ j \ ¡ \ ^ _ � _ ^ c � b � w b J u F P Q , X R q Q

8 P T P V P R X 2 X R X P (, � ? � @ @ _ C m [� � h � u � ^ � \ \ b � [� � \ r \ � u � � u ¢ m � � ^ � m 7 u h � � z ~ c _ b °

j c I ~ � ¢ ¡ � c ^ � c b � m r r � � b � ` � � b �

� z � � f g � � � � � � � � � � b j � _ ¢ b c I ~ \ j c u b u v ³ ¢ _ h ` \ � � _ ¡ h \ ^ \ b � j � _ c h _ ¨ j _ b ^ c u b j u h \ °

j c u b \ � j h _ _ ^ j h ¢ ~ j ¢ h _ ^ � w b & (* , . J t R T (P x P R q P Q 8 P T P V P R X L * Q D X (X Q , X ? � b b � C m [� � h °

� u � ^ � \ \ b � � � � u � � c ~ � m � � ^ �

� ^ � � f g � � � � � � � � � ² h \ � t _ b j \ j c u b u v u ¡ ª _ ~ j u h c _ b j _ � \ b � ^ _ t c ° ^ j h ¢ ~ j ¢ h _ � � \ j \ � w b

8 P T P V P R X R P Q u 1 Q D * (� P T q * Q 0 Z R T X � R 1 1 ? � b b � C m ¬ � ° [� ¬ \ \ e \ b � � � L \ � ª \ m � � ^ � m

L � ¢ � _ h � ~ \ � _ t c ~ � ¢ ¡ � c ^ � _ h ^ m r r � � ` � c �

� { � � f g � � � � � � � � � � � � � B g � � g � � k � d � ² ¢ b � \ t _ b j \ � ~ u b ~ _ r j ^ u v u ¡ ª _ ~ j u h c _ b j _ �

� \ j \ ¡ \ ^ _ ^ � J , T P L Z V X (Q X T q , P 9 9 m c ? � @ @ _ C m c @ ` B c �

� B � B � k g � � � E � � � F � � � � � = � k � � � o \ j \ ¡ \ ^ _ v h \ � t _ b j \ j c u b \ b � \ � � u ~ \ j c u b � � b

c b j _ � h \ j _ � t _ j � u � u � u � ` \ b � ~ \ ^ _ ^ j ¢ � ` � 1 	 	 	 N (P Q R P , T q * Q R * Q 0 Z R T X � R 4 P Q P � X �

� X Q T � = m _ ? � @ @ B C m � @ c ` � b { �

� @ � T g � � ~ � U � � b � u h c � u b j \ � v h \ � t _ b j \ j c u b u v � c ^ j h c ¡ ¢ j _ � � \ j \ ¡ \ ^ _ � _ ^ c � b � w b

J u F P Q , X R q Q 8 P T P V P R X 2 X R X P (, � ? � @ @ _ C m [� � h � u � ^ � \ \ b � [� � \ r \ � u � � u ¢ m � � ^ � m

7 u h � � z ~ c _ b j c I ~ � ¢ ¡ � c ^ � c b � m r r � � � � ` � _ b �

Successful Database Integration through View
Cooperation

Vojtech Vestenický

Charles University, Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

vestenicky@ksi.ms.mff.cuni.cz

Abstract. We present an approach for cooperation between databases mod-

elled as HERM schemas. Cooperation between semantically related parts is

based on views. Such views transparently support an information exchange

between schemas. View definitions are generated in form of HERM algebra

expressions by rules. The rules aim at solving integration conflicts, including

constraints, on schema and instance level. The advantage is their simplicity and

low complexity (i.e. polynomial). They can be combined into new rules to cover

more complicated cases. Resulting views in HERM algebra can be translated

into SQL and deployed on any common DBMS.

1 Introduction

Full view integration aims at developing a more general schema and a set of selectors on this

schema such that each view is generated by a selector. The drawback is the undecidability of

view integration in general and the infeasibility of view integration in most cases [Con86]. The

advantage is that it provides a general solution if there is a solution.

View consistency tries to find the mechanisms which can be used for the cooperation or

co-existence of views. View cooperation enables exchange of information between views. The

disadvantage is the need for computational support. The advantage is the existence of view

cooperation in situations where view integration is unlikely [Tha01].

Our approach proposes a cooperation strategy. We argue that it has several advantages over

the approaches aiming at full view integration:

In global as view approaches (GAV), like COIN [GBMS99], MOMIS [BCVB01] and IBIS

[CCG
+
03], the complexity is high, constraints either simple or omitted and there is no support

for complex types.

In local as view approaches (LAV) [Lev00,Hal01,Len02] we face the same problems as in

GAV.

The combination of the GAV and LAV introduced in [PA03] as Both As View (BAV)

approach uses reversible schema transformations. The approach concentrates only on schema

related conflicts and neglects the constraints.

A well known approach to solving structural conflicts between schemas using view integra-

tion has been proposed in [SP94]. Transformation rules produce new views that can be used

to obtain an integrated schema. Our approach resembles above Spaccapietra’s work in some

points: we use rules to generate views, we constructs the functions to map values and consider

constraints. However, the complexity of generating the views in our approach is lower (espe-

cially in rules including paths). We do not modify the views to construct an integrated schema,

because it is not always possible and often not desired. We distinguish two types of views: query

views and updatable views. This separation allows for maximal information extraction and use

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

��'�(� 	�

�) �
�
*
����
��� ������
����� �������

of different update strategies. The cooperation relates to interoperable database systems. It is

defined by functions which map one database system into another. Two generated views may

support different operations, e.g. for an update there can exist mapping only in one direction.

This offers much more flexibility. The success of the integration process is closely related to a

data model and modeling techniques [VLF00]. Poor modeling techniques result in poor mod-

els which are very hard to integrate. We have chosen a Higher-order Entity-Relationship Model

(HERM) [Tha00] to represent all participating schemas. HERM has advantages over the tra-

ditional ER Model and carries more semantic. Thus, we are able to handle complex types and

more constraints than other approaches.

We now briefly introduce some of HERM extensions:

For pairwise different nested attributes X1, . . . , Xn is X(X1, . . . , Xn) a nested tuple at-
tribute.

If Y is a nested attribute then X{Y } is a nested set attribute.
We denote a set of attributes of some type R (R can be also the whole schema) with

attr(R), a set of entity types ent(R) and a set of relationship types reli(R), where i is the

order of the relationship types (e.g. ent(R) = rel0(R)). A set of components of a relationship

type R is comp(R).

A cluster type C = R1 + R2 + . . . + Rk, C
C =

⋃k

i=1
RC
i (CC

and RC
are instances

of a cluster and relationship types respectively), where ∀RC
i , RC

j , i �= j, i, j = 1, . . . , k,

RC
i ∩ RC

j = ∅. If R1, . . . , Rk are entity types then C is a cluster of entity types. The clus-

ter type models the super/subtype relationship with more than one subtype. We require that

identification types of the components of the cluster are domain-compatible.

The semantic correspondence between R1 and R2, entity/relationship types from different

schemas, is given by a relation E(R1, R2).
For the rest of the paper we assume two different schemas S1 and S2 as an input to the

integration process. The relation E is defined only for the elements of these schemas. We further

require that both schemas S1 and S2 are connected (see Def. 1).

Definition 1 Schema S = {E1, . . . , Em, R1, . . . , Rn} is called connected, if all relationship
types have only entity types E1, . . . , Em and relationship types R1, . . . , Rn as their compo-
nents.

For the definition of views we use HERM algebra operations: σφ (selection) with a selection

formula φ, πA1,...,Am (projection) with a generalized subset {A1, . . . , Am}, ρf (renaming)

with a renaming function f , ✶G(join) with a common generalized subset G, ∪ (union), – (dif-

ference), νX:{A1,...,An}(nest) and µA (unnest) with a set attribute A (see [Tha00] for details).

HERM diagram is a graphical representation of the HERM model. The clusters are rep-

resented with a symbol ⊕. The edges E(ntity) → A(ttribute) can be labelled by dom(A).
Other edges could be labelled by integrity constraints, e.g. cardinality constraints. All attributes

A of a R(elationship) constituting a key, i.e. A ∈ id(R), are underlined.

This approach builds on the theory introduced in [Tha00], where the integration process is

described as follows: Given the two database schemas S1, S2 and the corresponding database

states SC
1 , SC

2 .

1. We must find the functions f12 and f21 which realize the partial embedding of types from

schema S1 to S2 and S2 to S1, i.e. f12 : S1 −→o S2, f21 : S2 −→o S1.

2. Then the functions fC12 and fC21 need to be constructed which define a partial embedding of

corresponding instances from SC
1 to SC

2 , i.e. fC12 : SC
1 −→o SC

2 , fC21 : SC
2 −→o SC

1 .

The two schema morphisms f12, f
C
12 and f21, f

C
21 cooperate and define a view cooperation (see

Fig. 1) if for each T1 ∈ SV
1 ∩ f21(S

V
2) and each T2 ∈ SV

2 ∩ f12(S
V
1), for each pair TC

1 ∈ SC
1

and TC
2 ∈ SC

2

�+��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

2

V

C
)

1

V
)(

1

V

)
2

V

C

1
S

)(

)(

12

21

12
f

(S

S

S

S(

S

S

S(
C
)(

2

VC

21
f

C
)(

1

V

C
)

21

1
C

T 2
C

T

C

12
f

C

2
S

C

21
f

C

12
f

1T

f

1

V
S

2
S

f

2

V
f

2T

1
S

Fig. 1. View Cooperation

– the functions fC12(T
C
1),fC21(f

C
12(T

C
1)),fC21(T

C
2),fC12(f

C
21(T

C
2)) are defined and

– the equalities fC21(f
C
12(T

C
1)) = TC

1 , fC12(f
C
21(T

C
2)) = TC

2 are valid.

The functions f12 and f21 are in our approach represented by the view definitions in HERM

algebra.

2 Integration process

It is comprised of the following main phases:

1. Obtain views for queries: application of rules and generation of view definitions

using the HERM algebra for each pair of semantically corresponding components in E , no
constraints are considered. The result is a maximal set of views containing semantically

related components and their attributes.

2. Obtain views for updates: rules generate updatable views by adjusting the query

views to satisfy constraints.

3. Obtain mapping functions for instances: construction of mapping functions for

the view instances.

4. Obtain cooperating views: searching for overlapping parts in the pairs of the views.

These parts represent then the final result of the integration process, cooperating views.

5. Translation into SQL: the resulting view definitions are translated into SQL state-

ments that create the actual views in the underlying database.

There are some typical cases which cover common conflicts. They are related not only to

the construction of the rules, but also to the construction of the views. View definitions in our

approach can be limited to two view patterns:

– The views representing the semantic correspondence of two entity/relationship types and

all their semantically related attributes are contained within these types, look like

πattr(ρf (R)), where attr is a list of semantically related attributes, function f solves

the naming inequalities by defining the mapping from one name space to another and R is

the relation from which the mapping starts.

– Structural incompatibilities are the main reason for the existence of these view types. If the

semantically related components are in different relationship types then it is necessary to

access those types and extract the desired information. The view definition must therefore

contain a join: πattr(ρf (R1 ✶ (. . . ✶ (Rn−1 ✶ Rn)))), where {R1, . . . , Rn} is a set of

relationship types that are connected and have the semantically related attributes as their

components.

3� �
�
*
����
��� ������
����� �������

2.1 Obtain views for queries

These views contain the maximal possible set of semantically related components. They aim at

information extraction and may not be updatable. They serve as building components for further

view definitions. The views satisfying the restrictions posed by different schemas are a subset

of these query views, i.e. theirs specialization.

Views are generated by rules. The rules expect as an input two types from different schemas

S1 and S2. They can be entity/relationship types and must satisfy the condition stated in the

beginning of the rule. These conditions allow to handle different types of integration problems.

We mention only a few rules for illustration (for others see [Ves03]).

1. For entity types one of them with nested set attribute E1 ∈ S1 and

E2, E3, R ∈ S2 where:

- E1 = (A1, . . . , An, A{X}), A1, . . . , An are simple attributes, A{X} is a nested set

attribute containing the type X ,

- id(E1) ∈ attr(E1) − {A}, i.e. nested attribute is not a part of the key,

- E2 = (B1, . . . , Bk), (E1, E2) ∈ E , i.e. E1 and E2 are semantically related,

- E3 = (C1, . . . , Cl), ∃c ∈ attr(E3).(c, A) ∈ E , i.e. for the complex attribute A of

E1 there exists some semantically corresponding attribute c in E3,

- comp(R) = {E2, E3}, i.e. E2 and E3 are components of the relationship type R.

This rule handles the case where an entity type in the first schema contains a nested set

attribute and in the second schema there exists a decomposition into two entity types one

of them holding the equivalent of the nested attribute.

S
1

Book

S
2

Writer

Book

written

Author{Name}
Title Title

Name

_by

Fig. 2. Entity Book with the nested set attribute Author and the decomposed equivalent in
schema S2

We explain the situation using the Fig. 2. The entity type Book in the schema S1 has a

nested set attribute Author containing the set of elements of type Name. This simple ex-

ample reflects the fact, that a book may have been written by more authors and we want to

keep the track of their names. In schema S2 can the same situation be modelled using the

entity type Book and a separate entity type Writer with the attribute Name. Both entity

types of schema S2 are connected through the relationship type written by. We define the

views for this example first. Let us assume E contains the semantic correspondences be-

tween components: E = {(Book,Book), (Author,Name), (Title, T itle)}. The views

are then:

– VS1.Book,S2.Book = πTitle,Name(ρAuthor→Name(S1.Book)),

3(��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

– VS2.Book,S1.Book = πTitle,Author(ρName→Author(S2.Book ✶ (written by ✶

Writer))).
Note: the attribute Name in the projection part of the view VS1.Book,S2.Book is a complex

attribute and holds the set of author names. We must therefore transform this complex at-

tribute before we can work with instances, see Sec. 2.3.

Having defined the views in the above example, we turn to the general case and construct:

– the mapping functions for the attributes:
mapE1,E2 = {(a, b)|a ∈ attr(E1), b ∈ attr(E2) ∪ attr(E3), (a, b) ∈ E},
mapE2,E1 = {(a, b)|a ∈ attr(E2) ∪ attr(E3), b ∈ attr(E1), (a, b) ∈ E}.

– view definitions using the HERM algebra:

• asetE1,E2 = {b|(a, b) ∈ mapE1,E2},
VE1,E2 = πasetE1,E2

(ρmapE1,E2
(E1))

• asetE2,E1 = {b|(a, b) ∈ mapE2,E1},
VE2,E1 = πasetR2,R1

(ρE2,E1(E2 ✶ (R ✶ E3)))

Other structural conflicts involving complex types can be solved by similar rules.

2. For two relationship types R1 ∈ S1, R2 ∈ S2 and semantically related
attributes are not contained within the matching relationship type
where:

- R1 = (comp(R1), A1, . . . , An),R2 = (comp(R2), B1, . . . , Bm) and (R1, R2) ∈
E .

Here the attributes can have their semantic equivalents in different relationship/entity types.

See Fig. 3, e.g. the semantically corresponding attributes A
′
are outside the matching type

R1. The dotted lines represent the semantic correspondence between the attributes and

relationship types. We determine the set of corresponding attributes for R1 and R2:

asete attr
R1 = {Bj |Ai ∈ attr(R1), i = 1, . . . , n, (Ai, Bj) ∈ E}

asete attr
R2 = {Ai|Bj ∈ attr(R2), j = 1, . . . ,m, (Ai, Bj) ∈ E}

... B
m

B
1

B 2
S

2
A

1
A

n
A1

S

’
1

A

’
1

B

’
2

B’
4

A

YX

1,3

1,2

R

...

2

2,1

2,2

1,4

1,1

1R R

R

RR

RR

2

Fig. 3. Related attributes are outside the matching types R1 and R2

Then we find relationship types where these attributes reside, e.g. in Fig. 3 R1,1,R1,2.

Definition 2 Function frel : A → P , A ∈ attr(S), P ∈ rel(S) is defined as
frel(A) = {p|a ∈ A, a ∈ attr(p)}.

3� �
�
*
����
��� ������
����� �������

Assume we get the sets of relationship types for both attribute sets: rsetrelR1 =

frel(aset
e attr
R2) and rsetrelR2 = frel(aset

e attr
R1). For each of the above sets other types

must be found, such that all types are connected through some path. Those nodes must

exist in each schema because the schemas are connected. If we look at the Fig. 3 we can

see the types, e.g. R
′
1,3 and R

′
1,4. We define the function that returns those extended sets

using partially an algorithmic description:

Definition 3 The function find : R × R′ → R′′, where R is an input set of relationship
types, R′ is a set of all relationship types of schema S, and R′′ is a result set of connected
relationship types containing R.

function find(rset, rschema)
Con = {r|r ∈ rset, s ∈ rset − {r}, r ∈ comp(s) ∨ s ∈ comp(r)} /** already

connected

Con r = {r|r ∈ Con, � ∃s ∈ Con− {r}.r ∈ comp(s)} /** root types

Con s = Con− Con r
rset r = rset− Con r
if (Con r = rset r) then return rset /** check if all connected

else
begin
new r = {s|r ∈ rset r, s ∈ rschema, r ∈ comp(s)} /** extend the set

new input = new r ∪ rset r
find=Con s∪ find(new input, rschema) /** check new extended set

end

Theorem 1 Function find terminates and its complexity is polynomial, i.e. O(3n3), where
n = |rschema| (number of schema relationship types).

The proof is straightforward. The function find may return some types which are not

needed to keep the required components connected (see Fig. 3 X and Y). The following

function removes unnecessary types from the resulting set.

Definition 4 Function remove : I×R → R′, where I equals the parameter rset of func-
tion find, R is the result from find, and R′ is a resulting set of relationship types without
unnecessary types.

function remove(Input,Result)
Test = Result− Input
while |Test| > 0 do
t ∈ Test
IsCon = Result− {t} /** try to remove one

if (∀x, y ∈ IsCon.x �= y ⇒ (x ∈ comp(y) ∨ y ∈ comp(x))) then /** still

connected?

Result = Result− {t} /** OK, remove it

Test = Test− {t}
do while
return Result

Theorem 2 Function remove terminates and its complexity is O(n3), where n = |Test|.

Assume we executed the find and remove functions:

34��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

ResultR1 = find(rsetrelR1 , rel(S1)), rset
Con
R1 = remove(rsetrelR1 , ResultR1),

ResultR2 = find(rsetrelR2 , rel(S2)), rset
Con
R2 = remove(rsetrelR2 , ResultR2)

and received the results of the form: rsetConR1 = {R1, R11, . . . , R1c},
rsetConR2 = {R2, R21, . . . , R2d}. Notice that each of the previous sets have the match-

ing relationship type R1 or R2 as their element. We further need root types of these sets.

Definition 5 Function root types : R → R′, where R is a set of relationship types and
R′ is a set of root types, root types = {r|r ∈ R, � ∃s ∈ R − {r}.r ∈ comp(s)}.

Theorem 3 Function root types runs in O(n2), where n = |rset|.

Suppose we executed the function: rsetRootR1 = root types(rsetConR1), rsetRootR2 =

root types(rsetConR2) and obtained the sets: rsetRootR1 = {R1, R11, . . . , R1e}, rsetRootR2 =
{R21, . . . , R2f}.
We now have the root types in rsetRootRi

and the connected types in rsetConRi
, for i = 1, 2.

It is further valid that rsetRootRi
⊆ rsetConRi

. We separate the non-root types out of the

connected set of types: rsetRootRi
= rsetConRi

− rsetRootRi
. Let those respected sets be:

rsetRootR1 = {R1,p, . . . R1,r}, rsetRootR2 = {R2,s, . . . R2,t}. The root types will be used in

the join part of the view first, then come the non-root types. This is based on the assumption

that the root types possess also the keys of the non-root types.

Theorem 4 For the root types in a set of rsetRootRi
there exists a sequence Seq =

〈r1, . . . , rn〉, where n = |rsetRootRi
| such that:

∀rj ∈ rsetRootRi
, j = 1, . . . , n, i = 1, 2.((id(r1) ⊆ id(r2)) ∨ (id(r2) ⊆ id(r1))) ∧

((id(r2) ⊆ id(r3)) ∨ (id(r3) ⊆ id(r2))) ∧ . . . ∧ ((id(rj−1) ⊆ id(rj)) ∨ (id(rj) ⊆
id(rj−1))) ⇒ 〈r1, . . . , rn〉.

Proof: the existence of a sequence Seq is guaranteed by the connectedness of the input

schemas.

We need this sequence for the join part of the view where the relationship types being

joined should have some common set of joining attributes.

Definition 6 Function root seq : R → (R′, I) gets as an input parameter the set of root
types R and returns the set of pairs (R′, I) where R is a root type and I is the order in the
sequence.

function root seq(Root)
r ∈ Root
Key = id(r) /** current set of keys

i = 1
Result = Result ∪ {(r, i)} /** first in sequence

Root = Root− {r}
while (|Root| > 0) do
for s ∈ Root do /** find next

if ((Key ∩ id(s)) �= ∅) then /** check if common keys exist

begin
i = i + 1
Result = Result ∪ {(s, i)} /** next in the sequence found

Key = Key ∪ id(s) /** extend the key set

Root = Root− {s}
end

3� �
�
*
����
��� ������
����� �������

do for
do while
return Result

Theorem 5 Complexity of the function root seq is O(n2), where n = |Root|.
We now have all what we need to define the views:

– the mapping functions for the attributes:
mapR1,R2 = {(a, b)|a ∈ asete attr

R2 , b ∈ R2, (a, b) ∈ E},
mapR2,R1 = {(a, b)|a ∈ asete attr

R1 , b ∈ R1, (a, b) ∈ E},
the attribute sets for the projection part:

asetR1 = {b|(a, b) ∈ mapR1,R2},asetR2 = {b|(a, b) ∈ mapR2,R1},
– view definitions:

Suppose we executed the function root seq and got the following sets:

SeqRootR1 =root seq(rsetConR1),SeqRootR1 = {(R1,1, 1), . . . , (R1,g, g)},
SeqRootR2 =root seq(rsetConR2),SeqRootR2 = {(R2,1, 1), . . . , (R2,h, h)}.
The types with the lower index are used in the join definition first. Then we have

non-root types: rsetRootR1 = {R1,p, . . . R1,r}, rsetRootR2 = {R2,s, . . . R2,t}.
• VR1,R2 = πasetR1

(ρmapR1,R2
(R1,p ✶ (. . . ✶ (R1,r ✶ (R1,g ✶ (. . . ✶

(R1,2 ✶ R1,1)))))))
• VR2,R1 = πasetR2

(ρmapR2,R1
(R2,s ✶ (. . . ✶ (R2,t ✶ (R2,g ✶ (. . . ✶

(R2,2 ✶ R2,1)))))))
Rules solving other conflicts, e.g. in IsA hierarchies, can be easily derived from this rule.

3. Entity/relationship type with entity/relationship type containing clus-
ter R1 ∈ S1 and R2 ∈ S2 where:

- R1 = (comp(R1), A1, . . . , An), if comp(R1) = ∅ then R1 is an entity type,

- R2 = (comp(R2), R2,1 + . . . + R2,s, B1, . . . , Bm), R2 ∈ reli(S2), R2 contains

cluster

R2,1 + . . . + R2,s, where {R2,1 + . . . + R2,s} ∈ relj(S2), j < i,
- (R1, R2) ∈ E , i.e. R1 is semantically related to R2

These conflicts can arise, if one designer uses just one type or different degree of ab-

straction, and another prefers super/subtype relationships using clusters. The result of such

process may look like in Fig. 4. Here the information about employees has been differently

modelled. In schema S1 only one entity type has been chosen: Employee(SSN,Name,
Family name,Begin,End, Position, Project, id{SSN}). Schema S2 contains the

relationship typeEmployeewith the cluster:Employee(Lecturer+Project assistant,
F irst name, Surname,C Begin,C End, id{Lecturer+Project assistant}). The
key SSN from the cluster has been inherited.

Let us assume that the semantic correspondences are defined by the relation

E = {(SSN, SSN), (Position, Type), (Project, Project), (Name, F irst name),
(End,C End),
(Family name, Surname), (Begin,C Begin)}. The cluster is disjoint union of types.

We will therefore define the views for every pair Employee and its cluster component of

schema S2, i.e. (Employee, Lecturer) and (Employee, Project assistant). The view
definitions are then:

– VS1.Employee,S2.Employee−Lecturer = πFirst name,Surname,C Begin,C End,Type

(ρName→First name,Family name→Surname,Begin→C Begin,End→C End,Pos.→Type

(S1.Employee)),
– VS2.Employee−Lecturer,S1.Employee = πSSN,Name,Family name,Begin,End,Position

(ρFirst name→Name,Surname→Family name,C Begin→Begin,C End→End,Type→Pos.

(Lecturer ✶ S2.Employee)),

33��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

Employee

First_name

Surname

Lecturer
Project_
assistant

SSN

C_Begin

C_End

ProjectPosition

SSN

S
2

S
1

Employee

Project

Family_name

NameSSN

Begin

End

Position

Fig. 4. The entity type Employee in S1 is modelled as cluster in S2

– VS1.Employee,S2.Employee−Project assistant =
πFirst name,Surname,C Begin,C End,Project

(ρName→First name,Family name→Surname,Begin→C Begin,End→C End

(S1.Employee)),
– VS2.Employee−Project assistant,S1.Employee =

πSSN,Name,Family name,Begin,End,Project

(ρFirst name→Name,Surname→Family name,C Begin→Begin,C End→End

(Project assistant ✶ S2.Employee)).

The view definitions for a general case must also reflect the different choices:

– the mapping functions for the attributes, where t = 1, . . . , s:
mapR1,R2−R2,t = {(a, b)|a ∈ attr(R1), b ∈ attr(R2) ∪ attr(R2,t), (a, b) ∈ E},
mapR2−R2,t,R1 = map−1

12 ,

– view definitions,where t = 1, . . . , s:

• asetR1,R2−R2,t = {b|(a, b) ∈ mapR1,R2−R2,t},
VR1,R2−R2,t = πasetR1,R2−R2,t

(ρmapR1,R2−R2,t
(R1)),

• asetR2−R2,t,R1 = {b|(a, b) ∈ mapR2−R2,t,R1},
VR2−R2,t,R1 = πasetR2−R2,t,R1

(ρmapR2−R2,t,R1
(R2,t ✶ R2)).

2.2 Obtain views for updates

In this phase of the integration process another rules check the views against the most important

constraints, key constraints, attribute constraints and domain incompatibilities (other can be

easily added) to make the views updatable. We select the rule from Sec. 2.1 and consider the

updatability.

For two relationship types where semantically related attributes are
not contained within the matching relationship type. The query view def-

initions are characterized by two types of sets of relationship types used in the join parts

of the views: root types and non-root types. By the root types plays the ordering an impor-

tant role: SeqRootR1 = 〈(R1,1, 1), . . . , (R1,g, g)〉, SeqRootR2 = 〈(R2,1, 1), . . . , (R2,h, h)〉, x ∈
SeqRootRi

means that an element x is a part of the sequence SeqRootRi
. Let the non-root types be:

rsetRootR1 = {R1,p, . . . R1,r}, rsetRootR2 = {R2,s, . . . R2,t}. The view definitions are:

– VR1,R2 = πasetR1
(ρmapR1,R2

(R1,p ✶ (. . . ✶ (R1,r ✶ (R1,g ✶ (. . . ✶ (R1,2 ✶

R1,1))))))),

3� �
�
*
����
��� ������
����� �������

– VR2,R1 = πasetR2
(ρmapR2,R1

(R2,s ✶ (. . . ✶ (R2,t ✶ (R2,g ✶ (. . . ✶ (R2,2 ✶

R2,1))))))).

We follow the identifiability property and turn to the key attributes first. In order to update the

views, the domains of these keys must be compatible.

Definition 7 The function fcomp keysR1 ×R2 → A, fcomp keys(R1, R2) = {b|a ∈ id(R1),
b ∈ id(R2), (a, b) ∈ E , dom(a) = dom(b)} returns for the relationship type R1 the set of
semantically equal and domain compatible key attributes of relationship type R2.

There are two update strategies for these views:

1 if not all of the keys in R1 have their semantically related and domain compatible pairs

in R2, i.e. id(R1) ⊃ fcomp keys
R2,R1

(see Def. 7), then we say that the view VR2,R1 is not

updatable. The above condition is also valid for the proper parameters of view VR1,R2 . It

means, it may happen that only one of the views is updatable while the other is not. Both

views are updatable if the number of key attributes in both types R1 and R2 is equal and

that is not the general case.

2 if all keys of R1 have their semantically related and domain compatible pairs in R2, i.e.

id(R1) = fcomp keys
R2,R1

, then we say that the view VR2,R1 (respectively VR1,R2) is updat-

able. But only for the attributes that reside in R1 or their semantic counter parts in R2.

Attributes outside these types must be accessed through some relationship type. If we look

at the Fig. 3, the components of theR1 andR2 (e.g.R1,3,R1,4) are identifiable, as their key

sets are subsets of keys in R1 and R2. The problem is posed by other types, e.g. X and Y .

If we want to update the attributes residing in these types, we must have the corresponding

keys. We take the set of attributes, e.g. asetR1 , from the original projection part of the view

definition VR1,R2 (see above). This set contains the equivalent attribute pairs in schema S2.

We use the existing mapping mapR1,R2 and extract the attributes asetS1 in schema S1:

asetS1 = {a|(a, b) ∈ mapR1,R2}. So if we wanted to update the view VR1,R2 this is a

set of attributes in schema S1 which must be sufficient for the identification of all in the

join definition participating relationship types. We do the same for the set asetR2 and get

asetS2 = {a|(a, b) ∈ mapR2,R1}. It remains to check for which relationship types these

sets provide the identifiability. We consider root types first (keys of other types are included

in root types).

Definition 8 The function f identrel : R × A → R′ for the set of relationship types R and
attributes A returns the set of relationship types R′ whose all key attributes are included
in A, i.e. f identrel (R,A) = {r|r ∈ R,Aid ⊆ A, id(r) = Aid}.

We use the function f identrel : rsetRootR1 = {a|(a, b) ∈ SeqRootR1 }, rsetRootR2 = {a|(a, b) ∈
SeqRootR2 },
rsetRoot ident

R1 = f identrel (rsetRootR1 , asetS1), rset
Root ident
R2 = f identrel (rsetRootR2 , asetS2).

While rsetRoot ident
R1 ⊆ rsetRootR1 and rsetRoot ident

R2 ⊆ rsetRootR2 holds, we must remove

not only the components of unidentifiable root types but also those relationship types which

are no longer connected with parts where R1 respectively R2 resides.

Definition 9 The function fcomponents
rel : R × R′ → R′′ where R is a relationship type

from which we want to determine the components (recursively to all sub-components), R′

is a set of relationship types where the components of R may come from, and R′′ is a re-
sulting set containing the components of R.

3���� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

function fcomponents
rel (R,R′)

for all x ∈ R′ do
if x ∈ comp(R) then return {x} ∪ fcomponents

rel (x,R′ − {x})
do for

Definition 10 The function fnew con
rel : R × R1 × R2 → R3, where R is a relationship

type,R1 is a set of root types,R2 is a set of non-root types andR3 is a new set of connected
relationship types.

function fnew con
rel (R, root ident, non root)

for all r ∈ root ident do
P = P ∪ fcomponents

rel (r, non root)
if (fcomponents

rel (r, non root)∩{R}) �= ∅ then PR = PR ∪ fcomponents
rel (r, non root)

do for
PZ = P − PR

Result = ∅
while |PZ | > 0 do
q ∈ PZ

if (({q} ∪Result) ∩ PR) �= ∅ then Result = Result ∪ {q}
PZ = PZ − {q}
do while
return Result

We illustrate the usage of the above function. We have the sets of root types rsetRoot ident
R1

and rsetRoot ident
R2 which can be identified (we have all the keys) with the sets of attributes

asetS1 and asetS2 respectively. We have sets of non-root relationship types rsetRootR1 and

rsetRootR1 . If we use these sets as input parameters to the function fnew con
rel we get the

following:

rsetnew con
R1 = fnew con

rel (R1, rset
Root ident
R1 , rsetRootR1),

rsetnew con
R2 = fnew con

rel (R2, rset
Root ident
R2 , rsetRootR2).

The results are two new connected sets for R1 and R2 under consideration of identifia-

bility of root types using the semantically corresponding attributes. The ordering of root

types for the join can be achieved by using the function root seq for rsetRoot ident
R1 and

rsetRoot ident
R2 . Let those result sets be: SeqRoot ident

R1 = 〈R1,1, . . . , R1,k〉,
SeqRoot ident

R2 = 〈R2,1, . . . , R2,l〉. We need new non-root types: rsetRootR1 = rsetnew con
R1 −

rsetRoot ident
R1 , rsetRootR2 = rsetnew con

R2 − rsetRoot ident
R2 . Let those sets be: rsetRootR1 =

{R1,p, . . . , R1,q}, rsetRootR2 = {R2,r, . . . , R2,s}.

The new sets of attributes for the projection part and mappings:

asetnewR1,R2 = {b|a ∈ attr(r), r ∈ rsetnew con
R1 , (a, b) ∈ E},

asetnewR2,R1 = {b|a ∈ attr(r), r ∈ rsetnew con
R2 , (a, b) ∈ E},

mapnewR1,R2 = {(a, b)|a ∈ attr(r), r ∈ rsetnew con
R1 , (a, b) ∈ E},

mapnewR2,R1 = {(a, b)|a ∈ attr(r), r ∈ rsetnew con
R2 , (a, b) ∈ E},

The new view definitions are of the form:

– VR1,R2 = πasetnew
R1,R2

(ρmapnew
R1,R2

(R1,p ✶ (. . . ✶ (R1,q ✶ (R1,k ✶ (. . . ✶ (R1,2 ✶

R1,1)))))))
– VR2,R1 = πasetnew

R2,R1
(ρmapnew

R2,R1
(R2,r ✶ (. . . ✶ (R2,s ✶ (R2,l ✶ (. . . ✶ (R2,2 ✶

R2,1)))))))

3) �
�
*
����
��� ������
����� �������

2.3 Obtain mapping functions for instances

In the previous sections we have constructed rules which actually map parts of one schema onto

the parts of another schema using the view definitions. In the Fig. 1 it is the left part with the

functions f12 and f21. By, for example, domain incompatibilities the instances must be mapped

between the schemas, we need the functions like fC12 and fC21 from the right-part of Fig. 1. We

show some rules for illustration:

– For two entity/relationship types R1 ∈ S1 and R2 ∈ S2 where semantically

equal attributes are contained within the matching entity/relationship type we have simple

view definitions: VR1,R2 = πasetR1,R2
(ρmapR1,R2

(R1)), VR2,R1 =
πasetR2,R1

(ρmapR2,R1
(R2)).

The update condition was the domain-compatibility of the key attributes of both types. This

can be weakened, if there exist some function that maps the values from one domain into

the values of another domain. We extend this principle to all attributes from the projection

part of the view.

We find the sets of domain incompatible attributes for both views:

rsetdom incomp
R1,R2

= {(a, b)|(a, b) ∈ mapR1,R2 , dom(a) �= dom(b)},
rsetdom incomp

R2,R1
= {(a, b)|(a, b) ∈ mapR2,R1 , dom(a) �= dom(b)}.

For these domain incompatible pairs we find the set of functions:

fsetR1,R2 = {f |(a, b) ∈ rsetdom incomp
R1,R2

, ∃f.f(dom(a)) = dom(b)},
fsetR2,R1 = {f |(a, b) ∈ rsetdom incomp

R2,R1
, ∃f.f(dom(a)) = dom(b)}.

To guarantee the updatability of the views, we require that for all domain incompatible

pairs of attributes from rsetdom incomp
R1,R2

and rsetdom incomp
R2,R1

such functions exist:

∀(a, b) ∈ rsetdom incomp
R1,R2

∃f ∈ fsetR1,R2 .f(dom(a)) = dom(b),

∀(a, b) ∈ rsetdom incomp
R2,R1

∃f ∈ fsetR2,R1 .f(dom(a)) = dom(b).
If some of the above conditions are not valid we must remove those attributes from the

view definition for which there is no mapping function. The set of domain incompatible

attributes of R1 and R2: rset
di
R1 = {a|(a, b) ∈ rsetdom incomp

R1,R2
}, rsetdiR2 = {a|(a, b) ∈

rsetdom incomp
R2,R1

}.
Let the sets of incompatible attributes for which there exist mapping functions be:

rsetdiR1 = {Aj , . . . , Aj+k} and rsetdiR2 = {Bl, . . . , Bl+m}. Let the functions for rsetdiR1 ,

rsetdiR2 be: fsetdmap
R1,R2

= {f11, . . . , f1k} and fsetdmap
R2,R1

= {f21, . . . , f2m}.
The mapping functions for the instances can then be defined like this:

fCR1,R2 : RC
1 [Aj] × . . .×RC

1 [Aj+k] → f11(R
C
1 [Aj]) × . . .× f1k(R

C
1 [Aj+k]),

fCR2,R1 : RC
2 [Bl] × . . .×RC

2 [Bl+m] → f21(R
C
2 [Bl]) × . . .× f2m(RC

2 [Bl+m]).

– For entity types one of them with nested set attribute E1 ∈ S1 and

E2, E3, R ∈ S2 where the view definitions were (see Sec. 2.1):

• asetE1,E2 = {b|(a, b) ∈ mapE1,E2}, VE1,E2 = πasetE1,E2
(ρmapE1,E2

(E1)),
• asetE2,E1 = {b|(a, b) ∈ mapE2,E1}, VE2,E1 = πasetR2,R1

(ρE2,E1(E2 ✶ (R ✶

E3))).

The entity typeE1 has a nested set attributeA. The entity typeE3 in other schema holds the

semantically equal simple attribute C such that (A,C) ∈ E . We try to solve the structuring

problems with some suitable mapping between instances. We use the HERM algebra oper-

ations nest ν and unnest µ (for details refer to [Tha00]). The schema elements contained

in the view V are denoted by V . We can now introduce the mappings:

fCE1,E2 : µCπC(V C
E1,E2) → EC

3 [C],

fCE2,E1 : νA:{C}πCρA→C(V C
E2,E1) → EC

1 [A].

3+��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

2.4 Obtain cooperating views

We have defined the conditions for the view cooperation in Sec. 1. We apply this criteria on the

view definitions we have got by using the previous rules. We do not go into detail and suppose

the views satisfy all constraints. We focus on the mappings. From the mappings we can decide,

whether the current view definitions are cooperating or not. If not, we define the new views

which are subsets of the old ones and satisfy the conditions for cooperation.

– For two entity/relationship types R1 ∈ S1, R2 ∈ S2 we had simple view defini-

tions (see Sec. 2.3) and these mapping functions:

mapR1,R2 = {(a, b)|a ∈ attr(R1), b ∈ attr(R2), (a, b) ∈ E},
mapR2,R1 = map−1

R1,R2
,where map−1 = {(b, a)|(a, b) ∈ map}.

The set of attributes in the projection part of view VR1,R2 is asetR1,R2 and for VR2,R1 it

is asetR2,R1 .

Theorem 6 The views VR1,R2 and VR2,R1 cooperate if the following holds:
mapR2,R1(mapR1,R2(asetR2,R1)) = asetR2,R1∧
mapR1,R2(mapR2,R1(asetR1,R2)) = asetR1,R2 .

If we consider the current case, the mapping mapR2,R1 = map−1
R1,R2

which means, that

both mappings are in symmetry and Theorem 6 holds. The same is valid in the rule for two
entity/relationship types with nested tuple attributes.

– For two relationship types R1, R2 and semantically related attributes
are not contained within the matching relationship type have mappings

the form:

mapR1,R2 = {(a, b)|a ∈ asete attr
R2 , b ∈ R2, (a, b) ∈ E},

mapR2,R1 = {(a, b)|a ∈ asete attr
R1 , b ∈ R1, (a, b) ∈ E}.

The view cooperation must not necessarily take place because the mappings are not sym-

metric in general. The same conditions for the cooperation of views apply as in the Theo-

rem 6.

We determine the set of view components (attributes) upon the both views VR1,R2 and

VR2,R1 cooperate: asetcoopR1
= mapR2,R1(mapR1,R2(asetR2,R1)), asetcoopR2

=
mapR1,R2(mapR2,R1(asetR1,R2)).
We adjust the set of attributes in each view definition: asetR1 = asetcoopR2

and asetR2 =
asetcoopR1
Finally we modify the original mappings:

mapR1,R2 = {(a, b)|a ∈ asetR2 , b ∈ asetR1 , (a, b) ∈ E},
mapR2,R1 = {(a, b)|a ∈ asetR1 , b ∈ asetR2 , (a, b) ∈ E}.
The equation mapR1,R2 = (mapR2,R1)

−1
now holds.

2.5 Translation into SQL

The view definitions we gained through the integration process can be translated to the desired

SQL statements that create the views in the underlying database. The SQL standards SQL1999

and SQL2003 contain the support of complex data types with operations nest and unnest, user

defined casting functions between different data types, and other extensions that enable the

interoperability. At least these features have to be supported by the underlying DBMS (for

example, DB2 V.8, Oracle 10) to create the views with the supporting functionality, e.g. instance

mappings.

�� �
�
*
����
��� ������
����� �������

The translation of query views can be realized on the majority of today’s DBMS. Update

views, however, can not be directly translated. The SQL standards are continually extending the

area of updatable views, but it is still not sufficient.

More complex update views must be broken into a set of simple views (presented functions

in Sec. 2.2 are an option) and updated as a sequence in a transaction manner. An extensive

computational support might be necessary.

3 Conclusion

Cooperation can succeed where integration is unlikely. We have considered cooperation be-

tween databases represented with HERM schemas using views. They work as functions that

map the types on one another. The advantage is, if there doesn’t exist an update view we can

still query the relevant information. The user accesses the view in the same way as he would

access the entity/relationship type in his schema. Not all constraints and conflicts can be han-

dled on schema level. The importance of instance mapping functions is vital. The views are

generated by rules. The aim of these rules is their simplicity and low complexity. Yet the range

of conflicts they solve is broad. The updatability of the views in this paper has been reduced to

key constraints, but the others can be easily added [Ves03].

Despite the benefits mentioned above, our approach has to be extended. The rules were

designed as building blocks for other rules, e.g. integration of two relationship types containing

nested tuple attributes and nested set attributes. Inference rules can be constructed that allow

derivation of such new rules. Strategies for the generation of SQL statements and execution

plans especially for update views are necessary. Update strategies must be developed to ad-

dress more complex constraints. These strategies can be defined as compositions of mapping

functions.

References

[BCVB01] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Beneven-

tano. Semantic integration of heterogeneous information sources. Data and Knowl-
edge Engineering, 36(3):215–249, 2001.

[CCG
+
03] Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Paolo

Naggar, and Fabio Vernacotola. Ibis: Semantic data integration at work. Lecture
Notes in Computer Science, 2681:79–94, 2003.

[Con86] B. Convent. Unsolvable problems related to the view integration approach. Proc. of
International Conference on Database Theory, pages 141–156, September 1986.

[GBMS99] Cheng Hian Goh, Stephane Bressan, Stuart E. Madnick, and Michael D. Siegel.

Context interchange: New features and formalisms for the intelligent integration of

information. ACM Trans. on Information Systems, 17(3):270–293, 1999.
[Hal01] Alon Y. Halevy. Answering queries using views. Very Large Databases, 10(4):270–

294, 2001.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems, pages 233-

246, 2002.

[Lev00] A. Levy. Logic-based techniques in data integration. In J. Minker, editor, Logic
Based Artificial Intelligence. Kluwer Academic Publishers, 2000.

[PA03] P.McBrien and A.Poulovassilis. Data integration by bi-directional schema transfor-

�(��� �������	
��� �,--���!,.� ��������� ����/#��%"�� �0#",/0�
%�1� �""2�#��%"�

[SP94] Stefano Spaccapietra and Christine Parent. View integration: A step forward in solv-

ing structural conflicts. IEEE Transactions on Data and Knowledge Engineering,
6(2):258–274, 1994.

[Tha00] B. Thalheim. Entity-relationship modelling - Fundamentals of database technology.
Springer, Berlin, 2000.

[Tha01] B. Thalheim. Abstraction layers in database structuring: The star, snowflake and

hierarchical structuring. Technical Report 13-01, BTU, Cottbus, 2001.

[Ves03] Vojtech Vestenický. Schema integration as view cooperation. Technical Report

I-12-2003, BTU, Cottbus, 2003.

[VLF00] V. Vestenický, J. Lewerenz, and T. Feyer. Modelling the modification component

of an information service. Proc. of Challenges of the Symposium on Advances in
Databases and Information Systems - ADBIS-DASFAA’2000, (ISBN 80-85863-56-

1):195–204, September 2000.

Optimization of continuous queries by
regular inference

Dirk Kukulenz

Universität zu Lübeck,
Institut für Informationssysteme,

Ratzeburger Allee 160,
23538 Lübeck, Germany

kukulenz@ifis.uni-luebeck.de

Abstract. The information in the World Wide Web is subjected to
a fast rate of change. Continuous queries, i.e. queries that concern a
sequence of states of an information source in the future, are a means
to capture these dynamics. ’Timer-based’ continuous queries which are
executed periodically usually have the disadvantage to be inefficient, in-
formation may get lost and the results may be nondeterministic. These
problems are addressed in this article. We consider a specific pattern of
information change in time, namely a change that may be described by
a specific kind of a regular grammar. Examples for such time behavior
may be found in web pages containing stock prices or satellite data. We
present a procedure to estimate the parameters of the time behavior of
such Web data based on regular grammar inference. It is shown how
this estimation may be applied to acquire up to date information and
thus to optimize continuous queries with a minimal number of network
connections.
Keywords: dynamic web, continuous queries, regular inference

1 Introduction

The amount of information in the World Wide Web is increasing very fast.
On the other hand much information is lost every day because it is deleted or
replaced by new information. Problems resulting from this loss of information
are inconsistencies, hyperlinks may e.g. point to data sources that no longer
exist. Search engines may contain stale information and users usually don’t
have access to deleted information. A user applying a search engine has only
access to a (frequently obsolete) screen shot of the Web, but not to the dynamic,
time dependent characteristics of the Web.
One method to capture the dynamics of the Web is provided by continuous
queries (c.q.). C.q. are similar to conventional queries to a data source, except
that they are issued once and henceforth run ’continually’ over the data source.
Two main types of c.q. may be distinguished: change-based and timer-based
continuous queries. Change based c.q., e.g. database triggers, are evaluated if
a predefined event in the data source (e.g. the insertion of a new entry in a
specific table) occurs, which then causes a user-defined action. In contrast to

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ��'��� 	�

�(��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

this, timer-based c.q. are evaluated periodically, depending on the settings in
the query. The problem concerning the realization of change-based c.q. in the
Web, is how the query engine may be informed about the change of a remote
data source. In this case, data source and query engine are usually separated
and therefore change-based c.q. are difficult to be realized in a Web context.
Timer-based c.q. have several disadvantages:

• Nondeterministic results: The records selected by a query depend on the
time when the query is executed. Two queries executed e.g. every hour but
with a different phase may lead to different results, because of a change in
the data source between the query executions.

• Inefficiency: The execution of a query only makes sense, if the data source
changed since the previous execution. If the query is executed too often,
it may be inadequately expensive. Otherwise however, if the query is not
executed frequently enough, information may get lost.

• Age: The query result may be stale for the period of time between a change
in the data source and the execution of the query. If a query result is an
information source for other users, e.g. a search engine index, these users
may only acquire stale information.

This article addresses the problem of the optimization of timer-based continu-
ous queries. The main issue for the solution is the estimation of the points in
time where remote data-sources change. This information should however be
acquired at minimal costs with respect to load on Web servers and Web traffic
and the complexity of respective estimation algorithms. Different strategies are
conceivable to detect and to predict the times at which data objects in the
Web change. The simplest method in order to detect updates is to reload data
objects frequently and to compare new and previously loaded data. The more
frequent data sources are reloaded, the more exact the times of data changes
may be estimated, but the more extensive is the network load. The HTTP-
Protocol [4] provides different headers to support coherence mechanisms. The
’Last-Modified’-date is usually returned with a page returned from a ’Get’ re-
quest. An ’Expires-Date’-header provided by authors or Web servers contains
the time until the document will not be changed. Different strategies were de-
veloped to acquire optimal cache behavior based on http-headers [5],[13].
A problem with http-headers is that they are frequently not available. The
’Expires-Date’ expects an author to estimate a document’s lifetime, which is
very difficult at the time it is created. Other headers also may not be available
depending on the configuration of a respective Web server. A second problem
is that a ’last-modified’-header doesn’t contain information about the kind of
a document’s change. Many changes may not be relevant for a user since the
content of a page isn’t changed [11]. In this article we assume that none of
the above http-headers are available. Documents are loaded as a whole and
compared to each other.
The continuous queries addressed in this article only concern single objects in
the Web (e.g. Web pages). The (similar) problem of optimizing the update of
local copies of remote Web resources in the case of a large number of Web

�� �
�
0
����
��� ������
����� �������

pages, which is addressed e.g. in [3] or [2], has a different focus.
The update behavior of Web data in time may show different characteristics. A
frequently applied model for update behavior are renewal processes [14]. Life-
times of documents are supposed to be independent and identically distributed,
e.g. by an exponential distribution [1]. In [3] page-changes are modeled by Pois-
son processes. One problem with these statistical models is the assumption of
an independent and identical distribution of consecutive time intervals. Many
examples are however conceivable where data are updated according to a well-
defined pattern, e.g. every working day, not at night and not at weekends (figure
1). In this article we present an estimation method for similar update patterns.

time in seconds

0 20000 40000 60000 80000

time in seconds

100000 120000 140000 160000 180000

Fig. 1. The regular update behavior of the Web page
’http://www.ghcc.msfc.nasa.gov/GOES/goeswestpacus.html’. The pattern
reappears every 86400 seconds (∼ one day).

The set of the sizes of time intervals between updates has to be small compared
to the total number of intervals and defines an alphabet. The sequence of time
intervals defines a special case of a regular grammar we will denote as a cyclic
regular grammar. Regular grammar inference is a problem well-known from
machine learning [12], [6]. In [7] it is shown that it is not possible to exactly
identify a regular language, given only positive presentations. Many algorithms
were presented to learn regular grammars from positive and negative examples
[8], [9], [10].
The cyclic-regular case considered here, which is defined in detail in section
2, is simpler than the general regular inference problem. In section 3 we pro-
pose an algorithm for cyclic-regular inference. In section 4 we show how this
knowledge of regular behavior may be applied to find optimal reload times.
The two algorithms are illustrated by examples in section 5. In section 6 we
present experiments and in section 7 a summary is given and further aspects
are discussed.

�1��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

1 2

0

n

r

n

n

r1
rn−1r

r1 r2

Fig. 2. Nondeterministic automaton corresponding to the grammar
(r1r2 . . . rn)◦. ’0’ is the starting state; every state except ’0’ is an accepting
state.

1 If the query result is used as an information source for users, in the respective
period of time these users receive the old query result instead of the new one.

2 The model

Let up,i ∈ R
+ denote the points in time at which the ith update of page p

occurs, where 0 ≤ up,1 ≤ up,2 ≤ up,3 ≤ up,4 ≤ . . . up,n ≤ T ∈ R
+, n ∈ N. We

omit the page identification p in the following because we consider only one
Web page at a time, i.e. ui := up,i. The interval of time between the i−1st and
ith update will be denoted by ti := ui − ui−1, i ∈ N. Let a1, a2, . . . am ∈ R

+

denote the points in time where a continuous query engine requests the con-
sidered Web data object, where 0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ am ≤ T . For t ∈ R

+ let
Nu(t) denote the largest index of an element in the sequence u that is smaller
than t, i.e. Nu(t) := max{n|un ≤ t}. Let Au(t) ∈ R

+ denote the size of the
time interval since the last update, i.e. Au(t) := t− uNu(t). If t is the time of a
query execution (t = ai for i ≤ m), we denote Au(t) as the age of ai. The age
of a query execution denotes how much time since the last remote data update
has passed and thus how long an old query result was stored although a new
result should have been considered.1

Let Q := {tj |j ≤ n ∈ N} denote the set of time intervals between updates. We
assign a symbol si, i ∈ N≤n to every element of Q. We call the set of symbols
∆ := {si|i ≤ n} the alphabet of the sequence u.
Let S denote a starting symbol, let r1, r2, . . . rn denote terminals and the sym-
bolsR1, R2, . . . Rn non-terminals. In the following we refer to a regular grammar
Γ of the shape:

S −→ r1|r1R2|r2|r2R3 . . . |rn−1|rn−1Rn|rn|rnR1|
R1 −→ r1|r1R2

...
Rn−1 −→ rn−1|rn−1Rn

Rn −→ rn|rnR1

as a cyclic regular grammar. The corresponding automaton is a non-deterministic

�� �
�
0
����
��� ������
����� �������

finite automaton (figure 2). To abbreviate this definition we will use the nota-
tion: (r1r2...rn)◦ := Γ .
The first problem in the following is to describe the sequence of symbols s1, s2...
by a cyclic regular grammar of minimal size. The second problem is to predict
further states of the automaton and to find optimal query execution times.
Finding the optimum means that:

1. after each update of the remote data source, a query execution should be
performed;

2. the query execution should follow the remote update as soon as possible,
i.e. the sum of ages

∑m
i=1 A

u(ai) has to be minimal;
3. the number of query executions should be as small as possible.

One problem is that due to the discussion in the introduction the exact values
for the update times are not known and have to be estimated by file comparison.
Moreover, it is not possible to track data back in time.

3 Estimation of time-regular update behavior

3.1 Definitions

The presented algorithm for the estimation of cyclic-regular grammars consists
mainly of two parts. One part is responsible for the estimation of symbols.
The corresponding interval length of a symbol may not be determined exactly
due to the fix size of the sampling interval and due to the fact that the points
in time are real numbers. Therefore a maximal and a minimal length estima-
tion value have to be provided in the symbol definition. A symbol is a 3-tuple
s = (i,max,min) consisting of a unique identifier i and two length parameters
s.max and s.min. A second component of the algorithm is responsible for the
generation and the rejection of grammar hypotheses. A hypothesis H = (Γ, s)
is a 2-tuple consisting of a cyclic-regular grammar Γ and the current state s
of the associated finite automaton, according to the enumeration of states in
figure 2. In every step of the algorithm (i.e. after the detection of a symbol)
the default hypothesis is added to the set of hypotheses. Taking the sequence of
symbols registered by the system so far (ri1 , ri2 , . . . rip

), the default-hypothesis
is the cyclic regular grammar (ri1 , ri2 , . . . rip

)◦ with the corresponding automa-
ton being in the state ’1’ according the enumeration of states in figure 2. This
automaton accepts the sequence of input symbols. The last symbol is accepted
by a transition from the last state to the first state. A prediction of a hypothesis
H (H.predict) which is not in the start state (0) is the symbol, generated by a
transition to the (unique) state following the current state. A proceed operation
applied to a hypothesis H (H.proceed) which is not in the start state converts
the current state of H into the subsequent state.

����� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

Grammar-Estimation

1 set starttime; set maxtime; set sampsize
set last=0
set min = 0;
set symbols := ∅; set hset := ∅

2 load source
3 set previoustime=starttime

set time=starttime+sampsize
4 wait until (time); load source
5 while time < maxtime
6 if Nu(previoustime) �= Nu(time)
7 if last �= 0
8 max = time-last
9 sym = Symbol-Assignment(max, min,

sampsize,symbols)
10 Update-Hypotheses(sym, hset)
11 set min = 0
12 set last = previoustime

else
13 set min := min+sampsize
14 set previoustime:=time;

set time :=time+sampsize
15 wait until(time); load source
16 output hset

Fig. 3. Main algorithm component for the estimation of a cyclic regular gram-
mar.

3.2 Grammar estimation

Figure 3 shows the main algorithm component. This algorithm organizes the
detection of symbols by requests to the remote server and it develops gram-
mar hypotheses consistent with the sequence of registered symbols. In step 1
several values for variables are fixed. The starting time is set to be the current
time. The maxtime variable is set to be the time supposed to be needed for the
learning process, it has to be greater than the (estimated) sum of intervals of
one cycle of symbols.2 The sampsize value is the time between reloads (query
executions) (we consider aj − aj−1 to be identical for each j). The value has
to be significantly smaller than the expected time between different updates
and the difference of update interval lengths. In step 3 the values for the time
and the previous time value are fixed. The time value denotes the time of a
reload (step 4). It is increased in step 14 until the maximal time (step 5) is
reached. After every request it is checked in step 6, if the respective data object
has changed since the last request. If a previous change in the data source has

2 Many patterns will reappear every day or every week which is then a lower limit
for the maxtime value.

�2 �
�
0
����
��� ������
����� �������

Figure 4 shows the algorithm component Symbol-Assignment, responsible
for the learning of new symbols or the adjusting of previously registered sym-
bols, which is applied in step 9 of the main (grammar estimation) component.
It depends on the variables max, min, the sampling-interval length sampsize
and the current list of symbols, provided by the main component. The first
two variables (max and min) imply an estimation for the maximal and the
minimal interval length of a new observed interval between updates (figure 5).
The algorithm decides, if a new symbol has to be inserted, or if a previously
registered symbol has to be adjusted. In step 1 and 2 for each symbol in the set

been detected (stored by the variable ’last’), in step 8 the maximal length of
the current time interval between two remote update operations is estimated
to be the time between the current request and the time of the request before
the previous detection of a change in the data source (max value in figure 5).
Based on the max and the min value in step 9 the Symbol-Assignment compo-
nent is applied to determine if a new symbol has been found or if an existing
symbol has to be adjusted (section 3.3). This knowledge may be used to update
the grammar hypotheses in step 10 applying the Update-Hypotheses component
(section 3.4). After this step the temporary variables for the interval parame-
ters are re-initialized in step 11. The time of the last detection of a data update
is set to be the previous time in step 12 (figure 5). If by the current reload a
data change hasn’t been detected, the estimation of the minimal interval length
is updated in step 13. When the maxtime-value is reached, the variable hset
contains the grammar hypotheses consistent with the input sequence (step 16).

3.3 Symbol estimation component

Symbol-Assignment(max, min, sampsize, symbols)

1 for each symbol s in symbols:
2 if |max - s.max| ≤ sampsize

and |min - s.min| ≤sampsize
3 set s.max = maximum{ s.max , max}

set s.min = minimum{ s.min , min}
return s

4 define new symbol sn
set sn.max = max
set sn.min = min
add sn to symbols
return sn

Fig. 4. Algorithm component for insertion of new symbols or adjustment of
existing symbols.

�3��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

time

update

operations

request

operations

min

max

1 2 3 4

 1 2 3 4 5 6 7 8 9

Fig. 5. Determination of a maximal and a minimal estimate for an interval
length.

of symbols it is tested whether the new parameters are ’significantly different’
with respect to the sampling size. If this is not true for one symbol, i.e. if the
current symbol has already been detected, the parameters of this symbol are
adjusted in step 3. It is the aim to minimize the max value and to maximize
the min value in order to estimate an interval length or to localize an update as
precise as possible (figure 5). This adjustment has to be incremental since it is
not possible to track data back in time. If e.g. in figure 5 the 4th request would
be just before the 2nd update, the min value would be 2 (times the sampling
interval length), instead of a value of 3 in the figure. The actual values may
therefore depend on the phase of the reload-request time sequence (aj)j . If the
new interval-parameters are significantly different from all symbols defined so
far, a new symbol is inserted into the set symbols in step 4. The algorithm
returns a pointer to the new symbol or to the adjusted old symbol.

3.4 Grammar hypotheses organization

Figure 6 shows the algorithm component for the creation and the rejection
of grammar hypotheses. After a symbol has been registered by the Symbol-
Assignment- component the whole sequence of symbols observed so far is used
to create the default-hypothesis (as defined in section 3.1) in step 1 of the algo-
rithm. In steps 2 and 3 it is tested for each hypothesisH in the set of hypotheses
if the prediction of H (3.1) corresponds to the newly observed symbol. If not,

Update-Hypotheses(newsymbol, hset)

1 add the default-hypothesis to hset.
2 for each H ∈ hset do
3 if newsymbol not equal to H.predict
4 delete H from hset

else
5 apply H.proceed

Fig. 6. Update the set of hypotheses.

�� �
�
0
����
��� ������
����� �������

the hypothesis is deleted from the set of hypotheses in step 4. If the hypothesis
is consistent with the observation the state of the hypothesis is increased in step
5. This algorithm guarantees that every hypothesis in the set of hypotheses is
consistent with the sequence of symbols observed so far.

3.5 Limitations

In order to apply this algorithm, in particular the Symbol-Assignment-component,
the variable sampsize, i.e. size of the time interval between requests aj − aj−1,
has to be sufficiently small compared to the time between updates
(sampsize
 mini ti). Moreover, the sampling size has to be smaller than the
size difference between update intervals (|ti − tj | > 2 � sampsize).

4 An algorithm for optimal data update

In this section we presume that the alphabet and the grammar have already
been determined and we present an algorithm to find optimal reload times (fig-
ure 7). We assume that the current state of the automaton is not known. This
state is determined in the first part of the algorithm in figure 7.
The structure of this phase detection is similar to the Grammar-Estimation al-
gorithm. In step 1 the start time (the current time) and the size of the sampling
interval are fixed, the data are loaded in step 2. In steps 3 and 4 the time value
is increased and after the respective period of time, the data are reloaded. It
is tested in step 5 if a unique state of the automaton (denoted also as phase)
is available in the set PhaseHypotheses. In step 6 it is tested if a change in
the data source occured. If previously, a change has been detected (step 7), the
maximal size of the current time interval is adjusted (step 8). In step 9 the
parameters of the current time interval are compared to the list of symbols of
the alphabet and the respective symbol is determined. This symbol may cor-
respond to more than one state of the automaton. These phase hypotheses are
generated in step 10 and the respective hypotheses are subsequently deleted
if not consistent with the sequence of input symbols in step 10 until a single
state is left (example 2 in section 5). If by the current reload operation no
change in the remote data source was detected, the estimation of the minimal
current interval length (min) is adjusted in step 12. In step 13 the time value
is increased, the source is reloaded and the algorithm continues in step 5.
After the detection of a unique phase, the respective hypothesis (automaton
and state) is stored in the variable Hypothesis in step 14.
In the second part of the algorithm, optimal query execution times are deter-
mined by predicting the subsequent symbol.

�4��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

The respective loop in step 15 is executed until the execution time specified
in the continuous query is reached. The state of the automaton is increased
(cyclically) in step 18. Since we know the subsequent state (step 17), we also
have an estimation for the respective size of the time interval. This knowledge
is used to compute an optimal forward time in step 19. In step 20 the time
value is increased.

Reload-Control (Input: estimated grammar)

1 set starttime; set sampsize; set last=0
set max = ’large number’, set min = 0

// part1: determination of the phase
set PhaseHypotheses := ∅

2 load source
3 set previoustime=starttime;

set time=starttime+sampsize
4 wait until (time); load source
5 while |PhaseHypotheses| �= 1
6 if Nu(previoustime) �= Nu(time)
7 if last �= 0
8 max = time-last
9 Symbol sym = Symbol-Assignment(max,

min, sampsize, symbols)
10 create or adjust PhaseHypotheses

else
11 set last = previoustime

else
12 set min := min + sampsize
13 set previoustime:=time

set time = time + sampsize
wait until (time); load source

14 set Hypothesis as element in PhaseHypotheses

// part2: continuous query exection
set time = time - sampsize

15 while time < ’maximal c.q. time’
16 query execution
17 Symbol sym = Hypothesis.predict
18 Hypothesis.proceed
19 set forward = max {sym.min-sampsize,

sampsize }
20 set time = time + forward

wait until (time)

Fig. 7. Algorithm to determine optimal reload times based on the grammar
estimation in section 3.

�� �
�
0
����
��� ������
����� �������

5 Examples

Example 1:
In order to illustrate the Grammar-Estimation algorithm we assume that the
system registers remote updates as depicted in figure 8. Impulses of length 1
denote reload requests, impulses of length 2 denote registered changes in the
remote data source in step 6 of the Grammar-Estimation algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 15 20 25 30 35 40 45 50 55

time (in seconds)

Fig. 8. Update times as registered by the Grammar-Estimation-algorithm. Im-
pulses of length 1 denote reload operations. Impulses of length 2 denote ob-
served changes in the remote data source.

According to figure 8, the sequence of detected symbols is ababcababca in this
chronological order (if the respective intervals are denoted as a, b and c). After
detecting the symbol a, the default hypothesis H1 := (a)◦ is inserted into the
empty set hset (table 1) in step 10 of the Grammar-estimation algorithm. This
hypothesis is in the first state. In step 2 in table 1 the second detected symbol is
b which is different to the prediction of H1 (H1.prectict = a). Therefore H1 is
deleted from hset. Again, the default hypothesis H2 := (ab)◦ is added to hset.
In step 3 the symbol a is detected. In this case the prediction of H2 is true.
Therefore the state of H2 is increased. The default hypothesis H3 := (aba)◦ is
added to hset. This procedure continues until in step 5 the symbol c is detected.
This hypothesis is the first one to be consistent with the sequence ababcabab
and it also turns out to be the smallest one.

Example 2:
In a second example we want to illustrate the Reload-Control-algorithm. We
assume that the estimated grammar is
(abababc)◦ (different from the grammar above). For the phase detection we
assume that the automaton is in state 2 (according to figure 2). This state is
unknown to the algorithm and has to be determined by the first component
of the Reload-Control algorithm. The first detected symbol is b (table 2). The
set of phase hypotheses (PhaseHypotheses) is empty in step 5 of the Reload-

�(��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

step input symbol reject hypothesis insert hypothesis hypotheses/state

1 a H1:=(a)◦ H1/state=1

2 b H1 H2:=(ab)◦ H2/state=1

3 a H3:=(aba)◦ H2/state=2
H3/state=1

4 b H3 H4:=(abab)◦ H2/state=1
H4/state=1

5 c H2,H4 H5:=(ababc)◦ H5/state=1
...

Table 1. Computation steps of the Grammar-Estimation-algorithm for the sequence
ababc....

Input symbol delete phase phase hypotheses

b 3,5,7

a 7 4,6

b 5,7

a 7 5
Table 2. Detection of the phase in the Reload-Control-algorithm for the grammar
(abababc)◦, starting in state 2.

Control-algorithm. Therefore the set of phase hypotheses is created in step 10.
The possible states of the automaton are 3, 5 and 7 (table 2). After detecting the
symbol a in the next step the phase hypothesis 7 is deleted since the prediction
would be the symbol c. The states of the other hypotheses are increased. The
third detected symbol b is consistent with both remaining hypotheses and the
states are again increased. After detecting symbol a, the hypothesis 7 has to be
deleted and the hypothesis 5 is the single phase hypothesis left. At this time the
algorithm knows the state of the automaton and may therefore predict further
states.

6 Experiments

In order to evaluate the Grammar-Estimation-algorithm it has to be tested
if the estimated grammar corresponds to the original grammar of the remote
update times. Usually this grammar is not known since the source code of a
respective Web service is not known. In order to test the grammar estimation
it is easier to assume a certain grammar, to generate data corresponding to
this grammar, i.e. to modify a data source at the specific points in time, and
to apply the algorithm to this data source. Now the original grammar and the
estimation result may easily be compared.
We applied this procedure for two different grammars. For both grammars, the
constraints at the end of section 3 are fulfilled. The first considered grammar is
(abbc)◦. The symbol ’a’ denotes a time interval of a length of 2 seconds, ’b’ and
’c’ denote time intervals of 4 and 8 seconds. The sampling interval in the experi-

�� �
�
0
����
��� ������
����� �������

ment is 0.4 seconds. The starttime-value in the Grammar-Estimation algorithm
was set to be 7.5 and the maxtime-value was set to be 60 seconds. Figure 9
shows the output of the algorithm (step 16 in figure 3). Three symbols (s0, s1
and s2) are detected with an error of the interval length of approximately twice
the length of the sampling interval. Two grammar hypotheses are consistent
with the input data. The smallest hypothesis, which is the hypothesis of choice,
is the input grammar.3

symbol min max

0 7.600 8.399

1 1.6 2.399

2 3.599 4.399

list of consistent hypotheses

0 1 2 2

0 1 2 2 0 1 2 2

Fig. 9. Output of the Grammar-Estimation algorithm for the automaton (abbc)◦

(text).

symbol min max

0 1.6 2.400

1 3. 599 4.400

list of consistent hypotheses

0 1 1 1 1

0 1 1 1 1 0 1 1 1 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Fig. 10. Output of the Grammar-Estimation algorithm for the grammar (aaaab)◦.

Figure 10 shows the output of the algorithm for the grammar (aaaab)◦. A
similar grammar may occur if a data source is updated every working day but
not on Saturdays and Sundays.
Based on the previous grammar estimation we may now apply the reload-
control algorithm to find optimal update times. Figure 11 shows the result for
the grammar (abbc)◦. In the first phase of the algorithm (until time≈20 sec.) the
algorithm determines the state of the automaton. After this phase detection,
the algorithm may predict further symbols and thus compute optimal reload
times. A few reload requests are pursued before an update4 and one request is
performed directly after the update. The number of reloads is thus minimized
3 Due to the definition of a cyclic regular grammar (abbc)◦ = (cabb)◦.
4 This is necessary because of the error in the estimated interval lengths.

�1��� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

In figure 12 an experiment is shown to prove this assumption. In the exper-
iment the size of the sampling interval was increased from 0.05 to 0.41 seconds.
The age of the query results was determined for a specific amount of time (60
seconds). The figure shows the mean values and the variances of the results
for different legths of the sampling interval. In fact, the age increases when the
sampling size increases. However due to the fact that an update interval may be
a multiple of the sampling interval, the graph is not a straight line. The figure
also shows the number of reload requests for different sampling intervals. The
×-symbols denote values depending on the number of requests needed in the
grammar estimation process: (1− 1/(number of reloads)). In order to optimize
continuous queries it is necessary to minimize both, the number of queries and
the age. Figure 12 makes clear that both requirements are contradictory and
an optimal choice depends on a user’s priorities.

and the local data are updated directly after the change of a data source in
order to keep the age minimal.
The age of the query result as defined in section 2 is related to the size of the
sampling interval. We may expect that the smaller the sampling interval, the
smaller is the (average) age of query results.

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40 45 50

time (in seconds)

Fig. 11. Application of update prediction according to algorithm 7. The im-
pulses of length 2 denote remote updates. The ’+’ symbols denote reload re-
quests. Impulses of length 1 denote observed updates.

�� �
�
0
����
��� ������
����� �������

0

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

size of sampling interval (in seconds)

Fig. 12. The figure shows the connection between the size of the sampling in-
terval (x-axis) and the age of query results (bars) and the number of necessary
reloads needed in the grammar estimation process (×). The error-bars (mean
and variance) denote the age of data for different sampling intervals. The ×-
values are related to the number of requests in the grammar estimation process
(text).

7 Conclusion

Continuous queries are a means to capture the dynamics of data on the Web.
Change-based c.q. are in most cases not adequate in a Web context because
remote changes of data sources are usually not known on the client side. The
optimization of timer-based c.q. makes the estimation of the behavior in time
of remote data sources necessary. The update behavior may follow different
rules and diverse (statistical) models may be applied in this context. Other
research was concerned with models like Poisson processes or renewal processes.
One main disadvantage of these methods is that successive time intervals are
usually regarded to be independent. However many examples exist, where this
assumption is not true. In this article we present an algorithm to estimate the
parameters of an update behavior of data objects that may be described by
a specific kind of a regular grammar. This algorithm takes into account that
the points in time where data sources in the Web change may usually not be
registered exactly. The estimated grammar is used to develop an algorithm to
determine optimal points in time for query executions. ’Optimal’ means that
every update of the original source should be observed and followed by a query
execution as soon as possible. The number of query executions should be as
small as possible in order to minimize network traffic and server load. These
requirements are fulfilled by the algorithm as shown in the experiments. In
order to optimize c.q., up to now the algorithms may only be applied to Web
data like stock and satellite data. In order to apply this method to a larger
range of Web data, the method has to consider further statistical properties of
Web data. The remote update times may follow a certain distribution (the Web
page of a newspaper may e.g. be updated every day except Sundays between

����� ������	
�� �)�%$%*��%"�� "!� +"��%�,",�� -,�#%��� �&� #�.,/�#� %�!�#��+�

8h and 12h am). For this problem regular and statistical properties have to
be combined. In the learning phase, some update values may be missing. The
algorithm should nevertheless be able to find an optimal grammar in the case
of distorted input data.

References

1. B. E. Brewington and G. Cybenko. How dynamic is the Web? Computer Networks
(Amsterdam, Netherlands: 1999), 33(1–6):257–276, 2000.

2. J. Cho and A. Ntoulas. Effective change detection using sampling. Technical
report, UCLA Computer Science Department, 2002.

3. E. Coffman, Z.Liu, and R.R.Weber. Optimal robot scheduling for web search
engines. Journal of Scheduling, 1(1):15–29, June 1998.

4. W. W. W. Consortium. W3c httpd. http://www.w3.org/Protocols/.
5. A. Dingle and T.Partl. Web cache coherence. Computer Networks and ISDN

Systems, 28(7-11):907–920, May 1996.
6. P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular

inference? In R. C. Carrasco and J. Oncina, editors, Proceedings of the Second
International Colloquium on Grammatical Inference (ICGI-94): Grammatical In-
ference and Applications, volume 862, pages 25–37, Berlin, 1994. Springer.

7. E. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

8. J. Oncina and P.Garcia. Inferring regular languages in polynomial update time.
Pattern Recognition and Image Analysis, Perez, Sanfeliu, Vidal (eds.), World
Scientific, pages 49–61, 1992.

9. R. Parekh, C.Nichitiu, and V.Honavar. A polynomial time incremental algorithm
for learning dfa. In Grammatical Inference: 4th International Colloquium, ICGI-
98, Ames, Iowa, USA, volume 1433, page 37, 1998.

10. R. Parekh and V. Honavar. Learning dfa from simple examples. Machine Learn-
ing, 44(1/2):9–35, 2001.

11. S. C. Rhea, K.Liang, and E.Brewer. Value-based web caching. In WWW 2003,
pages 619–628, 2003.

12. S. Shapiro, editor. Encyclopedia of Artificial Intelligence, chapter Inductive in-
ference., pages 409–418. John Wiley and Sons Inc., 1987.

13. D. Wessels. Intelligent caching for world-wide web objects. In Proceedings of
INET-95, Honolulu, Hawaii, USA, 1995.

14. J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal
crawling strategies for web search engines. In Proceedings of the eleventh inter-
national conference on World Wide Web, pages 136–147. ACM Press, 2002.

Competition-based Query Execution in Web
Environment

Juliusz Jezierski, Tadeusz Morzy

Poznan University of Technology
Piotrowo 3a, 60-965 Poznan, Poland
{jjezierski, tmorzy}@cs.put.poznan.pl

Abstract In Web environment sites and network can exhibit widely
fluctuating characteristics. Moreover, assumptions concerning the avail-
ability of data statistics and the predictability of delays in access to sites
rarely hold in such environment. As a result, the traditional static cost-
based query optimization approach based on data statistics cannot be
directly applied to this environment. In this paper we propose a novel
competition-based query optimization and execution strategy which is
able to cope with the lack or limited availability of data statistics and
unpredictable delays in access to data sources. The basic idea is to ini-
tiate simultaneously several alternative query execution plans and to
measure dynamically their progress. Processing of the most promising
plan is continued, whereas processing of remaining plans is stopped.
We also present a performance study of our approach using workloads
consisting of queries from the TPC − H benchmark.

Keywords. Query execution, Web systems, unpredictable delays, un-
available statistics

1. Introduction

There is an increasing interest in query optimization and execution strategies
for the Web environment that can cope with two specific properties of this en-
vironment: the lack or limited availability of data statistics and unpredictable
delays in access to data sources. Typically, query processing parameters may
change significantly over time or may be simply not available to query engines
in the Web environment. Web sites that disseminate data in the Web environ-
ment in the form of files, dynamically generated documents, and data streams
usually do not allow access to internal data statistics. The postulate to make
local statistical information available to external applications is unrealistic due
to the local autonomy of Web sites. Moreover, the idea of dedicated service
construction to gather and maintain data statistics may be hard to accept and
implement. First of the, a process of gathering and maintaining data statistics
concerning external data sources is very expensive and may significantly af-
fect local processing at data sources. Secondly, such process is limited to data

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()�� 	�

�)��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

Source size [kB] Count[tuple]
A 800 5 ∗ 103

B 1500 104

C 2000 2 ∗ 104

Table 1. Volumes of sources (Example 1)

Join selectivity
A✶B 2 ∗ 10−3

A✶C 2 ∗ 10−4

B✶C 2 ∗ 10−5

Table 2. Selectivities of joins (Exam-
ple 1)

whose localization is given by a well-known URL address. Many Web data are
dynamically generated on the basis of detailed selection criteria specified by
users. To obtain data statistics concerning these kinds of data it would be nec-
essary to specify correct values of these criteria. This process requires human
interaction and makes the automatic maintenance of statistics impossible.

The second specific property of the Web environment is the unexpected
delay phenomenon in access to external data sources. Such delays may cause
significant increase of the system response time. They appear due to variable
load of network devices resulting from a varying activity of users, and also, due
to breakdowns.

For all of these reasons, it is not appropriate to use traditional static cost-
based query optimization and execution strategies in Web environment. In
fact, specificity of data processing in the Web environment strongly limits or
disqualifies most of classical static distributed query optimization techniques
proposed in the literature and requires new, dedicated solutions. A key require-
ment of a query optimization and execution strategy for the Web environment
is that it generates and processes query execution plans in an unpredictable
and constantly fluctuating environment.

1.1. Motivating examples

The following examples illustrate the impact of limited availability of statistics
and unpredictable delays on selection of the ”optimal” query execution plan.

Example 1 Given data sources: A, B, C described by statistics depicted in
Tables 1 and 2. Let us consider the following SQL query:

select * from A, B, C where A.b=B.a and B.c=C.b (Q1)

Let us assume that B✶C join selectivity coefficient as well as sizes of data
sources A, B, and C are available. Moreover, let us assume that the coefficient
of the join selectivity of A✶B is unknown. To evaluate the costs of potential
execution plans of the query Q1 and to find the optimal plan using the tra-
ditional cost based query optimizer, we may assume two hypothetical values
of A✶B join selectivity coefficient: sel1(A✶B)=0.01 and sel2(A✶B)=0.1. For
the former value of A✶B join selectivity coefficient, the optimal plan would
be P1(Q1)=(A✶B)✶C, and the cost of the plan is Cost(P1)= 1960. For the
later variant of the A✶B join selectivity coefficient, the cost of the plan P1 in-
creases to 14200. The optimal plan, assuming the second variant the A✶B join

'� �
�
2
����
��� ������
����� �������

Source size [kB] Count[tuple]
A 800 5 ∗ 103

B 1500 104

C 2000 2 ∗ 104

D 6300 5 ∗ 104

E 9900 105

Table 3. Volumes of sources (Example 2)

Join selectivity
A✶B 10−2

B✶C 1.2 ∗ 10−2

B✶D 9 ∗ 10−3

C✶E 10−2

Table 4. Selectivities of
joins (Example 2)

B CD A E

1

2

3

4

Figure 1. Plan P3

A CB D E

1

2

3

4

Figure 2. Plan P4

A EB C D

1 2

3

4

Figure 3. Plan P5

selectivity coefficient, would be P2(Q1)=(B✶C)✶A with the cost Cost(P2)=
10680.

Notice that, depending on the value of the A✶B join selectivity coefficient,
the cost of a query execution plan may vary significantly (e.g., P1 varies from
1960 to 14200). It is easy to notice that even the lack of knowledge about
single statistic prevents from finding an optimal query execution plan for a
query. In our approach we propose simultaneous execution of plans P1, P2, and
monitoring their progress. Dynamically gathered statistics enable us to cancel
a plan, which is more expensive. Finally, the query result will be produced by
the plan which is the best in real environment conditions.

Example 2 Given data sources: A, B, C described by statistics depicted in
Tables 3 and 4. Let us consider the following SQL query:

select * from A, B, C, D, E
where A.b=B.a and B.c=C.b and B.d=D.b and C.e=E.c (Q2)

Let us assume that all data statistics are available. Using the classical cost
based query optimizer we can evaluate the optimal query execution plan for
Q2, denoted P3: ((B✶D)✶A)✶(C✶E) (Figure 1). The cost of P3 is Cost(P3)=
5936. Let as further assume that the actual values of some statistics which
were collected during the execution of P3 differ from the values assumed by
the optimizer to calculate the optimal query execution plan for Q2, namely:
sel(B✶D)=0.011 and sel(C✶E)=0.06. In this case, the cost of P3 is 30064. For
these values of join selectivity coefficients another query execution plan P4 is
optimal for Q2 (Figure 2): P4:(((A✶B)✶D)✶C)✶E, Cost(P4)= 29736. Query
execution system might suspend the execution of and start the execution P4.

'3��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

If unexpected suspension of download from the source D occurs during P4,
then this plan will be blocked in the operator 2. Similarly, the plan P3 will
also be blocked in operator 1. In our approach we propose to exploit partial
results of the plans P3 and P4 to construct a new plan which can be continued
despite the unavailability of the source D. In this case, it is possible to use
the partial result of the operator 1 of the plan P4 and the partial result of
the operator 3 of the plan P3. The query optimizer may use partial operators
results since query engines usually use symmetric hash join operators to join
data from Web sources [10, 6, 8, 2, 12], which materialize join arguments in hash
tables. Therefore, we may use these hash tables to extract partial results of
the query execution plan. Using partial results of different query execution
plans it is possible to construct a new plan P5: ((A✶B)✶(C✶E))✶D with
Cost(P5)=40644 (Figure 3). This plan is more expensive than both P3 and
P4, but because of unexpected delay of download data from the source D it
provides better response time.

1.2. Related work

The query optimization problem in wide area network environment was inten-
sively studied in two different fields of research: query plans reoptimization
techniques [11, 7, 9] and adaptive join operators [13, 4, 10, 6, 8, 2, 12].

In [11] the authors propose the query reoptimization strategy that minimizes
the system response time in case of unexpected delays in access to data sources.
The idea is the following. The query engine starts with a query execution plan
generated by the cost based query optimizer. The plan does not take into
account dynamic changes of network parameters. Then, the plan is executed
by the engine equipped with the delays detector. After detecting a delay,
control is passed to the query optimizer, which dynamically reconstructs the
query execution plan. The plan can be changed either by operator reschedule
or operator synthesis. Operator rescheduling consists in changing operators’
order in the plan. This technique does not change a general shape of the
original plan. Operator synthesis consists in changing the original plan: some
operators are removed from the plan; some are added to the plan. This kind of
reoptimization is able to hide delays in access to data sources. The engine tries
to do its best while waiting for delayed sources. The selection of an alternative
plan is made in a way that minimizes the difference in the cost of original plan
and potential alternative plan. In [7] authors present query reoptimization
techniques that prevent execution of ineffective plans that could be generated
due to unreliable data statistics and exponentially cumulated statistical errors.
During query execution data statistics concerning intermediate query results
are collected. If the difference between optimizer’ estimated statistics and
runtime statistics is too high and the profit following from generation of a
new plan compensates the cost resulting from repeated optimization process,
then the reoptimization is made. In [9] authors consider the unexpected delays
problem caused by unknown times of local queries execution on local databases
in multidatabase environment. To mask delays in access to data sources, they

'� �
�
2
����
��� ������
����� �������

propose the strategy which, during each iteration of query execution, considers
only a set of data sources available in a given time point. From this set of
sources, two sources that can be joined with the least cost are selected. In
order to avoid extremely expensive joins a maximal accepted cost is defined.
If a cost of a chosen operator is greater than the maximal accepted cost, then
the algorithm waits for responses from other data sources. These sources can
probably provide potentially less expensive plans to finish query execution.

The aim of the research on new join operators is to provide the successful
join execution in case of delays in access to join arguments. In [13] the sym-
metric hash join operator is presented, which computes data from two sources.
The operator uses two hash tables, one for each data source. In [4] authors
propose a modification of the solution from [13] in order to give users statis-
tically reliable partial results of aggregation (e.g., sum, average). In [10, 6, 8]
the scalability of symmetric hash join operator problem in case of limited RAM
memory is considered. The authors present alternative algorithms of swapping
intermediate results to disk. In [2] a new multi-argument operator that inte-
grates selection and join of data from many data sources is proposed. This
approach uses dynamic route of data inside operator to modify order of opera-
tions accordingly to dynamic changes of parameters of data sources. In [12] a
multi-argument join operator is proposed to join several data streams based on
common join criterion. The authors concentrate on scalability of the proposed
operator in case of limited RAM memory.

An extensive survey on dynamic query optimization techniques was pub-
lished in [3].

The above mentioned results are very interesting and promising from the
point of view of the query optimization problem in the Web environment. Some
of these results are already partially implemented in commercial utilities. How-
ever, it is necessary to point out that proposed solutions do not solve the general
query optimization problem for the Web environment with limited availability
of statistics and unpredictable delays. Some proposals omit the problem of
limited availability of statistics [11, 7, 9, 12], other solutions tackle the problem
assuming strong restrictions concerning the query shape [2, 12], the choice of
data access methods [2, 12], or scalability [2].

1.3. Contribution

In the paper, we present the novel competition-based strategy of query execu-
tion in the wide area network environment that solves or reduces the limitations
of previous solutions. The basic idea behind the proposed strategy is the obser-
vation that due to limited availability of data statistics and unexpected delays
in access to external data sources it is impossible to generate a single ”optimal”
query execution plan. The proposed competition query execution strategy con-
sists in simultaneous execution of a set of alternative query execution plans for
a given query. The system monitors the execution of these plans, and the most
attractive plans are promoted, while the execution of the most expensive plans
is canceled. The final query result is delivered to the user by the plan that

'4��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

has won the competition according to the rules defined by the strategy imple-
mentation. Our competition strategy was inspired by the idea presented in [1].
The author presents theoretical and practical analysis of processing the selec-
tion operation in relational database systems in case of unknown or unreliable
statistics. To select specified data, the author proposes simultaneous process-
ing, according to well-defined criteria, of full scan and index scan operators.
The solution considered in the paper limits the competition to individual data
access operators. In our approach, competition concerns entire query execution
plans or subplans and the proposed algorithm adapts the competition process
to specificity of the wide area network environment.

The paper is organized as follows. In Section 2 we overview the proposed
competition-based strategy of query execution. In Section 3 we present the
greedy algorithm of query execution employing the competition-based strategy.
The experimental evaluation in Section 4 demonstrates the performance of the
strategy. The paper is concluded in Section 5.

2. Competition-based strategy of query execution

In traditional database systems the query specified by the user is transferred
to the query optimizer, which chooses the optimal query execution plan (QEP)
during query compilation. The query optimization process depends on: (1) the
cost function used to evaluate the cost of a query, (2) the search space of all
possible QEPs for a given query, and (3) the search strategy used to penetrate
the search space of QEPs. The final QEP generated by the query optimizer is
static and it does not change during its execution.

Due to specific properties of the wide area network environment, this tradi-
tional approach has to be revisited. Limited availability of data statistics makes
generation of one optimal QEP impossible. Moreover, unexpected delays in ac-
cess to data sources require periodical reorganization of QEP to minimize the
impact of delays on the system response time.

Our query execution strategy is based on the idea that the query optimiza-
tion process should be continuous and interactive, which means that the search
space of QEPs should be also analyzed during query execution. The query opti-
mizer improves the initial QEP by taking into account data statistics gathered
during query execution. Figure 4 illustrates the basic idea of the approach.

The proposed strategy consists in simultaneous processing of many, incom-
parable QEPs and monitoring their progress. The results of QEPs competition
are analyzed to stop and prune QEPs which are outperformed by other QEPs.
During plans’ competition, it is possible to start processing of new QEPs. Fi-
nally, we receive a single QEP as the result of the competition.

Formally, the competition-based strategy of query execution can be defined
as a triple:

CSQE = {PGR, CC FR}, where:
PGR - rules of plan generation,
CC - competition criteria,

'� �
�
2
����
��� ������
����� �������

query

Figure 4. Architecture of the query optimization process

FR - feedback rules.

PGR denotes a set of rules used to generate QEPs participating in the com-
petition. The important issue is the proper selection of initial QEPs. On the
one hand, in order to reduce the overhead related to simultaneous processing
of many QEPs, it is necessary to restrict the number of initiated plans. On the
other hand, if the number of initiated plans is too small, then the adaptation
to changing conditions of the runtime environment is automatically restricted.
CC denotes the competition criterion used to evaluate the attractiveness of
different QEPs. Proper definition of CC allows to limit the overhead related to
simultaneous processing of many plans by pruning ineffective QEPs. FR de-
notes a set of rules that control the competition process (e.g., start new plans).
FR allows to adapt query execution process accordingly to changes of runtime
environment parameters, e.g., delays in access to data sources.

The competition-based strategy has an ”open” character and it can be
implemented in many different ways. To illustrate the approach, in the next
section we present the greedy algorithm which implements the competition-
based strategy of query execution.

3. Algorithm description

The algorithm is based on the producer-consumer model of processing and
multithreading. We assume no availability of statistics. All necessary data
are dynamically established or estimated during query execution. Below, we
present the pseudocode of our algorithm (abbreviated as GA).
1: sourceSet=initiateAccessToAllSources();
2: while |sourceSet| > 1 do
3: message=waitForMessage();
4: if message.operation==’initiated’ then
5: Source=message.initiatedSource;
6: competitors=constructAllSubplans(query, source);
7: competGroup=findCompetGroup(source);
8: if competGroup!=null then
9: appendToCompetGroup(competGroup, competitors);

'5��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

10: else
11: competGroup=new CompetGroup(competitors);
12: runCompetGroup(competGroup);
13: end if
14: else if message.operation==’statistic’ then
15: competitor=message.competitor;
16: if isWinner(competitor, competitor.competGroup then
17: removeFromCompetGroupAllExcept(competitor);
18: else if isLost(competitor, competitor.competGroup) then
19: removeFromCompetGroup(competitor);
20: end if
21: else if message.operation==’finish’ then
22: sourceSet-= message.competitor.leftSource;
23: sourceSet-= message.competitor.rightSource;
24: removeCompetGroup(message.competGroup);
25: sourceSet+= message.result;
26: reconstructQuery(query);
27: sendMessage(new Message(’initiated’, message.result));
28: end if
29: end while

Input data for the algorithm are the following: the location of data sources,
access methods to data, and the specification of a query. In the first step, the
algorithm initiates access to data sources (line 1). Due to possible delays data
are available from different sources at different time points. The algorithm
continues as long as there are any data sources available (line 2).

The algorithm waits in a loop for messages (line 3). If a message was sent
by a thread which waits for a source opening (line 4), then all two-argument
subplans are constructed applying query join condition. The first argument is
the newly opened source (line 6), and the second argument is a source which was
opened earlier. Then, the algorithm generates a group of competitive subplans
(line 7). A subplan is added to the group if at least one of its arguments is
used by any other subplan already belonging to the group. The concept of a
group allows to generate bushy plans and to reduce risk of omitting attractive
subplans. The newly initiated subplan might belong to two groups. In this
case, the algorithm integrates these two groups and the subplan is added to this
integrated group. Due to the lack of space and in order to improve algorithm
readability, we have omitted the description of the group integration process in
the algorithm listing. If the algorithm does not find a proper group to which
generated subplans should be added, then it creates a new group (line 11) and
starts competition for subplans in this group (line 12). Steps from line 4 to
line 12 implement PGR of competition-based strategy of query execution.

Processing of each subplan generates a message containing information
about subplan’s progress and about data statistics. Each subplan is imple-
mented by the operator called Scalable Ripple Join [8]. This operator can
estimate the subplan selectivity coefficient using cross sampling method [5]
and can determinate statistical error of this selectivity. After collecting a sam-

'� �
�
2
����
��� ������
����� �������

ple, the operator generates a message containing the current value of estimated
selectivity. Haas [5] proved convergence of cross sampling, so each subsequent
message generated by the operator contains more precise estimation of the
selectivity coefficient.

After receiving a message with statistics, which contains statistics generated
by the operator (line 14), the algorithm tries to arbitrate the competition within
a given competition group. If the selectivity of a given operator (i.e. of a
given subplan) is higher than the selectivity of all remaining operators in this
group (line 16), then this operator becomes the winner of the competition and
remaining operators are canceled. If the selectivity of a given operator is lower
than the selectivity of its competitors (line 18), then the operator is canceled.
Steps from line 14 to line 20 implement CC of competition-based strategy of
query execution.

After receiving a message informing about the termination of a subplan (line
21) the algorithm removes the sources of the subplan from the set of initiated
sources (lines 22, 23). Moreover, the algorithm removes the corresponding
competition group and cancels all participants of this competition. In the next
steps, locally materialized result of the terminated operator is added to the set
of initiated sources (line 25). Then, the query is reconstructed to take into
consideration processing progress of the original query (line 26). Finally, the
algorithm sends a message that informs about newly created source (line 27).
Steps from line 21 to line 27 implement FR of competition strategy of query
execution.

Processing is continued until all sources are downloaded and all join oper-
ations specified in query are finished.

Computational complexity of the greedy algorithm As the complexity
yardstick we take the number of started subplans in the competition. If a given
query references n sources then the greedy algorithm starts n-1 times the com-
petition. In the worst case, in each k-th competition participate (n−k+1)(n−k)

2
subplans. Hence, computational complexity of the greedy algorithm is
∑n−1

k=1
(n−k+1)(n−k)

2 = O(n3).

4. Experimental evaluation

In order to show the performance and practical relevance of the proposed com-
petition query execution strategy, we have performed a series of experiments
to evaluate our approach and compare it to an alternative solution. As we
already mentioned before, none of the proposed solutions so far can cope with
the general problem of query optimization in the Web environment with lim-
ited availability of data statistics and unpredictable delays in access to data
sources. Therefore, to demonstrate the practical relevance and universality of
our strategy, we compare it with a simple ”brute-force” strategy (abbreviated
as BFS), which generates all possible query execution plans of a given query,
and to comparison we have taken into account the average value of their results.

'���� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

Source Tuples Kbytes Primary Key
Region 5 0.4 regionkey
Nation 25 2 nationkey
Supplier 10K 1,300 suppkey
Customer 150K 23,000 custkey

Order 1,500K 158,000 orderkey
Part 200K 23,000 partkey

Lineitem 6,000K 673,000 orderkey+linenumber
PartSupp 800K 111,000 suppkey+partkey

Table 5. TPC–H database schema and sizes

We considered two basic performance evaluation criteria: the system response
time and the volume of processed data. We choose the second criterion to uni-
form present load of main computer resources: CPU, disk and network card.
The main goal of the experiment is the analysis of the impact of three factors:
transfer rates, initial delays, and allocated main memory, on the performance
evaluation result.

Our experiments were performed using a query engine that implements our
competition-based strategy. The workload based on queries from the TPC-H
benchmark. The database is based on a TPC-H Scaling Factor (SF) of 1, and
is described in Table 5. We have chosen two of the TPC-H queries (Q8 and
Q9) for our experiments. These queries were chosen because they are fairly
complex (6 to 8-way joins), so they provide significant opportunities for our
approach. Because our query engine does not support aggregate functions,
GROUP BY and ORDER BY clauses, or subqueries, we have slightly modified
the original queries. It should be noted that our goal in using TPC-H queries
is to allow us to examine our approach using realistic join graphs, cardinalities,
and selectivities.

Two transfer rates were arbitrary chosen for experiments: 1Mbytes/s and
2Mbytes/s, and two memory allocations for join operations: 2MB (small allo-
cation - SA), 8MB (medium allocation - MA). The algorithm was implemented
in Java 1.4 and experiments were conducted on PC Intel 1000Mhz, 512MB
RAM under control of MS Windows 2000.

4.1. Experiment 1 – National Market Share

We start by studying the performance of our approach when delays are en-
countered during the execution of a modified version of TPC-H Query Q8, the
National Market Share Query (referred to as MQ8). The SQL statement for
MQ8 is shown in Figure 5.

MQ8 is an 8-way join query, with selections on the REGION, ORDER, and
PART sources. We delay PART, which is a very important source in this query.
The PART source, because of its selection predicate, plays the role of a reducer
for LINEITEM, the largest source in the schema. Results of the experiments
are presented in Figures 6 and 7.

Figure 6 presents the system response time for the query MQ8 versus ini-
tial delay of the PART for different values of the transfer rate and different

'' �
�
2
����
��� ������
����� �������

SELECT o.orderdate, l.extendedprice, n2.name

FROM part p, customer c, order o, lineitem l, supplier s,

nation n1, nation n2, region r

WHERE p.partkey = l.partkey

and l.suppkey = s.suppkey

and o.orderkey = l.orderkey

and c.custkey = o.custkey

and c.nationkey = n1.nationkey

and n1.regionkey = r.regionkey

and r.name = ’europe’

and s.nationkey = n2.nationkey

and o.orderdate between ’94-01-01’ and ’95-12-31’

and p.type = ’small plated steel’

Figure 5. MQ8: National Market Share

300

400

500

600

700

800

900

1000

1100

0 100 200 300 400 500 600 700

delay of source P [s]

e
la

p
s
e
d

ti
m

e
[s

]

GA-2MBs,SA GA-2MBs,MA GA-1MBs,SA GA-1MBs,MA

BFS-2MBs,SA BFS-2MBs,MA BFS-1MBs,SA BFS-1MBs,MA

Figure 6. Elapsed time of MQ8 execution
versus initial delay of PART

7,00E+08

8,00E+08

9,00E+08

1,00E+09

1,10E+09

1,20E+09

1,30E+09

1,40E+09

0 100 200 300 400 500 600 700

delay of source P [s]

p
ro

c
e
s
s
e
d

d
a
ta

[b
y
te

s
]

GA-2MBs,SA GA-2MBs,MA GA-1MBs,SA

GA-1MBs,MA BFS-SA BFS-MA

Figure 7. Processed data volume by MQ8
versus initial delay of PART

memory allocations. For 2Mbytes/s transfer rate, we observe that the algo-
rithm switches from QEP1 (Figure 8) to QEP2 (Figure 9) for 320 seconds
delay. This switch appears when the delay in access to PART is long enough
for the execution of the operator 6 of QEP2 to finish before the algorithm col-
lects statistically reliable samples from the execution of operator 5 of QEP1.
After the switch we may observe a short-lived decrease in the response time
of competition-based strategy. This phenomenon can be explained as follows:
simultaneous execution of the whole QEP1 and part of QEP2 takes a bit more
time than the execution of only QEP2. Next, we observe an increase in the re-
sponse time which is proportional to PART’s delay - operator 6 of QEP2 waits
for source PART. For 1Mbytes/s transfer rate, we do not observe any switch.
QEP1 always wins the competition. Small memory allocation increases re-
sponse time, because operator 5 of QEP1 and operator 5 of QEP2 perform
external partitioning to process the largest source LINEITEM. From the fig-
ure follows that the competition-based strategy outperforms the ”brute-force”
strategy.

Figure 7 presents the volume of processed data (i.e. overhead) versus the
initial delay of PART and different values of the transfer rate. The overhead
depends on the delay in access to most attractive sources. Increasing the elay

')��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

R ON1 C L

1

4

3

5

P

7

N2

2

S

6

Figure 8. QEP1 of MQ8

R ON1 C L

1

4

3

5

P

7

N2

2

6

S

Figure 9. QEP2 of MQ8

SELECT n.name, o.orderdate.year,

l.extendedprice*(1-l.discount) -

(ps.supplycost * l.quantity)

FROM part p, supplier s, lineitem l, partsupp ps,

order o, nation n

WHERE s.suppkey = l.suppkey

and ps.suppkey = l.suppkey

and ps.partkey = l.partkey

and p.partkey = l.partkey

and o.orderkey = l.orderkey

and s.nationkey = n.nationkey

and p.name like ’%magenta%’

Figure 10. MQ9: Product Type Profit Measure

in data transfer from the PART delays the moment of competition termination.
Thus, it extends the execution time of QEPs which belong to a competition
group and increases the consumption of resources (disk I/O, CPU) consump-
tion. The largest overhead is observed for 2Mbytes/s transfer rate, while the
smallest is observed for 1Mbytes/s transfer rate. This phenomenon can be
explained as follows: for a given delay of the source PART, in case of higher
transfer rate, a large part of potentially unattractive subplans (e.g. QEP2)
will be executed until the competition process stops their processing. In case
of a lower transfer rate, unattractive subplans consume less resources since the
algorithm cancels their processing ”earlier”. For 2Mbytes/s transfer rate, the
overhead decreases after the switch from QEP1 to QEP2 because simultaneous
execution of the whole QEP1 and a part of QEP2 takes more resources than the
execution of single QEP2. We can eliminate or strongly reduce performance
impact of this phenomenon by slight modification of the competition criterion.
The competition criterion can be defined as the data volume that are neces-
sary to terminate given competitor. Notice that competition-based strategy is
cheaper than the ”brute-force” strategy.

4.2. Experiment 2 – Product Type Profit Measure

We now turn to our second set of experiments, which uses a modified version of
TPC-H Query 9, the Product Type Profit Measure (referred to as MQ9). This
query is a 6-way join with one selection predicate. The query graph of MQ9
contains a cycle, unlike the ”chain” graph of MQ8 in the previous experiment.
The SQL for this query is shown in Figure 10.

)� �
�
2
����
��� ������
����� �������

300

500

700

900

1100

1300

1500

0 100 200 300 400 500 600 700

delay of source P [s]

el
ap

se
d

tim
e

[s
]

GA-2MBs,SA GA-2MBs,MA GA-1MBs,SA GA-1MBs,MA

BFS-2MBs,SA BFS-2MBs,MA BFS-1MBs,SA BFS-1MBs,MA

Figure 11. Elapsed time of MQ9 execution
versus initial delay of PART

1,00E+09
1,20E+09
1,40E+09
1,60E+09
1,80E+09
2,00E+09
2,20E+09
2,40E+09
2,60E+09

0 100 200 300 400 500 600 700

delay of source P [s]

pr
oc

es
se

d
da

ta
[b

yt
es

]

GA-2MBs,SA GA-2MBs,MA GA-1MBs,SA
GA-1MBs,MA BFS-SA BFS-MA

Figure 12. Processed data volume by MQ9
versus initial delay of PART

N PSS P L

1 2

3

4

O

5

Figure 13. QEP3 of
MQ9

N PS PS L

1

3

2

4

O

5

Figure 14. QEP4 of
MQ9

N LS PS P

1

3

2

4

O

5

Figure 15. QEP5 of
MQ9

N LS PS O

1

3

2

4

P

5

Figure 16. QEP6 of
MQ9

We delay PART, which plays the role of a reducer for LINEITEM. Results
of the experiments are show in Figures 11 and 12. Figure 11 presents the
system response time for the query MQ9 versus the initial delay of the source
PART for different values of the transfer rate and memory allocation. For
2Mbytes/s transfer rate, we may observe that the competition-based strategy
switches from QEP3 (Figure 13) to a more expensive plan QEP4 (Figure 14)
for 160 seconds delay. Next, we observe a switch from QEP4 to the most
expensive QEP5 (Figure 15) for 520 seconds delay. After the last switch we
observe the increase in the response time, which is proportional to the PART’s
delay because operator 4 of QEP5 waits for the source PART. For 1Mbytes/s,
the GA algorithm switches between QEP4 and QEP5 for 160 seconds delay
of source PART. Due to a smaller transfer rate we do not observe the second
switch. Small memory allocation increases the response time, because operator
4 of QEP3, operator 4 of QEP4, and operator 3 of QEP5 perform external
partitioning to process the largest source LINEITEM. From the figure follows
that the competition-based strategy outperforms ”brute-force” strategy.

Figure 12 presents the dependence of the volume of processed data of Q1
execution on the initial delay of the source PART. For 2Mbytes/s transfer rate,
after the switch from QEP4 to QEP5 the overhead increases proportionally
to the delay of PART. This increasing overhead is caused by the competition
between operator 4 of QEP5 and operator 4 of a very expensive QEP6.

For 2Mbytes/s transfer rates, before the algorithm switches from QEP4
to QEP5, the competition strategy consumes less CPU time than the ”brute-
force” strategy. After the switch, the competition-based strategy processes a
bit more data than the ”brute-force” strategy. For 1Mbytes/s transfer rate, the
competition-based strategy always processes less data than the ”brute force”

)3��� �������	�
� ��� �
����� �"$*��%�%"�+���� � ,-�#&� �.�/-�%"�� %�� 0��� ��1%#"�$���

strategy.
We also performed a series of experiments which tested different transfer

rates for other data sources. We observed the correlation between the transfer
rate of attractive data sources and the competition overhead. If attractive data
sources transfer data with higher rate than other sources, then the competition
overhead decreases. We observed also, that the competition strategy prefers
bushy plans, which usually have shorter response times than linear plans. Due
to the lack of space, we omit the detailed description of these experiments.

5. Summary and future work

In this paper we have proposed a novel strategy of query executing in the Web
environment. Our strategy copes with limited availability of data statistics
and unexpected delays in access to data sources. The strategy is based on the
competition of simultaneously processed query execution plans. Dynamically
collected statistics allow canceling the most expensive plans and promote the
most promising plans. In this paper we also present the greedy algorithm
which implements our strategy. We have evaluated our strategy by a set of
experiments for different transfer rates, different main memory allocations, and
different delay scenario, and we have proved its feasibility. As the experiments
show, our strategy is especially appropriate for small and medium transfer rates.
The strategy is efficient also for large transfer rate (2Mbytes/s) and relatively
small delays in access to attractive sources. The algorithm can generate bushy
QEPs, which, when compared to linear QEPs produced by traditional cost-
based optimization algorithms, usually provide better response times.

The proposed algorithm has two shortcomings. First, due to nature of the
algorithm, it generates suboptimal plans. Second, the algorithm materializes
partial results of subplans which may increase the cost of the optimization
process. These shortcomings can be eliminated, or at least their impact can
be restricted, if we assume that the algorithm initiates only complete query
execution plans. In order to restrict the number of simultaneously processed
plans, we can perform preliminary optimization, which could use partial statis-
tics collected during previous executions of similar queries. Our future work
includes enhancements of the presented algorithm to improve its performance.
Another topic, which we would like to address in the near future, is the issue
of generation of query execution plans called parachute QEPs constructed on
the basis of partial results produced by the initial set of plans.

References

[1] Gennady Antoshenkov. Dynamic query optimization in rdb/vms. In Proceedings
of the Ninth International Conference on Data Engineering, April 19-23, 1993,
Vienna, Austria, pages 538–547. IEEE Computer Society, 1993.

[2] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD International Conference

)� �
�
2
����
��� ������
����� �������

on Management of Data, May 16-18, 2000, Dallas, Texas, USA, volume 29,
pages 261–272. ACM, 2000.

[3] Anastasis Gounaris, Norman W. Paton, Alvaro A.A Fernandes, and Rizos Sakel-
lariou. Adaptive query processing: A survey. In Advances in Databases, 19th
British National Conference on Databases, BNCOD 19, Sheffield, UK, July
17-19, 2002, Proceedings, volume 2405 of Lecture Notes in Computer Science.
Springer, 2002.

[4] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 287–
298. ACM Press, 1999.

[5] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. Fixed-
precision estimation of join selectivity. In Proceedings of the Twelfth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 25-28, 1993, Washington, DC, pages 190–201. ACM Press, 1993.

[6] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and Marc
Friedman. Adaptive query processing for internet applications. Bulletin of the
Technical Committee on Data Engireening - Special Issue on Adaptive Query
Processing, 23(2):19–26, 2000.

[7] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of
sub-optimal query execution plans. In SIGMOD 1998, Proceedings ACM SIG-
MOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 106–117. ACM Press, 1998.

[8] Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable
hash ripple join algorithm. In Proceedings of the ACM SIGMOD international
conference on Management of data, pages 252–262. ACM Press, 2002.

[9] Fatma Ozcan, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman Do-
gac. Dynamic query optimization in multidatabases. Data Engineering Bulletin,
20(3):38–45, 1997.

[10] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled pipelined
join operator. Bulletin of the Technical Committee on Data Engireening - Special
Issue on Adaptive Query Processing, 23(2):27–33, 2000.

[11] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based query
scrambling for initial delays. In SIGMOD 1998, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 2-4, 1998, Seattle, Wash-
ington, USA, pages 130–141. ACM Press, 1998.

[12] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output
rate of multi-way join queries over streaming information sources. In VLDB
2003, Proceedings of 29th International Conference on Very Large Data Bases,
September 9-12, 2003, Berlin, Germany, pages 285–296. Morgan Kaufmann,
2003.

[13] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a paral-
lel main-memory environment. In Proceedings of the First International Confer-
ence on Parallel and Distributed Information Systems (PDIS 1991), Fontainebleu
Hilton Resort, Miami Beach, Florida, December 4-6, 1991, pages 68–77. IEEE
Computer Society, 1991.

Enhancing Hierarchical Queries in Relational Databases
with the Nested Set Representation

Lauri Pietarinen

Relational Consulting Oy

Vuorimiehenkatu 15 A 3,

00140 Helsinki

Finland

lauri.pietarinen@relational-consulting.com

Boris Novikov

University of St.-Petersburg

Universitetsky prosp. 28

198904 St.-Petersburg

Russia

borisnov@acm.org

Abstract. Queries on hierarchical structures have traditionally been the sore

point of relational databases because of missing functionality in SQL. Simple

tree traversal is not possible without procedural code or vendor specific

extensions. Using the nested set representation to represent trees vendor

neutral SQL can be used to express ancestor and descendant queries. In our

paper we propose enhancements to the original nested set representation to

speed up tree traversal queries and enable extra functionality, such as ‘by

level’ queries. We also introduce an algorithm for inserting new nodes into the

tree without having to renumber existing ones. We also show how ancestor

queries can be optimized using our enhancements. Finally we compare the

performance of this new representation with that of the original representation

and to the recursive union as implemented in DB2.

Keywords. Hierarchical query, SQL, Nested Set, tree, subtree

1. Introduction

Hierarchical structures are ubiquitous in information systems. We can distinguish

between hierarchies in schema, such as a schema involving the entities department,

group, team and person, and hierarchies in which the nodes are of the same kind. We

can further distinguish between hierarchies with potential cycles, such as bill-of-

material type hierarchies in which children can have more than one parent and strict

hierarchies in which each node has exactly one parent except for the root node

which has no parents [11].

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '()*�+� 	�

'� �
�
,
����
��� ������
����� �������

Examples of strict hierarchies include organizational hierarchies, product group

hierarchies, newsgroup and email threads, web site maps, file folder structures,

project task hierarchies, word hierarchies in thesauri [4] and XML-hierarchies

[7],[9].

The traditional and obvious way to represent hierarchies (and arbitrary graphs) in

relational databases is the adjacency list approach in which the child node refers to

its parent node with its primary key. In spite of this, SQL has not traditionally

provided good support for querying hierarchical (or other recursive) structures apart

from some vendor specific extensions such as Oracle’s Connect By.

The nested set representation [1], [2], [6] to represent hierarchies uses a partly

materialized non-recursive structure to improve query performance with a degrading

of update performance. While it is not as general as the adjacency list representation,

which can be used for arbitrary graphs, it is a good alternative for situations where

strict, possibly ordered trees are used. It is based on a numbering scheme in which

the nodes are tagged with their postorder and preorder (or visitation order) in the

hierarchy.

Because of the non-recursiveness of the nested set representation, queries such as

¶ get nodes of subtree in preorder

¶ get ancestors of node

¶ get closure of tree

are easy to express and efficient to execute using standard SQL available on any

SQL-based database.

In this paper we propose modifications to the nested set representation for

enhanced performance and functionality and compare this enhanced representation

with the recursive union queries available in DB2.

We also introduce new queries to overcome deficiencies in the original nested set

approach, especially in ancestor searches over large hierarchies.

The paper proceeds as follows. The next section provides an overview of related

work. In Section 3 we describe the original nested set model giving examples in

SQL. In section 4 we describe our enhancements for the model. In Section 5 we

present some typical use cases with an eye on indexes for optimizing performance.

In Section 6 we compare the functionality and performance of our approach with

that of DB2 Recursive Union and then conclude with some further suggestions.

2. Related Work

The best known technique to handle hierarchies is based on the edge

representation of graphs, where an edge of a graph is stored as a pair of starting and

ending nodes. Extensive research in this area has been done, and several efficient

query evaluation techniques were proposed in the context of deductive databases

[11].

From the practical perspective, the disadvantages of this structure are the

following:

¶ it is difficult to represent the order of nodes (say, child nodes), and

¶ processing of the hierarchies of indefinite depth requires recursive queries.

'-��� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

Although recursive queries are now available in SQL:1999, this feature is not yet

widely supported by DBMS vendors. Additionally, since the result of the recursive

union query does not contain order information it is not possible to further join the

result without losing the tree structure. Further, the recursive union construct does

not enable the output of ordered hierarchies, such as XML documents or newsgroup

threads.

The nested set representation is described in [1] in general terms without any

references to databases. The application to relational databases can be found in [2]

and [6].

Although the nested set representation has turned out to be useful in practice [4]

not much attention has been given to it in the scientific community and hence our

primary references are to books or vendor user group presentations.

Similar representations are discussed in [7], [8] and [12] but they are either more

complex or rely on vendor specific optimization techniques, such as index-anding,

or propose modifications to the database optimizer and engine.

In [13] a variation of the nested set representation is described that uses a binary

rational numbering.

3. The Nested Set Representation

We now describe the background ideas of the nested set representation and

continue with an SQL-based example. We then present some SQL-queries that

make use of that example.

3.1 Fundamentals

One way to represent hierarchies is to use nested sets [1]. Each node of the

hierarchy is represented as a set. Relationships between nodes are modeled using set

inclusions. Sets corresponding to leaf nodes should be disjoint. The elements of

these sets are not important for us. For simplicity we assume that sets corresponding

to leaf nodes contain single elements, which are all distinct.

The set containing all the other sets is the root of the tree and the sets containing

no subsets are the leaf nodes of the tree. The ancestors of a node are the nodes that

contain this node and the descendants of a node are the nodes that this node

contains. We require that for any two different sets, either one is the proper subset

of the other or their intersection is empty. Such a hierarchy is clearly unordered, i.e.

the children under a given parent are not in any specific order.

The example hierarchy in figure 1 could be represented with nested sets as in

figure 2.

'� �
�
,
����
��� ������
����� �������

Figure 1 Sample hierarchy

Figure 2 Sample hierarchy using nested sets

The applications we are considering, such as XML and newsgroups the

immediate descendants (child nodes) of any node are usually ordered.

The ordering of child nodes is achieved by changing the representation to using

sets of closed intervals in an (ordered) space of rational numbers. To obtain these

intervals, we assign a rational number to each bracket (see below) so that the

ordering of the numbers corresponds to the order of the brackets regardless of

whether it is a left or right bracket. Clearly the properties previously stated still

apply. Additionally we can see that the children of each node are ordered.

Using figure 1 as an example we obtain

A [B [C [D [] E []]]
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
F [G [] H [I [] J []]]]
 Q10 Q11Q12 Q13 Q14Q15 Q16Q17Q18Q19 Q20

WITH QI Í Q AND Q1 < Q2 < … < Q20.

In this example we can see that the children of h are in the order (i,j) .

In this paper we adopt the convention of calling the lower bound (the left bracket)

of a set the left bound and the upper bound (the right bracket) of the set the

right bound. For example, the left bound and right bound of node f are 10 and

19 respectively. It can easily be seen that the left and right bounds correspond to the

preorder and post order of the nodes in the hierarchy [3].

By using consecutive integer numbers instead of ordered rational numbers we

further obtain the property that the number of descendants of any given node can be

calculated with the formula (RIGHT BOUND – LEFT BOUND-1)/2. As a corollary the

leaf nodes have (RIGHT BOUND-LEFT BOUND-1)/2 = 0.
We adopt the convention of assigning the left bound of the root of the hierarchy

to 1. The right bound of the root will be equal to the total number of nodes in the

hierarchy times two.

Returning to our example we would have the following boundaries:

A [B [C [D [] E []]]
 1 2 3 4 5 6 7 8 9
F [G [] H [I [] J []]]]
 10 11 12 13 14 15 16 17 18 19 20

'���� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

We can see that the number of children of node F is (19-10-1)/2 = 4.

Figure 3 describes an alternative way to visualize the example hierarchy.

:

Figure 3 Sample hierarchy depicted as nested line segments

3.2 Representation in SQL

We now continue with an example in SQL. To store hierarchy information we

create the following table:

CREATE TABLE TREETAB
 (NODE_ID CHAR(1) PRIMARY KEY,
 LEFT_BOUND INT NOT NULL,
 RIGHT_BOUND INT NOT NULL)

The sample hierarchy of figure 1 is represented by the values in table 1.

Node

id
Left

bound
Right
Bound

a 1 20

b 2 9

c 3 8

d 4 5

e 6 7

f 10 19

g 11 12

h 13 18

I 14 15

j 16 17

Table 1

To ensure that in all cases the value of the table is consistent with our abstract

representation we need the following integrity constraints:

1. For all nodes, left bound < right bound

2. No overlapping intervals

3. Existence and uniqueness of root node

4. Left bound of root equal to 1

5. Consecutive numbering

'+ �
�
,
����
��� ������
����� �������

3.3 Sample queries

Using the properties of the representation as stated in section 3.1 we can now

formulate some sample queries.

The descendants of the node f can be listed in preorder with the following query:

SELECT NODE_ID,
 LEFT_BOUND
 FROM TREETAB
 WHERE LEFT_BOUND > 10 AND
 LEFT_BOUND < 19
 ORDER BY LEFT_BOUND;

The ancestors of ‘j’ can be listed from root downwards with the following query:

SELECT NODE_ID,
 LEFT_BOUND
 FROM TREETAB
 WHERE LEFT_BOUND < 16 AND
 RIGHT_BOUND > 17
 ORDER BY LEFT_BOUND;

4. Enhancing the Nested Set Representation

The original representation clearly suffers from problems when new nodes are

added to a large hierarchy. Because of the dense numbering adding a new node to

the hierarchy results in updating on the average half of all rows. Our first

enhancement is to introduce sparse numbering.

The second enhancement is related to the level of the node in the hierarchy.

We proceed by proposing the following improvements to the nested set

representation:

1. using sparse numbering to speed up inserts

2. adding the level of each node to the representation

4.1 Speeding up Inserts

One problem with the nested set representation as described in [2] is that when

inserting a new node into the tree on average half the nodes need to be updated.

This is because the node numbering is dense. For example inserting a new child

under ‘b’ would result in updating the numbering of the nodes ‘f’, ‘g’, ‘h’, ‘i’, ‘j’

and ‘a’.

With small trees this is not a great problem, but as the amount of nodes increases

the amount of updates increases linearly.

The obvious solution to this is to introduce a sparse numbering scheme so that

most of the times the insertion of a new node can be done without updating other

nodes. The property that is lost is the simple calculation to obtain the number of

nodes in a subtree (including the “is leaf” -property).

Naturally there comes a time when a new node does not fit into its designated

place and the nodes of the tree have to be renumbered. This renumbering can be

''��� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

done during idle time or on demand. Further, the renumbering can be done locally

for “quick relief” or globally for a more lasting effect.

We introduce the simple algorithms ADD_NODE and RENUMBER_ALL. ADD_NODE

is optimized for newsgroup type trees where new nodes are always inserted as next

(or first) child of parent. RENUMBER_ALL renumbers the bounds so as to use the

available space as sparsely as possible.

ALGORITHM RENUMBER_ALL

 CONST MAX_INTEGER = 2**31-1

 NODE_COUNT :=
 SELECT COUNT(*) FROM TREE;

 RUNNING_BOUND := 0;
 BOUND_INTERVAL :=
 MAX_INTEGER/(NODE_COUNT*2)-1;

 FOR EACH
 SELECT NODE_ID,
 LEFT_BOUND AS BOUND_VALUE,
 'LEFT' AS BOUND_TYPE
 FROM TREE
 UNION ALL
 SELECT NODE_ID,
 RIGHT_BOUND AS BOUND_VALUE,
 'RIGHT' AS BOUND_TYPE
 FROM TREE
 ORDER BY BOUND_VALUE

 IF BOUND_TYPE = 'LEFT' BEGIN
 RUNNING_BOUND = RUNNING_BOUND + 1
 UPDATE TREE
 SET LEFT_BOUND = :RUNNING_BOUND
 WHERE NODE_ID = :NODE_ID;
 END
 ELSE BEGIN
 RUNNING_BOUND :=
 RUNNING_BOUND + BOUND_INTERVAL
 UPDATE TREE
 SET RIGHT_BOUND = :RUNNING_BOUND
 WHERE NODE_ID = :NODE_ID;
 END
 END

ALGORITHM ADD_NODE (PARENT_NODE_ID,
 NODE_ID)

 -- GET PARENT NODE INFO

 SELECT LEFT_BOUND,
 RIGHT_BOUND,
 NODE_LEVEL
 FROM TREE
 WHERE NODE_ID =
 :PARENT_NODE_ID;

 -- GET RIGHT-MOST CHILD INFO
 SELECT MAX(RIGHT_BOUND) AS
 MAX_RIGHT_BOUND
 FROM TREE
 WHERE RIGHT_BOUND <
 :RIGHT_BOUND AND
 RIGHT_BOUND >
 :LEFT_BOUND
 IF NOT_FOUND THEN
 MAX_RIGHT_BOUND := LEFT_BOUND

 -- IS THERE ROOM? IF NOT,
 -- RENUMBER AND REFETCH
 -- BOUND-INFORMATION

 IF RIGHT_BOUND-LEFT_BOUND <=2
 BEGIN
 EXECUTE RENUMBER_ALL
 SELECT MAX(RIGHT_BOUND) AS
 MAX_RIGHT_BOUND
 FROM TREE
 WHERE RIGHT_BOUND <
 :RIGHT_BOUND AND
 RIGHT_BOUND >
 :LEFT_BOUND
 IF NOT_FOUND THEN
 MAX_RIGHT_BOUND :=
 LEFT_BOUND
 END

 NEW_LEFT_BOUND :=
 MAX_RIGHT_BOUND + 1;
 NEW_RIGHT_BOUND :=
 MAX_RIGHT_BOUND +
 FLOOR((1/3) *
 (RIGHT_BOUND-NEW_LEFT_BOUND));
 NEW_LEVEL := NODE_LEVEL + 1;

 INSERT INTO TREE
 (NODE_ID, LEFT_BOUND,
 RIGHT_BOUND, NODE_LEVEL)
 VALUES
 (:NODE_ID, :NEW_LEFT_BOUND,
 :NEW_RIGHT_BOUND, :NEW_LEVEL)

*�� �
�
,
����
��� ������
����� �������

4.2 Adding the Hierarchy Level to Each Node

The level of each node can be derived from the number of ancestors it has. We

adopt the convention that the level of the node is the number of proper ancestors + 1,

i.e. the root has level 1, the children of the root have level 2 etc…

The level of each node can be calculated by joining the tree table with itself and

counting the ancestors:

SELECT TREE1.NODE_ID,
 COUNT(*) AS NODE_LEVEL
 FROM TREETAB TREE1,
 TREETAB TREE2
 WHERE TREE1.LEFT_BOUND >= TREE2.LEFT_BOUND AND
 TREE1.RIGHT_BOUND <= TREE2.RIGHT_BOUND
 GROUP BY TREE1.NODE_ID

This is clearly an inefficient and cumbersome way to produce the level

information.

We propose that a new attribute, ‘level’, be added to each node. The level can be

easily calculated when the new node is inserted (see algorithm ADD_NODE). We have

found no performance penalties for doing this, apart from a small increase in storage

space.

Further on we shall see in section 6 that this new attribute is of use when we have

to query efficiently for ancestors of a given node in a large tree.

The create statement for the new table is

CREATE TABLE TREETABL
 (NODE_ID CHAR(1) PRIMARY KEY,
 LEFT_BOUND INT NOT NULL,
 RIGHT_BOUND INT NOT NULL,
 NODE_LEVEL INT NOT NULL)

5. Typical Use Cases and their Access Paths

We will now present some typical queries and describe the access paths using

normal B-tree indexes available in any SQL-database. Our aim is to display the best

access paths (i.e. the access paths that result in the fastest execution) that are

obtainable in each case.

Table 2 containes the B-tree indexes that are used in the queries.

Name Unique Columns
Xtree_node X node_id

Xtree_left X left_bound

Xtree_leftd X left_bound desc, right_bound

Xtree_right X right_bound

Xtree_lev_left X node_level, left_bound

Xtree_lev_leftd X node_level, left_bound desc

Table 2 Indexes for typical use cases

���� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

5.1 Subtree in Pre- and Post-Order

We obtain a subtree in preorder with the following query:

SELECT TREE2.NODE_ID,
 TREE2.NODE_LEVEL,
 TREE2.LEFT_BOUND
 FROM TREETABL TREE1,
 TREETABL TREE2
 WHERE TREE1.NODE_ID = <SUBTREE ROOT> AND
 TREE2.LEFT_BOUND >= TREE1.LEFT_BOUND AND
 TREE2.LEFT_BOUND <= TREE1.RIGHT_BOUND
 ORDER BY LEFT_BOUND

Using the indexes XTREE_NODE and XTREE_LEFT we are clearly obtaining an

optimal access path: first a lookup on the root id of the sub tree and then a range

scan on index xtree_left with no need for sorting. The access path can be portrayed

as in figure 3.

Figure 3 Get subtree of node F

The subtree in postorder is obtainable simply by replacing LEFT_BOUND with

RIGHT_BOUND in the order by clause. The optimizer can then choose the index

XTREE_RIGHT instead.

5.2 Get Children of a Given Node

SELECT TREE2.NODE_ID,
 TREE2.NODE_LEVEL,
 TREE2.LEFT_BOUND
 FROM TREETABL TREE1,
 TREETABL TREE2
 WHERE TREE1.NODE_ID = <PARENT_ID> AND
 TREE2.LEFT_BOUND > TREE1.LEFT_BOUND AND
 TREE2.LEFT_BOUND < TREE1.RIGHT_BOUND AND
 TREE1.NODE_LEVEL+1 = TREE2.NODE_LEVEL
 ORDER BY LEFT_BOUND

The query is essentially the same as in 5.1 except for the restriction on

NODE_LEVEL. Using indexes XTREE_NODE and XTREE_LEV_LEFT an optimal access

path is obtained.

*�� �
�
,
����
��� ������
����� �������

5.3 Ancestors of a Given Node

While the actual query is easy to state, obtaining an acceptable access path is not

so trivial. We will start with the obvious solution:

SELECT TREE2.NODE_ID,
 TREE2.NODE_LEVEL,
 TREE2.LEFT_BOUND
 FROM TREETABL TREE1,
 TREETABL TREE2
 WHERE TREE1.NODE_ID = <NODE_ID> AND
 TREE2.LEFT_BOUND < TREE1.LEFT_BOUND AND
 TREE2.RIGHT_BOUND > TREE1.RIGHT_BOUND
 ORDER BY LEFT_BOUND

Using the indexes XTREE_NODE and XTREE_LEFTD we can see that the amount of

nodes that have to be examined depends on the position of the node. On the average,

half of all nodes of the whole tree must be traversed. Hence the time to obtain the

ancestors of a given node rises linearly with the number of nodes in the tree. As can

be seen in figure 4, finding the ancestors of ‘j’ requires searching through nearly the

whole tree.

Figure 4

We will return to this performance problem and present an elegant solution in

section 6.

5.4 The Transitive Closure

Due to limitation of the data structure to represent only strict hierarchical trees

(rather than arbitrary graphs), the transitive closure is effectively equivalent to the

selection of a subtree. However, we would like to produce the output in ordinary

relational form, compatible with the output from recursive queries.

The closure of the tree can be obtained by the following query:

*�(��� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

SELECT TREE1.NODE_ID,
 TREE1.NODE_LEVEL,
 TREE1.LEFT_BOUND,
 TREE2.NODE_LEVEL,
 TREE2.NODE_LEVEL – TREE1.NODE_LEVEL AS DISTANCE,
 TREE2.LEFT_BOUND
 FROM TREETABL TREE1,
 TREETABL TREE2
 WHERE TREE1.LEFT_BOUND <= TREE2.LEFT_BOUND AND
 TREE1.RIGHT_BOUND > TREE2.LEFT_BOUND

Remarks for this query are essentially the same as for the ‘Get subtree’- query

stated previously.

6. The ‘get ancestors’ problem revisited

The solution to the performance problem for ‘get ancestors’ query relies on an

observation that a node has at most one ancestor on each level. For each of the levels

it is possible to obtain that ancestor efficiently. It is the node with the largest

left_bound that is smaller than the left_bound of the given node and the level less

than the level of the given node.

E.g. node ‘j’ has one ancestor on each of the levels 1, 2 and 3 (a, f and g

respectively). Hence f has the largest left_bound, that is smaller than the left_bound

of ‘j’, than any other node with the same level (which is 2).

This is a query that is efficiently expressible in SQL using standard B-trees and a

modern cost based optimizer:

SELECT TREE2.NODE_ID,
 TREE2.NODE_LEVEL,
 TREE2.LEFT_BOUND
 FROM TREETABL TREE1,
 TREETABL TREE2
 WHERE TREE1.NODE_ID = <NODE_ID> AND
 TREE2.LEFT_BOUND =
 (SELECT MAX(LEFT_BOUND)
 FROM TREETABL TREE3
 WHERE TREE3.NODE_LEVEL = 2 AND
 TREE3.LEFT_BOUND <= TREE1.LEFT_BOUND)

Using the indexes XTREE_NODE and XTREE_LEV_LEFTD (see table 2) the access

path will be nested matching index scans on both indexes.

To expand the query to obtain all ancestors we introduce an auxiliary table [5] for

enumerating the levels:

CREATE TABLE TABLENUM
 (N INTEGER PRIMARY KEY);

and insert the values 1..x into it (x being the maximum level we presume the tree

to have).

We now modify the query slightly to obtain each of the ancestors separately for

each level that is less than the level of the given node:

*�� �
�
,
����
��� ������
����� �������

SELECT TREE2.NODE_ID,
 TREE2.NODE_LEVEL
 FROM TREETABL TREE1,
 TREETABL TREE2,
 TABLENUM NUM
 WHERE TREE1.NODE_ID = <NODE_ID> AND
 NUM.N < TREE1.NODE_LEVEL AND
 TREE2.LEFT_BOUND =
 (SELECT MAX(LEFT_BOUND)
 FROM TREETABL TREE3
 WHERE TREE3.NODE_LEVEL = NUM.N AND
 TREE3.LEFT_BOUND <= TREE1.LEFT_BOUND)

In spite of the complex nature of the query the optimizers of both DB2 V8.1 and

SQLServer 2000 will handle the query as expected. We will examine the

performance of this query with the previous version in section 7.2.

7. Comparison and Evaluation

The comparison is made using the enhanced nested set representation, proposed in

this work, with the “traditional” adjacency list representation and the original nested

set representation with dense numbering. For performance evaluation purposes

synthetic data sets were generated. The iterative generator adds the child nodes to

random parents. In the sparse numbering scheme we used a space of 1 to 2
31

-1. The

generated trees and their properties can be seen in table 1.

Tree Number of nodes Height of tree
1 1000 17

2 2000 18

3 5000 20

4 10000 22

5 20000 22

6 50000 25

7 100000 26

8 200000 27

Table 3 Generated hierarchies

Performance tests were done using IBM DB2 UDB V8.1 on a computer with a

500MHz Pentium P3 processor and Microsoft Windows 2000 Professional operating

system. All measurements are in milliseconds.

7.1 Building the Tree: the Performance of Inserts

The first performance tests concern the insert speed of nodes using either dense or

sparse numbering. As can be expected, the sparse numbering scheme outperforms

the dense alternative on inserts. Actually, the insertion time grows linearly with the

tree size for dense numbering and remains almost constant for sparse numbering.

*�-��� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

Our tests include 10 runs for both sparse and dense numbering. In chart 1 we can

see how renumbering requests are done periodically for the sparse tree, on average

three times per test run. Other than for the renumbering, the insert speed for the

nodes remains constant using the sparse numbering, at about 3,5 ms per node added.

Naturally in some situations, such as loading XML-documents into a database

[7], the bounds of the nodes can be precalculated in which case dense numbering

will perform well. It is mainly in random inserts that the sparse numbering will

bring benefits.

1

10

100

1000

10000

0 50000 100000 150000

Average/dense Average/sparse

Chart 1. Inserting nodes(ms/size of tree)

1

10

100

1000

10000

0 50000 100000 150000

Average/dense Average/sparse

Chart 2. Inserting nodes, averaged (ms/size of

tree)

Chart 2 is averaged over the whole space and we can see the total average time

slowly rising.

The problem, of course, with sparse numbering is that occasionally a

renumbering is required and if it is done for the whole tree it creates a random delay

that may not be acceptable. In chart 3 we see how the node count affects the time

needed to renumber the hierarchy.

A practical solution to this problem would be to introduce local renumbering

algorithms resulting in less frequent global reorganizations. However, this

enhancement has not been done in this research.

Another solution is to do the renumbering periodically during idle time. A larger

numbering space (e.g. 64 bit integer) will also lessen the need for renumbering.

*�� �
�
,
����
��� ������
����� �������

1

10

100

1000

10000

100000

1000000

10000000

1000 20000 75000 200000

Chart 3: Time needed to renumber

hierarchy (ms/size of tree)

1

10

100

1000

1000
2000

5000
10000

20000
50000

100000
200000

Without level
With level
Recursive Union

Chart 4. Get ancestors (ms/size of tree)

7.2 Query Performance

To test the usefulness of adding the ‘node_level’ attribute we compared the

performance of three queries:

1. Get ancestors

2. Get siblings

3. Get subtree nodes

Getting ancestors using the original query (see section 5.3) has to scan on average

half of all nodes, hence performance degrades as the size of the hierarchy increases

regardless of the depth of the tree. As can be seen in chart 4 the get ancestor-query

using the SQL-statement introduced in section 6 clearly outperforms the non-

optimized query and its performance does not depend on the size of the tree. What

is surprising is that this enhanced query performs about the same or better than the

recursive union version.

In the siblings query comparison in chart 5 we can observe that the query using

node levels performs about an order of magnitude faster than the query without node

levels materialized.

0,1

1

10

100

1000

1000 2000 5000 10000 20000 50000 100000 200000

Without levels
With levels

Chart 5. Get siblings (ms/size of tree)

0,1

1

10

1000 2000 5000 10000 20000 50000 100000 200000

Nested set (without level)
Recursive

 U

Chart 6. Get subtree in preorder (ms/size of

tree)

*����� �����	�
�
�� ���
�������� ��.��/%�0� 1%�#�#/.%/�2� 34�#%��� %�� ��2��%"��2� ���������� ��

The subtree query (see section 5.1) is faster than the recursive union version even

without the proposed enhancements, as can be seen in chart 6.

8. Conclusions

We have shown that the nested set representation is useful in situations where

strict ordered hierarchies have to be processed in preorder and/or postorder. By

adopting the modifications proposed in this paper we can keep the advantages of the

nested set representation and still remain competitive with the new SQL language

constructs, such as recursive union.

The clearest advantage is in the fact that all queries against the nested set

representation can be expressed in standard SQL available on any SQL-based

database. The results of the expressions can be further joined to fact tables or to

other hierarchies. Because of the numbering scheme we are not relying on any

implicit output order for preordering or postordering such as with Oracle’s Connect

By extension, but can reorder and regroup the nodes at will without losing structure

information.

The limits of the original representation as described in [2] and [6] can be

overcome by adding sparse numbering and level information to the nodes. We can

now get equivalent or better performance compared to the traditional adjacency list

representation in queries such as ‘get ancestors’ and operations such as ‘insert node’.

It also adds to the types of queries that are possible to express.

Further work is needed to optimize the renumbering algorithm so that the

renumbering time and cost can be contained within given limits.

References
[1] Donald E. Knuth. The Art of Computer Programming. Volume 1 pages 312, 317.

[2] Joe Celko. SQL for Smarties (2ed) Morgan Kaufmann Publishers, 1999.

[3]Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of
computer algorithms. AddisonWesley: Reading, MA, 1974.

[4] Ballew, Duncan, Blasingame. Relational Data Structures for Implementing Thesauri

http://www.mip.berkeley.edu/mip/related/thesaurus.html

[5] Hugh Darwen. A constant friend. In Relational Database Writings 1985-1989 by C. J.

Date, pages 493-500. Prentice Hall, 1990.

[6] Leif Morten Kofoed and Håkon Erdal. Trees and SQL. Presentation at DB2 G.U.I.D.E .

April 1995, Lahti Finland.

[7] Torsten Grust. Accelerating XPATH location steps. In. Proc. ACM SIGMOD 2002. P.

109-130.

[8] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On

Supporting Containment Queries in Relational Database anagement Systems. In Proc. of

*�+ �
�
,
����
��� ������
����� �������

the ACM SIGMOD Int'l Conference on Management of Data, pages 425-436, Santa

Barbara, California, May 2001. ACM Press.

[9] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular Path

Expressions. In Proc. of the 27th Int'l Conference on Very Large Data Bases (VLDB),

pages 361-370, Rome, Italy, September 2001.

[10] Srini Venigalla. Expanding Recursive Opportunities with SQL UDFs in DB2 v7.2.

http://www7b.boulder.ibm.com/dmdd/library/techarticle/0203venigalla/0203venigalla.htm

l

[11] Ullman, Jeffrey. Principles of database and knowledge base systems. Vol. 2.. Academic

Press, 1989.

[12] Torsten Grust, Maurice van Keulen, Jens Teubner. Staircase Join: Teach A Relational

DBMS to watch it’s (Axis) steps. In Proc. of the 29th Int'l Conference on Very Large Data

Bases (VLDB), Berlin, Germany, September 2003.

[13] Vadim Tropashko: Trees in SQL: Nested Sets and Materialized path.

http://www.dbazine.com/tropashko4.shtml

Automatic Generation of Minimal and Safe
Transactions in Conceptual Database Design

M. A. Pastor, M. Celma-Giménez, L. Mota-Herranz

Departamento de Sistemas Informáticos y Computación;

Universidad Politécnica de Valencia

Camino de Vera s/n E-46022 Valencia – España

 {mapastor, mcelma, lmota}@dsic.upv.es

Abstract. The conceptual design of information systems using an Entity-

Relationship Model is generally thought to be limited to static features.

Nevertheless, many dynamic aspects can be derived from an Entity-

Relationship diagram since the specification of different constraints entails a

determined minimal structure on the transactions that can be applied to such a

system. In our work, we propose an algorithm that obtains, directly from the

Entity-Relationship diagram, the set of minimal and safe transactions that can

be performed on the system. An update (insert or delete) transaction on an

object (entity type or relationship type) is said to be “safe” if it includes,

besides the update operation, all other operations on any system object which

are required to satisfy the integrity constraints. A safe transaction is said to be

“minimal” if there is not a subset of the transaction which is safe too. The

minimal and safe transactions are the basic units that can be used to specify

the more complex transactions which model user requirements.

Keywords. Safe transaction generation, conceptual database design, integrity

constraints.

1. Introduction

The Entity-Relationship (ER) Model [1] is a vastly extended conceptual model,

and it seems to continue being frequently used, since it is present in the standard

UML class diagram. This fact justifies the current interest for extending ER with

behavioural capabilities, that is, procedures which care for integrity constraint

enforcement after transaction execution [8].

The research on constraint enforcement in database systems has been developed

in many works; in most of them databases have been considered at logical level.

Few work has been done on this subject at conceptual level. Some attempts have

been made to combine the Entity-Relationship Model with other representation

formalisms in order to model dynamic features[10]; in the present work we propose

a solution obtained applying an algorithm directly to the ER diagram.

When the ER Model is used to create a database conceptual schema, a diagram is

obtained [3,7]. This diagram, assumed its correction, represents the entity types that

constitute the information system and also includes the relationship types between

them. Thus, the diagram models the structural features of the system. Each diagram

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()'�'� 	�

''� �
�
*
����
��� ������
����� �������

occurrence represents a snapshot of the system state. The dynamic features that can

be modeled are reduced to a set of integrity constraints that limit the valid

occurrences of the diagram and then, the allowed transitions of states. The most

general constraints are depicted in the ER Model by means of different symbols. The

minimal update transactions on any diagram object (entity type or relationship type)

which are safe with respect to these constraints can be determined from the ER

diagram independently of the system state [6]. An update transaction is a

transaction for inserting or deleting an object (the modification of an object is

considered in this paper as a deletion followed by an insertion). An update

transaction is safe if it includes, besides the update operation on the intended object,

all other operations on any diagram objects which are required for satisfying the

integrity constraints. A safe update transaction is minimal if there is not a subset of

the transaction which is safe too.

The set of constraints that are considered in this paper are the following:

− The implicit constraint of the ER Model which determines that a relationship

can exist only if the corresponding participant entities also exist.

− The implicit constraint of the ER Model which determines that an entity of an

specialized entity type is also an entity of the general entity type.

− The constraints which force the inclusion of an entity of a general entity type

into the specialized entity types (total specialization). If this constraint is not

required, then specialization is partial.

− The constraint which forbids a general entity type to be included in more than

one of the specialized entity types (disjoint specialization). If this constraint is

not required, the specialization is said to be overlapped.

− The cardinality constraints which define the minimum and maximum

participation of entities in relationships.

The implications that all these constraints have in the transaction design can be

analysed directly on the diagram. The set of operations that must constitute an

update transaction can be derived from that analysis.

In this paper, an algorithm that obtains the set of minimal and safe transactions

with respect to these constraints is proposed. For each entity type and each

relationship type of the diagram, and insert transaction schema and a delete

transaction schema are generated.

2. An Extended Entity-Relationship Model

The Extended Entity-Relationship (EER) Model used in this paper includes

symbols for entity types, relationship types with cardinality constraints and weak

entity types [5]. It also includes identification, uniqueness and no null value

constraints for the attributes. Finally, it includes generalization/specialization for the

entity types and the participation of the relationship types in other relationship types

by means of their definition as aggregated entity types. All these symbols can be

seen in Figure 1.

Some features of the model are:

(a) The representation of relationship types includes the cardinality constraints.

The expression R(E(1,n), F(0,1)) in Figure 1 means that each occurrence of E

'''��� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

relates to x occurrences of F (1 ≤ x ≤ n) through R and that each occurrence of

F is related to y occurrences of F (0 ≤ y ≤ 1). If the minimum cardinality of an

entity type E in a relationship type R is equal to 1, then E is said to have the
Existence Constraint (EC) in R; this fact is represented by a double arc

connecting E and R.

(b) Weak entity types depend on their participation in one or more relationship

types for their identification. They take the identifier attributes from the

entities they are related to through those special relationship types.

(c) The specialized entity types are connected to the general entity type through a

circle by a line. The specialization properties (To)tal or (P)artial, and

(D)isjoint or (O)verlapped are specified in the circle.

f) Attributes

a) Entity type (E)

E

b) Relationship type (R). Card: R(E(1,n),F(0,1))

E F R
1 n

c) Weak entity type (E)

E 1

d) Aggregated entity type (R)

E F R

S

G

e) General (E) and specialized (F, G, H) entity types

X={T|P}, Y={D|O}

E

H G F

X,Y

a

Unique

a

Identifier

a

Ordinary

a

Not Null

R

Figure 1. EER symbols.

The EER Model includes also a transactional language with operators to update

objects. An insertion operator (ins) and a deletion operator (del) are defined for

entity types and for relationship types. Also two operators for inserting and deleting

specializations are defined. The syntax of these operators is the following:

− INS_ENT name_ent_type {WHERE condition | ATTRIBUTES
attribute_ assignment_list}

− INS_REL name_rel_type WHERE condition [ATTRIBUTES
attribute_ assignment_list]

− INS_SPE name_spe_type WHERE condition [ATTRIBUTES
attribute_ assignment_list]

− DEL_ENT name_ent_type [WHERE condition]
− DEL_REL name_rel_type [WHERE condition]

− DEL_SPE name_spe_type [WHERE condition]
The condition in the previous operations is a formula expressed in a logical

language which is similar to the relational tuple calculus; the main difference

between these two languages is that in the former there are three kinds of variables:

domain, entity and relationship, and a relationship variable can be used to refer one

''� �
�
*
����
��� ������
����� �������

of its component entities using a dot notation. This formula includes only one free

variable which is defined on the type of object which is affected by the operation.

The different assignments for this variable that make the formula true correspond to

the occurrences that must be inserted or deleted by the operation. In the case of

entity insertion, the condition is optional and it would only make sense for insertions

from other entity types. In the relationship insertion, this condition is mandatory in

order to instance the components of the relationship occurrences that are to be

inserted, because it is assumed that, to insert a relationship, the entities that are

going to associate in it already exist. In the same way, the insertion of an occurrence

in a specialyzed entity type requires that the corresponding occurrence exists in the

general entity type. In the deletion operations, the condition is optional; when it is

not included, the deletion is applied to all the occurrences of the object type.

3. Approach to the solution

In order to design the algorithm to generate the set of safe update transactions,

two kinds of EER diagrams can be considered: those without cycles and the ones

with cycles. A cycle exists if an object type depends, direct or indirectly, on itself for

insertion. Initially, only the former are analysed. In section 4.2, the latter are taken

into account.

Each integrity constraint, in front of each possible update operation, has different

properties with respect to integrity violation and integrity enforcement [9]. These

properties determine the way integrity is enforced, if it is possible, when there has

been an integrity violation.

Below, the procedure outline is informally described; it will be developed later:

1. Insertion.

(a) Entity type: if the entity type has the existence constraint in some relationship

type, it is also necessary to insert an occurrence in this relationship type.

(b) Relationship type: if the relationship type participates as aggregated entity

with existence constraint in another relationship type, it is necessary to insert

an occurrence in this latter relationship type, also.

The operations that are added to the transaction can require propagation as well.

This propagation must be included in the transaction

2. Deletion.

Deletion operations are defined in two ways: restrictive and in-cascade. In the

restrictive way, as the system controls which constraints are fulfilled, if the

deletion is going to leave the database in an inconsistent state, the deletion will

not be allowed. In the in-cascade way, apart from the initial deletion operation,

those object occurrences which cause an inconsistency are also deleted. The

selection of one of these choices must be done with respect to each object type in

which the original deleted object participates.

(a) Entity type:

i. Restrictive with respect to a relationship type R: it only includes the

operation of entity deletion.

''.��� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

ii. In-cascade with respect to a relationship type R: in addition to the deletion

operation of the entity, the deletion of the occurrences from R where the

deleted entity participates is included in the transaction.

(b) Relationship type

i. Restrictive with respect to an entity or relationship type: it only includes

the operation of relationship deletion.

ii. In-cascade with respect to an entity type E or to a relationship type R: if an

entity participating in the relationship to be deleted has the existence

constraint in it, then, besides the relationship deletion, it is necessary to

include the deletion from E for those cases in which the deleted

relationship occurrence is the last one in which the entity participates.

Furthermore, if the relationship type participates as aggregated entity in

another relationship type R, besides the previous deletion operations, the

deletion of the occurrences from R in which the aggregate entity takes part

is included in the transaction.

In the in-cascade deletion, the operations that are added to the transaction can

require propagation as well. This propagation must be included in the

transaction.

In some cases, only the in-cascade deletion is adequate; for example in the

relationship R(E(1,1), F(0,n)) a restrictive deletion for E or R is not possible.

4. Transaction generation

In this section, we present a set of algorithms to achieve automatic generation of

the minimal and safe update transactions for a given diagram. There are two possible

approaches for designing this set of transactions. These approaches are presented

below using the example in Figure 2.

b0 bn … a0 am … r1 c0 cn …

B T R A C
1 n 1 n

Figure 2: EER example diagram

The modular approach constructs a transaction for each object type of the

diagram (entity type or relationship type) including only one operation (insertion o

deletion) and, if it is necessary, calls to other transactions. Therefore, the

transactions only take into account the operation on their own objects and the

adjacent objects that are necessary. Two objects of a diagram are adjacent if they are

located at the ends of the same line (in this case, we will say the distance between

the objects is 1). When the insertion transaction for B is designed, a call to the

insertion transaction for R must also be included in addition to the insertion

operation in B. Some of the generated transactions are hidden. They are only defined

to be called from other transactions, and they are not available to the system users.

For example, the insertion transaction for T is only used by the insertion transaction

in A. This is because the cardinality constraints of A in T (maximum and minimum

equal to 1) prevent the T insertion transaction from being used alone.

''� �
�
*
����
��� ������
����� �������

The complete approach constructs each transaction by including all the

operations that are necessary on any object, regardless of the distance to the initial

object in the diagram. Thus, a basic transaction does not include calls to other

transactions. In the example, apart from the insertion operation in B, the insertion

transaction in B contains the insertion operation in R. Only those transactions that

have to be available to the users are generated. In the example, the insertion

transaction in T is not generated.

The parameters of the transactions are obviously the same in both approaches and

they are described as follows:

− In the case of insertion into an entity type, a parameter must appear for each

attribute of this entity type. In the case of insertion in a relationship type it is

necessary to include a parameter for each identifier attribute of each

participant entity type and a parameter for each relationship type attribute.

However, if an insertion transaction needs to call other transactions, the

parameters of the latter must also be included with the parameters of the

former. This problem is solved by the algorithm.

− In the case of deletion, a parameter for each identifier attribute of the object

type to delete is needed if it is an entity type. A parameter for each identifier

attribute of every component entity type is needed if it is a relationship type.

The generated transaction for the insertion in A is presented for both approaches.

TRANSACTION Modular_Ins_A (a0x,…,amx,c0x);
BEGIN
Ins_ent A attributes a0←a0x,…,am←amx;
Modular_Ins_T(a0x,c0x);

END.
TRANSACTION Complete_Ins_A (a0x,…,amx,c0x);

VAR TX:T;
BEGIN
Ins_ent A attributes a0←a0x,…,am←amx;
Ins_rel T where

A(TX.A)∧ TX.A.a0=a0x ∧ C(TX.C)∧ TX.C.c0=c0x;
END.

The in-cascade deletion transaction of the entity type A with respect to any object

appears below in the modular and complete approaches
TRANSACTION Modular_Del_A (a0x);

VAR AX:A;
BEGIN
| Del_ent A where AX.a0=a0x;
| Modular_Del_T(a0x,-);
| Modular_Del_R(a0x,-);
END.

TRANSACTION Complete_Del_A (a0x);
VAR AX:A, TX: T, RX:R, BX:B;
BEGIN
| Del_ent A where AX.a0=a0x;
| Del_rel T where ¬∃ AX(A(AX)∧ TX.A=AX);
| Del_rel R where ¬∃ AX(A(AX)∧ RX.A=AX);
| Del_ent B where ¬∃ RX(R(RX)∧ RX.B=BX);
END.

''/��� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

In the example, on the one hand, the deletion of an entity from the entity type A

forces the deletion of an occurrence from the relationship type T; on the other hand,

since the in-cascade deletion has been chosen for relationship type R, then it is

necessary to delete the occurrences of R in which the deleted entity participates.

Finally, due to the minimum cardinality constraint of the entity type B in R (equal to

1), any deletion from R determines the deletion of the participant entity from B.

A call to a transaction does not require all its parameters to be instanced. Thus, in

the call Modular_Del_R(a0x, -), the second parameter is a script; this symbol

denotes any value for the parameter that corresponds to it by location in the

transaction definition.

The transactions called by the preceding transactions in the modular approach are

the following:
TRANSACTION Modular_Ins_T (a0x,c0x);

VAR TX:T;
BEGIN
| Ins_rel T where
| A(TX.A)∧ TX.A.a0=a0x ∧ C(TX.C)∧ TX.C.c0=c0x;
END.

TRANSACTION Modular_Del_T (a0x,c0x);
VAR AX:A;TX:T;S_AX: Set of occurrences of A;
BEGIN
| Del_rel T where TX.A.a0=a0x∧ TX.C.c0=c0x;
| S_AX←{AX | ¬∃ TX(T(TX)∧ TX.A=AX)};
| FOR EACH AX in S_AX DO
| | Modular_Del_A(AX.a0);
| END_FOR;
END.

TRANSACTION Modular_Del_R(a0x,b0x);
VAR BX:B;RX:R;S_BX: Set of occurrences of B;
BEGIN
| Del_rel R where RX.A.a0=a0x∧ RX.B.b0=b0x;
| S_BX←{BX ¬∃ RX(R(RX)∧ RX.B=BX)};
| FOR EACH BX in S_BX DO
| | Modular_Del_B(BX.b0);
| END_FOR;
END.

 To be able to use the calls to other delete transactions for reaching a consistent

system state, it is necessary to include selection conditions to determine which

occurrences of other objects must be eliminated. Each one of these conditions is

expressed using a formula in the above mentioned logical language. This formula

contains a free variable so that all the instances of the free variable that make the

formula true are eliminated. All these instances are included in one variable of set

type. This set is later crossed, calling to the deletion transaction for each one of the

occurrences that are contained in it. The corresponding values of identifier attributes

of these instances are used as parameters.

In the deletion transactions for T and R, there are calls to deletion transactions on

other objects of the diagram which have a similar structure. For example, in the

transaction Modular_Del_R, since entity type B has the existence constraint in R,

when occurrences of R are deleted, those occurrences of B which no longer

participate in R must also be deleted. Since the maximum cardinality of B in R is 1,

''� �
�
*
����
��� ������
����� �������

we know that for each deleted occurrence of R, one occurrence of B must be

eliminated.

Another important problem relative to the successive calls to different

transactions from another deletion transaction needs to be emphasized. When an

occurrence of T is deleted, there is determined which occurrences of A have been

left inconsistent (those that do not participate in T). This fact prevents falling into an

infinite loop of calls, because the deletion of T came from a deletion in A. Thus,

there are no occurrences of A that fulfil this condition. Therefore, no call to the

deletion transaction of A is made, and the possible loop is avoided.

4.1 Algorithm for the transaction generation from an EER diagram without
cycles

The modular approach has been chosen for the development of the transaction

generator algorithm so that the obtained transactions are simpler. The algorithm

starts from an EER diagram. As a result of the algorithm execution, the set of

minimal and safe update transactions which are necessary for the evolution of the

system represented by the diagram is obtained. When an insertion transaction calls

another insertion transaction, it must be known which parameters must be used.

Defining an order in the transaction generation allows that those transactions that are

called from another transaction are defined beforehand.

In order to determine the required parameters for an insertion transaction it is

necessary to use the basic operation parameters plus all the parameters that occur in

each one of the invoked transactions. To avoid undesired duplication in this set of

parameters, some of them have to be eliminated: the identifier parameters of the

calling object, because they always appear in the newly invoked transaction.

Consequently, it is necessary to design an algorithm that determines the order for

transaction generation; this arrangement is also based on the minimum cardinality

constraints of the relationship types in which each object participates. The sorting

algorithm accepts an EER diagram as a unique parameter and it returns an ordered

list of all the diagram object names. This algorithm is shown in Appendix A.

As stated above, the arrangement is only necessary to generate the insertion

transactions, since in deletion transactions it is not necessary to include parameters

from other transactions. The generation of the deletion transactions is done for each

object right after the generation of its corresponding insertion transaction. Once the

arrangement of the objects of the EER diagram is obtained, the transaction generator

algorithm is the following:
ALGORITHM Transaction_Generator
INPUT EERX: EER Diagram;

LI: Sorted list of object names from an EER
diagram;

OUTPUT T: Text that consists of the set of safe and
minimal update transactions for the objects
in the input EER diagram;

VAR Transaction: Text;
BEGIN
| T ← '';
| FOR EACH object O in LI in order DO
| | IF O is an entity type

''���� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

| | THEN
| | | Generate_ins_ent_transaction(O,Transaction);
| | | Join(T,Transaction);
| | | Generate_del_ent_transaction(O,Transaction);
| | | Join((T, Transaction);
| | ELSE /*O is a relationship type*/
| | | Generate_ins_rel_transaction(O,Transaction);
| | | Join(T, Transaction);
| | | Generate_del_rel_transaction(O,Transaction);
| | | Join(T, Transaction);
| | END_IF;
| END_FOR;
END.

The algorithms to create safe transactions for the different object types are

presented in Appendix B. They are presented in an abbreviated form centered in the

calls to other transactions that have to be included to enforce cardinality constraints.

The controls that have to be included to avoid inconsistence due to other constraints

are left out of this simplified version.

4.2 Algorithm extension to include EER diagrams with cycles

When an EER diagram contains a cycle, that is, a dependency for insertion, a

problem arise when the generated transactions are used.

...

cp

...

bn

...

n

n

n

n n

n

R A
a0

b0

c0

am

S

B

T C

Figure 3: EER diagram with a cycle

Effectively, an insertion in A requires an existing entity from B for inserting a

relationship in R; but, to insert an entity in B, an existing entity in C is needed to

insert a relationship in S, and this entity also needs an existing entity in A to insert a

relationship in T. This is a deadlock that must be solved by generating, in addition to

the normal transactions cited above, special transactions for this situation. The

special transactions must include an insertion operation on each object type included

in the cycle, plus calls to the modified insertion transactions on these objects. The

modified transactions are the normal ones except for that the insertion operation on

the intended object type is eliminated. A particular case of cycle is the Total

specialization, because the insertion in the general entity type and in one of the

specialized entity type must be simultaneous; due to this fact, a special transaction is

needed for each specialized entity type, that joins the insertion transaction on the

general entity type and the insertion transaction on the corresponding specialized

entity type.

''0 �
�
*
����
��� ������
����� �������

Therefore, the defined algorithms for insertion transaction design are modified to

take into account the presence of cycles. This extension is not included in the

present paper.

5. Conclusions and future work

In this work, we present a new perspective of the Entity-Relationship Model, as a

conceptual modelling tool. Traditionally, the ER model has been criticized due to its

lack of a dynamic dimension. In contrast to this criticism, the authors defend that the

integrity constraints defined in a diagram on an Extended Entity-Relationship (EER)

Model restrict the valid state transitions in the system, and they can therefore

determine the minimal transactions that can be performed on it. Following this main

idea, given any EER diagram we propose an algorithm to obtain, directly from the

diagram, the set of safe and minimal transactions with respect to the integrity

constraints represented in it. These minimal transactions are the basic units that

should be used to design the more general ones that implement the user

requirements.

The main features of this work are the following:

1. We propose an extension of the ER Model which includes a transactional

language. This language includes an insert and a delete operator for entity

types, for relationship types and for specialized entity types.

2. We analyse different EER diagram patterns in order to develop the

algorithm.

3. Finally, we present the algorithm that automatically generates the set of

minimal and safe transactions for a given EER diagram. The main

advantage of the proposal consists of its possible integration into the

existing CASE tools based on the ER model for conceptual modelling. In

this way, these tools could offer the designer a minimal transaction diagram

that is able to perform the safe system evolution.

This work can be extended taking into account more general integrity constraints.

Appendix A: Algorithm for sorting the objects of an EER diagram

ALGORITHM SORT
INPUT EERX: EER Diagram;
OUTPUT L: Sorted list of object names;
VAR Possible: boolean;
BEGIN
| L←empty list;
| FOR EACH object O in EERX DO
| | IF O has not EC in any relationship type
| | THEN
| | | Add(L,O);
| | END_IF;
| END_FOR;

''(��� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

| REPEAT
| | FOR EACH object O in EERX DO
| | | IF O is not in L
| | | THEN
| | | | Possible←true;
| | | | FOR EACH relationship type R where O has EC DO
| | | | | IF R is not in L
| | | | | THEN Possible←false;
| | | | | END_IF;
| | | | END_FOR;
| | | | IF Possible
| | | | THEN
| | | | Add(L,O);
| | | | END_IF;
| | | END_IF;
| | END_FOR;
| UNTIL every O is in L;
END.

Appendix B: Algorithms for generating the transactions

PROCEDURE Generate_ins_ent_transaction
INPUT E: text /* Entity type name */;
OUTPUT T: text /*Transaction*/;
VAR Trans_Parameters, Operations: Text;
BEGIN
| Add to Trans_Parameters a parameter for each
| attribute of E;
| Generate the insertion operation into the entity
| type E;
| Add this operation to Operations;
| FOR EACH relationship type R where E has EC DO
| | Add to Trans_Parameters a parameter for each
| | parameter of the insertion transaction into R |
| | that is not yet in Trans_Parameters;
| | Generate a call to the insertion transaction into R;
| | Add this call to Operations;
| END_FOR;
| T←'TRANSACTION';
| Join(T, 'Ins_Ent_Transaction_', name(E),
| Trans_Parameters,'BEGIN', Operations, 'END.';)
END.
PROCEDURE Generate_ins_rel_transaction
INPUT R: text /*Relationship type name */;
OUTPUT T: text /* Transaction*/;
VAR Variables, Trans_Parameters, Operations: Text;
BEGIN
| FOR EACH entity type E that participates in R DO
| | Add to Trans_Parameters a parameter for each
| | identifier of E;
| END_FOR;

'�� �
�
*
����
��� ������
����� �������

| Add to Trans_Parameters a parameter for each attribute
| of R;
| Add to Variables a variable defined over R;
| Generate the insertion operation in the relationship
| type R;
| Add the operation to Operations;
| FOR EACH relationship S where R has EC as aggregated
| | object DO
| | Add to Trans_Parameters a parameter for each
| | parameter of the insertion transaction into S
| | that is not yet in Trans_Parameters;
| | Generate a call to the insertion transaction into S;
| | Add this call to Operations;
| END_FOR;
| T←'TRANSACTION';
| Join(T, 'Ins_Rel_Transaction_', name(R),
| Trans_Parameters, 'Variables', Variables, 'BEGIN',
| Operations, 'END.');
END.

PROCEDURE Generate_del_ent_transaction
INPUT E: text /* Entity type name */;
OUTPUT T: text /*Transaction*/;
VAR Variables, Trans_Parameters, Operations: Text;
BEGIN
| Add to Trans_Parameters a parameter for each identifier
of E;
| Generate a variable on E;
| Add this variable to Variables;
| Generate the deletion operation from the entity type E;
| Add this operation to Operations;
| FOR EACH relationship type R where E participates DO
| | IF the deletion is in-cascade with respect to R
| | THEN
| | | Generate a call to the deletion transaction from R;
| | | Add this call to Operations;
| | END_IF;
| END_FOR;
| T←'TRANSACTION';
| Join(T, 'Del_Ent_Transaction_', name(E),
| Trans_Parameters, 'Variables', Variables, 'BEGIN',
| Operations, 'END.');
END.
PROCEDURE Generate_del_rel_transaction
INPUT E: text /* Relationship type name */;
OUTPUT T: text /*Transaction*/;
VAR Trans_Parameters, Operations, Variables: Text;
BEGIN
| FOR EACH entity type E that participates in R DO
| | Add to Trans_Parameters a parameter for each
| | identifier of E
| END_FOR;
| Generate a variable on R;
| Add this variable to Variables;

'�'��� ��� ����	
�� ��� �
�������
�
��� ��� �	����

�����
+�"$��%,� -���#��%"�� ��

| Generate the deletion operation for R;
| Add this operation to Operations;
| FOR EACH relationship type S where R participates
| | (*as aggregated object*) DO
| | IF the deletion is in-cascade with respect to S
| | THEN
| | | Generate a call to the deletion transaction for S;
| | | Add this call to Operations;
| | END_IF;
| END_FOR;
| FOR EACH entity type E that participates in R with EC
| | DO
| | Generate a set variable on E;
| | Add this variable to Variables;
| | Generate a query on this variable;
| | Generate a FOR loop on this variable including
| | a call to the deletion transaction of E;
| | Add this loop to Operations;
| END_FOR;
| | T←'TRANSACTION';
| Join(T, 'Del_rel_transaction', name(R),
| Trans_Parameters, 'Variables ', Variables, 'BEGIN',
| Operations, 'END.')
END.

References
[1] P.P. Chen. The Entity-Relationship Model: Towards a Unified View of Data. ACM

TODS, Vol. 1, No. 1, pp. 9-36, 1976.

[2] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, H. D.

Ehrich. Conceptual Modeling of Database Applications Using an Extended ER Model.

Data and Knowledge Engineering, Vol. 9, No. 2, pp. 157-204, North Holland, 1992.

[3] R. Elmasri, S.B. Navathe. Fundamentals of Database Systems. Third Edition. Addison-

Wesley, 2000.

[4] M. Gogolla. An Extended Entity-Relationship Model. Fundamentals and Pragmatics.

LNCS 767, Springer-Verlag, 1994.

[5] L. Mota-Herranz. M.A. Pastor. Diseño conceptual con el modelo Entidad-Relación.

Departamento de Sistemas Informáticos y Computación, Internal Report, DSICID/56/97,

1997.

[6] J.A. Pastor-Collado. Supporting Transaction Design in IS Conceptual Modelling through

Pre-synthesised Update Transaction Specifications. EXSELSI’95. 1995.

[7] B. Thalheim. Entity-Relationship Modeling. Foundation of Database Technology.

Springer-Verlag, 2000.

[8] Balaban, M. and Shoval, P. MEER -An EER Model enhanced with structure methods,

Information Systems, 27 (245-275), 2002.

[9] Pastor, M. A., Celma-Giménez, M., Mota-Herranz, L. Análisis de Restricciones de

Integridad en el Nivel Conceptual. Accepted in IDEAS'04.

[10] C.A. Heuser, E.M. Peres, G. Richter: Towards a complete conceptual model: Petri nets

and EntityRelationship diagrams, Information Systems, Vol. 18, No. 5, 1993, 275-298

'�� �
�
*
����
��� ������
����� �������

�����������	�
��

An Output Schema for Multimedia Data in Multimedia
Database Systems

Thomas Heimrich

Technical University of Ilmenau,
 Databases and Information Systems,

D-98684 Ilmenau
thomas.heimrich@tu-ilmenau.de

Abstract. Multimedia data differ significantly from alphanumeric data. The
semantic of multimedia data depends from the data presentation. Up to now it
is only possible to model structure and behaviour of multimedia data in a
schema of a multimedia database. This paper proposes a new concept, called
output schema. The output schema can be integrated into the multimedia
database schema. An output schema is a description of the multimedia data
output. It can be reused easily and adapted. The multimedia database can use
the information from the output schema to optimize the data output and the
data storage.

Keywords: multimedia databases, modelling data output

1. Introduction

Multimedia database management systems are mostly not completely new
developed systems. Usually already existing object-relational or object-oriented
database systems are used to store multimedia data. A multimedia layer is built on
its top.

A multimedia database must support different multimedia types (e.g. image,
video, audio, fulltext) as basis data types. The database must offer also efficient
storage structures and indices for these media types. Some extensions of commercial
databases (e.g. DB2, ORACLE) offer these capabilities.

It is possible to build complex multimedia documents from these basis media
types. The complex multimedia types are defined in the structure and behaviour
schema of a multimedia database. The structure schema consists of different
structure types. A subtype-relation is defined on these structure types. With that a
IS-A-Hierarchy can be build by means of inheritance. The possibilities of the
inheritance concept are very useful for modelling complex multimedia data.

The behaviour schema defines a set of methods. These are assigned to structure
types. Usually it is desirable for behaviour inheritance to process a IS-A-Hierarchy
of types. In this case it is necessary to allow that only methods in subtypes may be
specialized, that is overloading is only allowed with compatible signatures
(contravariance).

The data output is very important for the semantic of the multimedia data. The
semantic of an audio for example gets lost if its presentation speed is too fast. Up to

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()'**� 	�

'�� �
�
+
����
��� ������
����� �������

now it is only possible to model structure and behaviour of complex multimedia
documents in a type system. We introduce the new concept of an output schema. It
is supposed to model relationships during the data output. It is a description of the
data presentation. Instances of this description are specific presentations.

Section 2 gives a survey over some related work. Section 3 introduces the output
schema and its requirements. Section 4 gives a notion about how the output schema
may be implemented. Section 5 summarizes and concludes this paper.

2. Related work

The need for modelling multimedia data representation is known since computer
can handle multimedia data [5]. One of the most popular presentation languages is
SMIL [8]. The multimedia data used by a SMIL presentation are stored as files in a
filesystem. The filename is used to refer to multimedia data in a SMIL-Script. A
SMIL presentation is inflexible. It is for example not possible to use the same SMIL
presentation for picture Image_A and later for picture Image_B. The reuse of the
structure defined by the SMIL-Script is not possible. If data are changed there is no
way to announce these changes automatically to the SMIL-Script. Thus the SMIL-
Script can not adapt its definitions according to these changes. The changes do not
take into account what is defined by the SMIL-Script.

An algebra for creating and querying multimedia presentations is described in [1].
The multimedia presentation algebra (MPA) contains generalisations of select,
project and join operations in the relational algebra. This algebra operates on trees
whose branches reflect different possible presentations of a presentation description.
Creating a presentation means to create an instance of a presentation description.
How to describe a presentation is not part of that paper.

Candan et. all [6] have developed a view management for multimedia databases.
They introduced virtual objects with associated spatial and temporal presentation
constraints. Materializing a dynamic multimedia view corresponds to assembling
and delivering an interactive multimedia presentation according to the visualization
specification. The paper describes mainly the personalisation of multimedia views.
Boll et. all [3, 4] have developed the ZyX data model for multimedia documents. It
is a presentation-neutral description of a multimedia presentation. A presentation in
the ZyX model is also a tree of specific presentation nodes. This model was
implemented with a object-relational database. Classes were developed to model the
presentation nodes. An disadvantage of this model is the small support for temporal
relationships between multimedia data. Only the parallel and sequential presentation
of media objects is supported. If an object model is used then it is impossible for the
database to optimize the data output.

Up to now a presentation description is not part of the multimedia database
schema. Thus the database has no knowledge about the desired data output streams
and the output conditions. It can not optimize the multimedia data output nor ensure
the consistency between the presentation description an the stored multimedia data.

'����� ������	
��
�� �,�-,�� �./�$�� !"#� �,0�%$� %�� ����� %�� �,0�%$� %�� ��������� �&���$�

3. Output schema

Section 3.1 defines some requirements which an output schema should fulfill.
Then a formal definition for an output schema is proposed. Next the inheritance for
output types is introduced.

3.1. Requirements on an output schema

The output of multimedia data is more complex than the output of alphanumeric
data. There are synchronisation relationships that have to be taken into account.
During the output a certain quality of the data has to be guaranteed. Otherwise
multimedia data might be semantically falsified.

Up to now multimedia database systems were often used for the storage of
multimedia data independent of each other. The data themselves are stored but only
very few relationships between these data. It is assumed that the user builds the
relations between the multimedia data through a database query. A query could be:
“Search Video1 and Audio1 and output them parallel.” In [7] a formal query
language is proposed for that. Constrained queries can be built. In these queries it is
possible to specify temporal and spatial relationships (e.g. start(video2) ≤
end(video1) + 0.01) for the data presentation. The original query will be enlarged
with a conjunction of these constraints. A corresponding enlargement of SQL seems
to be easy to realize. But the following aspects are problematic:

• The user has to describe a complex output in the query.

• The specification of the output can only be used once. If the same output is
desired again, the whole specification has to be built again.

• The user has to determine the temporal/spatial semantic of the output.

• There are no synchronisation relationships stored in the database. Thus the
semantic of the multimedia data may be lost.

We believe, that the presentation descriptions must be part of the multimedia

database schema. The reasons for that are:

• Multimedia documents consist of multimedia data and complex
spatial/temporal relationships between them. Without storing a presentation
description it is not feasible to store and restore multimedia documents.

• The presentation of multimedia data is very important for their semantic.
The resolution of images for example has high influence on their semantics.
It has to be specified for the data output. Otherwise it may occur that the
user sees the shown image with a too low resolution. Thus he can not see
all the information of the image and he gets semantically incomplete or
wrong data.

• The database needs the information about the desired presentation of the
data in order to optimise the data output and the used data organisation. For
example a specific video shall be presented parallel to a specific audio.
Now it is important that the database chooses a storage organisation that
allows the parallel output of the video and audio.

'�1 �
�
+
����
��� ������
����� �������

It is necessary to model the data presentation in a multimedia database. The

model must have the following criteria (q.v. [3]):
Reusability. Reusability of presentation description should be supported along

two dimensions. Firstly reusability means that a presentation description can consist
of other presentation descriptions. Secondly it means that from a presentation
description many presentations can be built. A presentation description is a template
for presentations.

Adaptation. Extensions to and chances of presentation descriptions should be
easy to do. Users should be able to adapt existing presentations according to their
needs.

Presentation-neutral Representation. The presentation description must be
independent of the format used by the presentation. Therefore a multimedia database
can support different presentation formats. The presentation-neutral description has
to be converted into a presentation-specific format which is used for the playout of
the multimedia data. It is desirable that this conversion is lossless.

3.2. Formal definition of the output schema

Now the concept of the output schema is introduced. That is how model the data
output of multimedia data. Output types are defined. They can be used as a
reusable, adaptable and presentation-neutral representation for the data output.

The output type is created by the user once and thereafter managed by the
database. When querying the database, a particular output type can be used. It is not
necessary to describe a complex output in the query. The output type is reusable and
thus can be used for the optimization of the data output. A formal definition of a
output type system (OT) is given as follows:

(i) video, audio, image, fulltext OT⊆

(ii) If ot1, ot2 }},{{ fulltextimageOT −∈ , TC={before, meets, overlaps,

during, starts with, finishes with, equals} and tc ∈ TC then ot1 tc ot2
OT∈

(iii) If ot1,ot2 ∈ {OT - audio}, SC={left, right, over, under} and sc ∈ SC
then ot1 sc ot2 ∈ OT

(iv) If ot1,ot2 ∈ OT, then ot1 substitute ot2 ∈ OT

(v) if ONi are different names for output types and niOToti ≤≤∈ 1, , then

[] OTotONotON nn ∈:,...,: 11 (tuple of output types)

(vi) UDOT ⊆ OT, UDOT is a set of names for user defined output types.

The basis output types are defined in (i). These are the basis multimedia types

which should be supported by a multimedia database. That is why these multimedia
types should have a default presentation.

Temporal output constraints are defined in (ii). The Allen-Relations [2] are used.
It is also possible to use other concepts concerning temporal relations, for example
difference constraints The important aspect here is that by means of combination
any complex output type can be created. Temporal relationships can be defined only

'�2��� ������	
��
�� �,�-,�� �./�$�� !"#� �,0�%$� %�� ����� %�� �,0�%$� %�� ��������� �&���$�

on multimedia types which have an temporal dimension. Image and fulltext do not
have this dimension. Thus it is not possible to define an output type with temporal
relationships for these multimedia types.

Spatial constraints are defined in (iii). Thus it is possible to specify also spatial
relationships between multimedia data (video, image, fulltext) in an output type
system. It is not possible to define spatial relationships for the multimedia type
audio. This type has no spatial dimension.

With (ii) and (iii) the synchronisation relationship between multimedia objects is
modelled. Synchronisation is a special relationship that exist only between
multimedia objects. In many cases the output of media objects should take place in a
specific temporal and/or spatial order. Synchronisation relationships define the
temporal/spatial data flow of the output.

Another relationship between multimedia data is the substitution relationship.
The same information can be represented by different media (e.g. speech or text).
The designer of a media object decides which kind of representation he prefers (for
example speech). He can allow another form of presentation as an alternative (for
example text). The substitution relationship is defined in (iv).

Point (v) defines a tuple type for output types. Thus it is possible to define
smaller parts of a complex output type and give them a name. Through these names
these parts can be used within the complex output type definition. An example for a
tuple type is: [c1: video1 before video2, c2: video3 after video4]. The tuple type
defines an array (tuple) of constraints. Every constraint has a name. It is assumed
that a presentation build from a tuple output type has to satisfy all constraints which
are defined in the tuple type.

User defined output types (UDOTs) are defined in (vi). A user defined output
type can be called from other output types through its name. We can use these types
for building complex output types.

An output type defines a template for a set of specific presentations. Assume the
definition of the following UDOT: myUDOT: video equals audio. The output type
has the name myUDOT. Through this name the output type can be used e.g. in
queries. Here the output type defines the temporal ordering of multimedia data, that
is a video and an audio have to be presented equally. Every presentation that
presents a video and an audio equally is an instance of this output type. The output
type can be reused with different specific multimedia objects. We used a
presentation-neutral representation for output types. This representation can be
transformed into different presentation languages. Through that the multimedia
database can offer format independent presentations.

3.3. Inheritance for output types

It should be possible to order output types in a output-type-hierarchy (IS-A-
relationship). By that output types can be specialized. Existing output types can be
easily re-used and adopted. An output type that outputs “ot1 before ot2” can be
specialized to “ot1 two seconds before ot2”. By means of derivation also
substitutions between multimedia data can be supported. The output type “video
equals audio” could be specialized to “video equals fulltext”. This output subtype

'*� �
�
+
����
��� ������
����� �������

allows the parallel output of video and audio and as an alternative the parallel output
of video and fulltext.

It is possible to build output subtypes from all output types by means of
derivation. A output type ot’ is output subtype of output type ot if every instance of
ot’ is also an instance of ot. An instance of an output type is a specific presentation.
For example an output type is specified as “video equals audio”. Every presentation
in which a specific video is played out equal to a specific audio is an instance of that
output type.

We introduced a relation „ ≤ “ for output subtypes. For example the output type
“video two seconds before audio” is an output subtype from the output type “video
before audio”. All instances from the output subtype are also instances from its
parent type. An output subtype has stronger output conditions than its parent type.
The number of instances of an output subtype is smaller than those of its parent
output type.

The subtype-relation „ ≤ “, ≤ OTOT ×⊆ is defined as follows:

(i) otot ≤ for every OTot ∈

(ii) []]:,...,1:1[':',...,'1:'1 otnOTnotOTotmOTmotOT ≤ if

 (a) nm ≥ and

 (b) ∧=≤≤∃≤≤∀ ')1,')(1,(jiji OTOTmjOTniOT

 ij otot ≤'(∨ oti substitute otj’)

The subtype relation for tuple output types is defined in (ii). It is assumed that a

presentation to a tuple output type must hold all defined constraints Thus point
(ii)(a) defines that an output subtype can have more output constraints than its parent
output type. For example the output type [c1: video1 before video2, c2: video3 after
video4, c3: video1 equal audio1] can be a subtype of [c1: video1 before video2, c2:
video3 after video4]. The output types defined in the output subtype have to be more
specific than the output types defined in the parent output type. This is defined with
(ii)(b). The output type [c1: video1 3 seconds before video2, c2: video3 after video4]
can be a subtype of [c1: video1 before video2, c2: video3 after video4]. This
example also shows why the conditions in a tuple output type must have names.
Only through these names it is possible to determine whether a constraint is more
specific than its definition in the parent output type.

Through the inheritance of output types it is easy to adapt existing output types.
Existing output types can be easily reused.

4. Implementation

4.1. Definition of output constraints

In order to model multimedia data it is necessary to model their structure,
behaviour and presentation. A concrete class definition must consider all these parts.
An example for a class definition is:

'*'��� ������	
��
�� �,�-,�� �./�$�� !"#� �,0�%$� %�� ����� %�� �,0�%$� %�� ��������� �&���$�

Class example{
// structure type
 NameOfVideo video;
 NameOfAudio audio;
// behaviour type
 setNameOfAudio(a audio);
// output type
 NameOfVideo equal NameOfAudio
}
To keep it simple we used pseudo code for this example. To create a specific

database schema a data manipulation language has to be used.
The novelty here is, that a class describes its own presentation and that the output

types of classes can build a IS-A-Hierarchy (section 3.3). Output schema and
structure schema are very similar. The structure schema in a object-relational
databases defines the schema of typed tables. The output schema defines the
presentation of all entities in these typed tables. If an user asks for entities from that
table the database knows how to present the result. The database designer can
determine how multimedia data should be presented.

The output schema is defined in a very abstract way. In a concrete
implementation a component in the database is needed which converts these
presentation-neutral representations into a specific presentation language (e.g.
SMIL). The user sends a query to the multimedia database and gets e.g. a SMIL-
script and the required data as a result. A presentation client (e.g. RealPlayer) is used
to show the multimedia presentation what represents the final result of the database
query.

4.2. Checking the output constrains

The shown way to define output constraints is very simple for the database
designer. It is very hard to check these constraints in that form. From that we
transform the Allen-Relations into different constraints. As an example the
constraint video equal audio can be written with different constraints as follows:

0)()(≤− videostartaudiostart , 0)()(≤− audiostartvideostart

0)()(≤− videoendaudioend , 0)()(≤− audioendvideoend

It is easy to see that a large set of different constraints can caused by some simple
Allen-Relation. A constraints graph can be build from different constraints. With a
constraint graph the set of different constraints can be resolved in polynomial time.
There is no conflict in the defined set of different constraints if the constraint set is
solvable. Furthermore the result for the constraints set can be seen as a schedule for
the data output.

Different constraints can easy be checked during the data output. The concrete
time points for the start and the end of media objects can be used in the different
constraints.

'*� �
�
+
����
��� ������
����� �������

4.3. Using an output schema

Often users do not ask for complete objects from a specific class. In ad-hoc
queries users ask for attributes from different tables. A presentation description for
that kind of query is necessary. It is possible to define output types as user defined
output types (UDOT). Those are independent from the structure and behaviour
schema. The user can define a output schema in the way it is shown in section 3. A
user can build arbitrary output types in the database. In a query these output types
can be used instead of describing the complete presentation in the query. It is
important that the attributes which should be presented must match the parameters
of the used output type. An example is:

SELECT video1, audio1
FROM tableName
WITH OUTPUT TYPE myUDOT(video1,audio1)

Thus it is possible that a user defines its own output types. He has not to use the

output types which are defined by the database designer.
Still a multimedia database must also have the capability to describe the complete

presentation in the query. Nobody is able to predict every possible kind of the
presentation at modelling time.

5. Conclusion

When looking at multimedia data it is not automatically known how to present
these data correctly. Thus a model for the structure, the behaviour and the output is
needed. This paper introduces the concept of the output schema. Thus it is possible
describe the presentation of multimedia data. A subtype relationship for output types
was also defined.. So a IS-A-Hierarchy for output types can be build. The output
types are a reusable, adaptable and presentation-neutral representation for the data
output. A output type can be part of a class definition. Thus the developer of the
class can define the presentation of the multimedia data. A output type can also be
independent from structure and behaviour schema. A user can define its own output
types. This kind of output types can be used within a database query. Thus a
definition of complex presentation constrains in a query is not necessary anymore.

A big advantage of the proposed output schema is its integration in the database
schema. Through that a multimedia database can optimize the data output and the
used data structures. Furthermore it is easy to see that presentation constraints can be
checked by the database. If an attribute from type video e.g. changes its length then
it is possible to check all output types for that attribute. The database can determine
the invalid output types. The concept of the output schema is very similar to
structure and behaviour schema. Thus it is easy to integrate the output schema into
existing object-relational or object-oriented databases.

'**��� ������	
��
�� �,�-,�� �./�$�� !"#� �,0�%$� %�� ����� %�� �,0�%$� %�� ��������� �&���$�

References

[1] Adali S., M.L. Sapino and V.S. Subrahmanian: An algebra for creating and querying

multimedia presentations. Multimedia Systems, 8:212-230, 2000
[2] Allen J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, 26(11):832-843, 1983
[3] Boll S. and W. Klas: ZyX - A Semantic Model for Multimedia Documents and

Presentations. In: Semantc Issues in Multimedia Systems, pages 189–209, 1999.
[4] Boll S. and W. Klas: ZyX – A Multimedia Document Model for Reuse and Adaption of

Multimedia Content. TKDE 13(3): 361-382, 2001
[5] Christodoulakis S. and Analyti A.: Guest Editorial Special Issue on Multimedia

Information Systems. IS 20(6): 443-444 (1995)
[6]Kasim S. C., E. Lemar and V.S. Subrahmanian: View Management in multimedia

databases. The VLDB Journal, 9(2): 131-153, 2000
[7] Marcus S. and V.S. Subrahmanian: Foundations of Multimedia Database Systems. Journal

of the ACM, 43(3): 474-523, 1996
 [8]W3C: Synchronized Multimedia Integration Language (SMIL 2.0).

http://www.w3.org/TR/smil20, 2001

����������	
����
	�����������	�����������	

��������	
���
��

��
���	
��������������	��������		
��

����������������

���������� ������� �����
����� �
���� ��
�
��� ��� ������� ������� ��
!�
���	��

 ��
���	������������ ���
���
���	�����������	�������� ��������������"�#��	�

��� ����
���
�� ��� ��
��� ����
���
��	� ������ �� $
��� ������ ��� �����
�����

�����
�
�
�	������� ����
	������
��������
����	���������������������
������
�
�
�	�

������ � �������� ����� �
	� 	
����
���

�
���� �	��������������������	�����
����
��$�	�	��	����
�������	�������������

�	����	� ��� ��������
��� ����	���
��	��
�� �	� ����
���� �� 	��
�� �������
��� ����

���	
	����� �%� ����� ���� 	 ��
��� ���
�������
��� ���$���� ���$��
��	�
��

����������
������
�������	��� ����
����&���
�������
	�$��
�
	�����%������ ��

����������� �
���� ������ ���
�������
��� ��������� ��
�
��� ������
��	�� $
� �

	 ����� ����
�� ����� ���%
�
�
��� $
�
�� � �� ��� ��
��� �����		� ���� ������� ��

� ��� ������ ��� ������������ �������	��	'� ���
��	��(�	
��	�� �
	� �%���	
���
	�

��
�������������������
��	�� ���$���� �����&�������	���
������������
�	����� ��

��
�
���������	���$
���������	�������

����������)���������� �
����� �
���� �����
���� ����������
��� ����
���
��

��� ��
����)�)*����������
�������	���
��	�����	
	�������)�+���

��	������������	

,��
	���$����
��$�������� ���� ����		
�
�
������������������
������
���
����� ��
���

���
�������	�
	���
��������
������	
�����������������	�
����� �������		������������

�����
����*
� � ���	��	� ����
��� ����� �
� �����&���������
��	� ����
	��
���
������ ��	
	�

������ ��
���	�� 	������� ���� &�
��� ���
�
�
�	� ������ ���
�������
������� �
���� ��	��

�������
������ �������
��������������
���	��
�	�-./0��

��������������� �
!�����������������
������ ��
���������
��	�����	��	�� ��	��
����

��� ���
��� �	� ����� ���	������
�� � �� ����� ��� �� ����������� �
���� ����� ������ -..0��

(�	��� ��� � �� ��������
��� ���
�
��� �����$��
�)�+��� -.1�� .2�� 30�� �
	� ������ �	�

�������� ���	
	����� 	 ��
��� ���
�������
���
�� � �� ����� ��� ��������������
�
���
��	��

$
� �
	�����������������	�� ��
�����	
��������
��	�������
���
��	���	
����

� �� ���
�������
	� � ��� ������ ��	'� ���
��	�
�� � ��)�+��� �����$��
� ����

�����	������ �
�� ���
�
���
	���
�	�� $
� � ���� ��	
������ 	�!�����	� ��� ��
�
���

������
��	� ���	�
���
���
��
�
����� $��

��� �����		�	�� +	� �� ��	����� ���	
	������ ���

�������
����%� �����
	���
������������	����� ��
	���������
������ ��
	��-.20�

� ��� ��
�	�
���� �������� ������
�
�
��� �����
��	� ��� ����
�
����	'� ���
��	�
�� ������ ���

������������
��	�
��� �
��&�
���������	��

������������������������������ �����������������������������
.
� �
	� $��
�
	� ����
����� 	��������� ��� � �� ��		
��� 4������
��� ���� (�	
�� ��	���� �

������������5���67�6.�66.81�

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '(�)'��� 	�

'(*����� ���	
���
��� �"�+,##����
% �"-� �.�#��%"��/� �0����%"��

������
��������		���������
��	����
�
���������
��	���������$
�
�� � �������������

�
���� ������ $���� �	���
����� ��	
����� ��� ���� ����� ��������
�
��� �������
�	�� ,��

������ ������
��� ��� � �� �������	� ��� �
���
�����	��� �
���� ��� ��
��� -70�� � �	��

������
��	�����$�������
�
����	����$��
������������������
����������
�	��$
� �
��� ��

������������ ����	
�����
���������
����

� �����������
	�������
	����
�������� ����
�
����������������������
�
���	�������

���� ���������
��
��� ��������
��� ���
�
�
�	� $
�
�� � �� 	���� ��
�	�� 9�$������ ��	��

����	���
������	����	����� ������
��	������	���������
���������
����
�������

� ����	������
	�������
	������
#����	������$	��+������
�
�������
��������
�$����� ��

�������� $��
�� � ��
�������� ���	
��� ��� � �� ����� ������
	�
����������� 5�%���

����	���
����� �������
�	� ��� ����������� �
���� ���� �
	��		��� ���� �
������ ������	
��	�

�������� ���$��
��������	�������

��	�������	��� 	

�
	�	���
����
�	���
��	�����
������
�$����� ��)�+��������$��
������ ������	���	���

	������� ��� ����
��	� $��
� ��� �
���� �����
��� ���� ����������
��� ����
���
��

��� ��
����

����	!"�	���������#�	����#���	$����	

� �� ��������
��� ���
�
��� �����$��
�)�+��� -.10� ���
��	� �� �����
�� ����	���
�����

������ � ��� ������	� ���	
	����� 	 ��
��� ���� �%� ����� ���
�������
���
�� ���
��	�

����������
���	�����
�	���

������
��	��������������� ��
������
�������	�-.70��

��� 	������� &�
��� ���
�
�
�	�� � ��)�+��� �����$��
� �		
��	� �� ���	�����
	�������

$��
	����������
�
������
�	����	 ���������������� ��	���
��������
��� ����������
���

�������� +�	��� �� 	�������� �������$��
	�����
	� �	����
	 ��� ��� �����	���� � �� ��������

	�������������$��
��� �	������
�
����	����������������
�������� �
����
��������	
��	����

	 �������&���	�
��������������������� ��� ����$
���� ���������������	��	����	����

�
�	��
�
�
���������� ���
�������
����������	�����
������	���	����� ��&�
�����������

+��� ���	������������������
���
	���
���������%��
�
���%� ��������� ���������	����

$��
	����	�� $
� � ���� ��� ���������� �
� ��� �
������� ��� � ���� � � �� �������

������	�� ��� ����	� ��� ���
������ ������
��	�� (��� �������������� � �	�� �����		�	� ����

�������������� � ��
	���������
������ ��
	��-.2��30�� � ��� ��
�	�
�������	
�����
���

	�����
�	����� ������
���
�������
�����	��
������������		����
�������
����%� ������

� �� ��
���
	� � ��� ����
�
����'	� ���
��	�
��)�+��� ���� �������� ��� ��� ���
�
���

	������$
� �
	���	
��������	�!���������������
��	�����
�����������������
���	���
��

	�$��
	�������
�
��������������
�������������������������-:60����	�����
�������
���

��	��
	� ���
���� ���� ��� � ��		
���� ��
�� ��� ������
���
������
��	�� ��� � ������
�
�
���

����
�����
	�������	������
������
	����
������	���
�
���
������	����	�����
�����������

��������
�
��� �����
��	�� �
���� � �� ������
�� $
� � ������
��� ������
��	� ����

�%�������
	�
����������� � �� ������
�
�
��� ���������
	� �	���
��)�+��� �	� �� ��	
	� ����

����
������
�
���
	���
�	�� ,���� ���$���	�� �$��������
���
������
��	����
��� �����

�
�������� �	��	� ���� ��� � ����$��� ��� ��� ���	����
�� � �� ������ �����
�� � ��� ����

������
������� ��$
	���� ����������
����	��� �	������	������ �������
�������
	����
���

������		�������
��	��

'(� �
�
1
����
��� ������
����� �������

)��	�!��������� ������
������ ��
	������ ��)�+���������������	�	�����
������

���	
	�����
���������
��� ���
��
�
����� ���
�
���
	���
�	�
���� �� 	
����� ���� � ���
	�

���
�
�����������
��� ���������������	�����������	���	�� ����	���	������������
���

$��
��

����	�����������#�	
����	���"����%	

+�� ��� ������
�����������
���
����� ��
�������	��������
������
��� �����
���������

-:�� .;0�� ����� ��� � ��� 	������	� ����������� �
���� ��
�
��� ���� � �� �������� ��	���� �

�����	��	�������	���������$��

����� ��� � �	�� $��
	�
���	�
����� ��������
��� ���
�
�
�	� ��	��� ��� ���

���

��� ��
	�	� -1�� .80�� $
��� �� ��� ������� �	� ���	
���� ����������
���
�� ������
���

�����$����	�	���	������-::0��,��������	������ ��������������
����������-..0��� �	��

�����	��	������������������
���
�������
���
		��	����������������
������	
	������

���������	�
��������	���
�����	��	���

9�$������ � ���� �%
	�	� ��$���� ���� ��	���� �$��
	� �%��
�
��� ���
��	� �	����	� ���

�
������������������������	�������� ��� ������������������	�$
� �� �����	������

���	�
���
��	��

,������
�������������
��	�������
��	������	����
����
���
��������	��������������

-:.��.60���	�$�����	������
������ ��
	�	�
���� ��������	��	�-.��;0�����
�������	������

��
�
��� ���
�
�
�	� ��� � �� ������ ��	��
���� ����$�� <��������� ����
��	���
����������

�����
���� ����� 	��������	� -.�� :.0� ���� �
���� ��&���	� -.:0� ��	�� ���� �����
��

��������
��	�$
� �� �����	������������� ��

5����� ���		��� ����&����
	�
���
������$����������������
��������������������	�

�
�	�
��� ��	�
���
�
������� ����$������	�������� ����	
������	������� ��
������� ��
���

	�	���	�������������
������
�������	��$
� � �	������������
������������������

� �� ��
���
	� � ���
�� � �� ���	
������ ��� ��
��� 	�	���	� � �� ���
��
	� �������� ���

�����
��������		����
���	��������
�	�$
� ����� ���������	�
�������������
�	���� ��$�

�����
���� � �	�� ��
�	� ������ $
� � �� ��� ���
�� ��&���	� ���� ������� ��� � �� �
���
����

$
� ����������������	���	�� ���
������$��+������ ��
����	
������&���	����������
�����

	���
��� ������	� ���� ����	
�
��	� ���� ��� ����
��� ���� � �� ��	���
��� �����
��� ���� ���

���������
���� �� �
���� �
�����������
���� ,�� ���
�
���� 	
���� 	�� � ��
�
���
���
�	� &�	��

��������
��� � �� ��
�
���� �
��	�� $
� � ���� ���� ��������� ���
�
���� �� 	���
��� �����		�

�������������
���
	���!�
�����������
�$�����%������ ��������������
���

)���������� �
���� ��
�	�
���� �������� � �	�� ��	
�� �������	� ��� �
���
�����	���

��� ��
�����������
��	�������
�
�����������	�����	�����
���������������
�����	�!������

������
����
�	��,����	�����	���	���	������
� �������������	�����
�����
�
���������
��	�

����$
����	��	� ���
�	���
����
���������
��� ���

������ ���
�����������
����

��� 	������� &�
��� ���
�
�
�	�� ������
��	� ��� �
�������� ��
�	� ���� ���	
������ ��� ���

��������
����
���� �
�������� �	��	� ����$��
� ������������� ��� �
�������� ��
�	� $
� ����

���������
��	��<���������
�����
����	���������� ������������	��
�����������	��	����	�

���
�
���
	���
�	������
�
�����������	�������������������
������ ��
	�	����)�+����

� ���������������	����������
	�
���
	 �������������
����������-..0�������� ������

	���� ������	��	�
��� ������������������
������ ��
����,������
��������
	�
���	�
���
���

	
��
�
������� �
����	� ����� ������� $��
	� -20� ���� -/0�� $
� � ���	���� �������	��� �����

	��������	�����	��� �����	�����������
��������������
�
����

'(������ ���	
���
��� �"�+,##����
% �"-� �.�#��%"��/� �0����%"��

&�	��"�����	����������	
����	$����	

�
	� 	���
��� ����
��	�
�������� ����������� �
���������� � ��� ����
��	� ���������

�������
�� ��
�
��� ������
��	� ����
	� ���
����� ��	��� ���
�	� �������� ���	������

������������-..0��

&���	
����	'�%(����	

,�� � �� ���	
������ ������ �
���� 	������	� �����	���� ��� ��	�����
��� �����

����������� ��
�	� ��� �
���� ������ $
� � ���� �	��� �	� ��
��
��� ����
	� $
�
�� � ��

��� ��
��������		��

(�	
���������� ��
����	����������������	�������
����	�����������$������
����
����

������ 	�!������ ���� �	�
�	� �$�� 	��� ��� ����
����������� ��
�	� $
� � ��	��
��� � ��

�������
����������
������� ���������
������
������ �����	�����
������������
����������

4����� 	�!�����	� �������� � �� 	�������

�� ������� ��� �
���� ������ $
��� ����
����	�

	�������
����������
��� ��� ������	�����
��� ��
�
��� ������
��	� �	� $���� �	�

	���
�
���
��	������	
��������	
�
��	�����	���
���������	������ ��	��������

+������������ �� �����
�
�
�������� �������	������
����	������	�
���
	�$��
�	����

� �� 	���� �	�
�� � �� ��
�
���� �����	��� -..0�� �$������ $�� !����� 	���� ����	� ���� ����

������
����=�

)�*�������	�	+*��(�	��,�����-�+�������	�!������
	����
�
�������������	�!������

>��� �?�� ��@� ��� �
���� �����	� ���� ������
��� ��� �� ����
����	� ����
� ��� �
���� ��������
	�

�������� ������� �������
����	�!������������
	��������������	
��>�@��

)�*�������	 �	 +#����	 ��%(���-� +� �
���� 	�������
	� �� ��
�� >���
@�� $ ������
	� ��
������	�!����������
�
	�����		
����������	����������
�������������
�	�A��=��B��	���
���

���
��	����
�
�����
�������
���������� �������
�
���	��������

(�	
��	�� �$�� ��
�
��� ������
��	�C� ����������
��� ���� �%�����
���C� ����������
����

����������	�!�����	�-..0�� �$������ ���$��'��������������
���
	�$��
��%��
�
��������

� �	�������
������

&���	
����	����#���	!���	

)���������� �
���� ������	� �� 	
�����
�����
���� ����� 	���������� ������� �
����

���
�
������������������
������ ��������
������
��������������
�������	���
��	��

(�	
�������� ��	������������������
�
��������
���
	�$��
�����
�	�� ��	�����	�������=�

����� ����	�� ������� ���
��� ���� �		��
����� $
� � �
���� ��
�	� � ��� ��� ��	� ������ ��� ��

�
���
���� ����� ����	� 	����� ���� ����
��	��� �������� ��
�	� ���� � �� ��	�� ����	� ����

�������� ����	� ��� � �� ���
�
���
	������ +�	��� ���
�
���
	����� �������	� ���� ���
���

$ �� ���� ���������
��������	 ��������
��
�����$ ������������ �������
	����	����
��� ��

�������������	�� ����$ ��� ����� �%
	�	� �����
�� � �� ���	
������ ������$��
	������ �	�

���	�������
���
�����.��

9�$������ ��
!���
����
�
��	� �		
����� ��� �
���� ��
�	�� $
� � ���� �������� � ��

�����������������
�
���������
��	�$
� �	�����
�������������������
�
��������
��	�
��

-..0����������	���
�
���� ���� � �������	�	���� �
	�$��
�� ,�������� �������
���
�������
��

������
��	�$
� �	
�
������������
�
����������
�	����
!��������	�	 ���������		
�����

������������	����	�
���
���� ���
����	�������4������������	�� ���	
������������������

'(2 �
�
1
����
��� ������
����� �������

��� ����
�
��� ��
�	'�
����
�
��	� $
� � �����	'�
��
��	� $
�
�� � �	�� ��
�	�� �
	�

������� �
	����
������%���
���������������
�
���������
��	�����
	���������������$�
��

� �������
�
�
��	�������
�
�������'	������	��������	��

.�%���	���+�	�������
�������
�
��������
�����	��'	�$��
	������) �������	�������������������������
���������

�������
��������	������ ���������������� ���������	����
������

)�*�������	&	+#����	����#���	����-�+��
�������
�
����������
	���������>�������������

�����������@��$ ���������
	�� ������������������������
	���	������
�������
��������	�

������ ���������� ��������� ���� �
	&�
��� 	��	� ��� 	��������� ���
�� ���� ����� ����� ����	�
��	����
������

+��
�
��������� �����%
	�	���������������������
���������� ��	���������������	�������

� ��������	����	����� ��������
��$
� ��		��
������
������
�	�����>���$�������������

����	@������������� ���
���
����

)�*�������	/	+#����	����-�+����
���������������
�������
�
��������
	���������>�����

��	
�����
��	����������@��$ ������� ��	
����
����
!�����
����
�
�	��'	��		��
�����
�
���� ��������
��	��
	� � �� �
���� 	������� �����	���
��� �
	� ����� ������������
	� ���

��������	������������
���
�	�����	������������� ���
��������������	
��
	������	������

�	�����
����������
��������	�-��!����
�0��

)�*�������	0	+�����(������	����	���	����	����-�+��
�������
����������	�$����

�	� �� ����� ����� ��� �� �
���� ���
�
��� �����
	� ������� �� ������ >�������	
��� �������@��

$ �	�� �������	� ����
�������� ���� � �� 	���� �����	�	� �	� � �
�� �����������	�
�� ���
��

����	�>�%�����������	
����
��
����
�
�	��������@��

������
���
�	�����	������
����� ������� ���� ��� �������� �	� ������	� ��	��
�
��� � ��

���������%����
�������������
����
�
���������
������	�����	����� ��������	������������

���
�
�	�������
��
������
�
���
	���
�	����������
���� ����� ��
��������		����
���� ��

	�����	�
��� ����
�
����$��
�-..0=�

)�*�������	1	+���������	��������-�+��������
���
�	������
	���������>����"���#����

������ �	$"��� #"�$"�@�� $ ���� ����"�� �� A$�������� ������B�
��
����	� $ �� ��� �
	�

�	������
	����	���������
��� ����������$��
	�������������#���
	�����
!���
����
�
������

�
	�
�	������ >��!�
���� ���� ����
���
����
����
�	�����	� ���
��� � �� ����
��� �����		@�

���������
	�� ����������� ���%�������������
����$ �	��
�������������������������	�

��������������
���	$"������#"�$"��	��	��

�
���
���

��������
���

�������

	�������
���	�

������

$��
�

�

�

�

� �

��

�

�

'(3����� ���	
���
��� �"�+,##����
% �"-� �.�#��%"��/� �0����%"��

&�&�	������%	����������	

� �� ��
�� � ��������
�� � �� ��	
��� ��� ��
�
��� ������
��	�
	� ��� ����
��� �� 	��
��

	������� ���� �����
��� ��� ��	'� ���
��	�
�� �� ����������
��� ���
��������� � �	��
��
	�

$��� �������������� ���� ����	����������
�����������
������ ��	������

����������

	� �����
��� ���� �		����
��� �
���� ��
�	� ��� �� �
���
���� ���� $ ���
	� ������ � ��� ����

�

����������
����������������

,�� ������	�� $
� � � �� ��
�
���� �����	��� -..0�� $
� � �	� ����
���� ����� 	�������

������ ��
�
��� ������
��	��
�� �
	� $��
� ��	�� ������
���
	� ����	��� ��� ������������

���
�����
��	�������
��
�����������
�
������	�����
���������������
��
������
��	�

����������$
�
�� � �� 	���� �
���� 	�������� ����� �����
��� ��� �
�������� �����	� ��� � ��

	������
������
���������	��	��

4
�	�� ��� ����� ���
�
�
��
#��
��� ����
���
�������� ���� �
%
��� ���
�
�
��� 	����� ��� � ��

��������
������
�
���
��� ���������������	��
	�����
�����

)�*�������	 2	 +��������3�����	 ��%����"(-� � ��
�
�
��
#��
��� �����
� �� ��
�	� ��

	�!������������
������
�	����������������������
���������
����	������	�>�����?�����@�

�	�
�������������	��������	����
����
�������
�
��������$
� ����������
	����=�

.��)�����������
������	���=������.��������=����=D�>��!��>@��-.����	
��>�����@0��������@��

$ ������!��>@�
	��������
����������
�������$���
!���
����
�
����

	���-..0����� �$�
������$��
��

:��)��	���������
�������
�
���������=���=D�>���������A���E�.��������B���@��	�� �� ��=�

����=�%���	�>��@�D�������������&=�.�����F�&��������������&��

5�%������������
���������
�
����
������
�	��	���$ ��������������
��
���� �
������	�

	����	�����=�

)�*�������	 4	 +������%	 ��%����"(-� � �� ��
�
��� �����
� �� ��
�	� �	�
����� ���

����
�
���������� ����
������������������������	�$
�
��
���$
� � �������������������

$
� � �� ��$��
���� 	������� ��� �����	���
��� � �� ��	���	� ��� �������������
�
���
��	��

� �������
� ��	��
�	�� �������������������� ���
�������
�
����������>
������		���@�����

������
�����������	�
�	����
�
���
	����=�

.��4
���������������������=�������D��������������	
���
���������
�����
��	�� ���������	������%
	���

:�� �����D�����	
������	����
����=�

������=D�>�������-.����	
��>����@0������A#�������������E�#�����"��D�������B@��

����+���������
�	������>$����������!��>@��'�����A���������B���@���������������
�����������	����		��

'�������	���������
�������
������������=D�>�����������	
������������@��
����+���������	����1��

1��)��	���������
������	����>������	���$������ ���$
� �����������������	�!�����	@=�

�������D�>�������-����	
����!������!���.0��������
��	����@��

�����(�D�>��!��>@��-.����	
��>����@0�������@��

�����)�D�>�������-����
��G�.������	
����
�0����
����
��	����@��

$ ����� ���������	�����
����	������	�������
��	��������
����
��	��
	�

���	�������
���
�����:��

7��+�&�	���=���=D�>��������������	�A��B����������	�A��B�H�A�B��������@��	�� �� ��=�

%���	�>��@�D�%���	�>�@�������=�%���	�>��@�D�����������&=���F�&����������&��

/��+������
�	������>$����������!��>@��'�����A���������B���@�����(����������

'�� �
�
1
����
��� ������
����� �������

I�
�������� � �� ������ �����
� �� ����
��	� ��� ���
�
���� ����	� ��� �����
��� ������

������ ���
�����
��	� $
�
�� �� ����
������ �
���� ��
�� ���� ��� � �� 	���� �
��� 	������	�

������
��	�����
��� ��� � ��$ ���� 	�������� �	��������������	���
�� -..0���
����
�����

	���������
�
���
	���	������� �������	��
��
������ �
!���� � ��������������
�������
	�

���������$
� � �� 	�������� $ �	�� �����	� ���� ��������� ��� �����	����� ��� � �� ��	���
���

�
���������
�����	�
���	�������
���
�����:��<�����������������
������� ����
�
���������

����
�
��� ��� � �� ����'	� ��	����
��� 	���	������	� ������� ������ 	��
��
��� ������	�

�����������
�����	����������
�����
��	�
��������������
�����
�����
��	��

.�%���	 ��� 5���� 	��
��
��� ����
��� ���� ���
���
�������
�� ��
�
��=� >�@� C� ��� ��
�
���� ���
�� ����� $
� � � ��

�		��
�������
���>�@�C�	��
���������������
�
���
�	
������� ����
���>�@�C�	��
��������������
� ���������
�
����

+���
	���
���
��
	�$��� ��������
���� �����
�
��������
� �	���
��������
�
���
��	�

�� � �� 	������ �
���� �����
��� C� ����� ���������	� ��� � �� ��$� ����� ���� ���������

���
���������,���
�
�����	�� �������� ��		���	�� ����		
�
�
�����������������		����

� �������	������
����
��� ���������
����
������
�	��9�$�������
	�������������	
����

>��� ���	�� �
������@� $ ��� ��
�	� ���� ������ $
� � ������		
��� �����
� �	� �%���
�
���

���
��� �	�
���
����
���� ���������
�	� ���$���� ��&������ �����	�� ��� ��������� �
	�

�
��
������
�� ���� ��� �		����� � ��� �
���� �����
���
	� ����		��� ����� ��� �������
����

	����
�����
����	�� ��	�� �������	������
��	�
����������
������		�����

5�%��� ������
��	� ����
�����
��� ��$� �����
���
���� � �� �
���� �������
��� ����

�����
��� ������		���� ����	� �����
�� ���� ��	��
����� � ��
�	���
��� �����
� ��
	� �����

����	����� ������-..0��$
���� �������
������ �����$�	������	�
�������
���������	��

)�*�������	 5	 +���������	 ��%����"(-� �
	� �����
� �� ��
�	� �	�
����� �� ��$� �
����

	��������������
�	���	
���������
������� ���
���
����	���
�
����������	�
���
�����
���

$��� $
�
�� �� ��
�� ��
��� �
����
����
�
��� ���� � �� ��������� �����
	� 	��
�� ���� � ��

���
�
���
	�����
	�������
������������=�

.��4
���������������������=�

����������D������>$���������	
��
�>$���D�6�������	
����!�D�.@@��
�������������
�����
��	�� ���������	������%
	���

:��)��	���������
������	����>������	���$������ ���$
� �����������������	�!�����	@=�

�������D�>�������-����	
����!��$��0��������
��	����@��

�����(�D�>��!��>@��-.����	
��>����@0�������@��

�����)�D�>�������-$���G�.������	
����
�0����
����
��	����@��

����	��
��� ���������
����$���	
�
�������	��
��
���
��� ����
�
��������
� ���

1��+������
�	������>$����������!��>@���	������A��������$��B���@�����(����������

�

>�@�

��

>�@�

�)�� �(

��

>�@�

�� �(

'�'����� ���	
���
��� �"�+,##����
% �"-� �.�#��%"��/� �0����%"��

5����� � ���
��������	�� ���-..0��
�	���
���������
���
�	������
	�	������
��� ����$���

�������� ����� ���� ����
�� � �� 	��
�� ����� +����� $
� � ��������
��� ��� � �� ��
�
����

	�������
����
�
��� ���
�	� ����
����	�� �
	� ������	� ��������
�
��� ���
�	���
��	�

�������������
����������	
�
��	�
��� ��	������
���

)�*�������	�6	+��������	��%����"(-��
	������
� ����
�	��	�
��������
����
�
������
��� � �� ��
�� ���� �� ������ �� ��� �����	� $
�
��
��� $
� � ����� ��� ��� ��������� � ��

�����
� �� 	��
�	� � �� ��������� ����� >
�� ����		���@�� ����	� �� ��$� ����� ����� ����

������
�����������	�
�	����
�
���
	����=�

.��4
���������������������=�������D��������������	
���
���������
�����
��	�� ���������	������%
	�J�

)����
�����$
� �����
��	������
��	����������������
�	���
��	���

��
��-..0��

:��)��	���������
������	����>������	���$������ ���$
� �����������������	�!�����	@=�

�������D�>�������-����	
����!������!���.0��������
��	����@��

�����(�D�>�����������@���
	�	 ������������������������������

�����)�D�>�������-����
��G�.������	
����
�0����
����
��	����@��

����	��
����
����	��
�	������
	������������ ��$
	����������	�������������
�	�����

1��+���������
�	������>$����������!��>@����������A�����B���@�����(����������

�
�
�������-..0��� �������
��������
� �����������	
��������	���������������
�
���

���$�������� �$���������	���������������
���$
�
��� ��	������
���+�	���
����������

�	����
����	������	����������
�	���
��	��$
� ���������	 ���������� ����	��	���������

���� ��������� ��� 	��	�!����� ������
��	�� � �� ������� ���� ��� 	���� �	� ��� �%������ ���

	�����������
������� ���	��'	�	
����

,�����
�
������� �����	��������
�
���������
��	�
������	������������	������������
���

�����
���������
��������
� ���$
� �$���������������
������	������������
����	�

����
	���� � �����
�� 	������ ��� � �� 	���
�
��� �����
��	��� ��� ���� �
�	�� 	
� ��
������

	����� ���	�� ���� ���
	�������		���������	��
�� ���
	� � ��	�����	�����������
����

	�!��������������
�������
�	���
����
�������
��
	���!�
����	
�����������
�	������
�	�����

�� �����
��� $
� � ����������� ��
�
��� ��� � �� ������ ����
�� <��������� ���
��� ����

��
�
��� ���
�
�
�	� ����� �� 	
����� 	������� ���� ��� ��������� �	� ������
���� ����� ��

	�����
����
�������
�$������ �	�� �������$
��������
� �� �	�����������
�����

)�*�������	��	+(�#��%	��%����"(-��
	������
� ����
�	��	�
��������
����
�
�������

��� � ����
�������� ����������� �����	�$
�
��
���$
� � �	� �������������� �
�� �������

�����
���
	�	���
�
������$�������������������	��$
� �����	
�
�������� �
�������������	�

��� ��
�	���
��������
� ���� �������
� ��
	��	���
�������	
�����
����$��� �����	����

������
�
�
���������
���������
���$
� ���������������
�����
��	�$
�
��� ��������

	��������	�� ��	���
�
������
�	���
������
�
�
�	�������
�����
	��
��
	�
�	���
�
���� ���

�������	
��������
��������

��
��-..0������
��
	�����		������������������������
��>
��
��

�%
	�	@� ��� � �� �����	��
�������
���� ����� $
� � �� �����
�� ����� ���
�	� 	�������� $
� �

	����	� ���� ����������� ���
�����
��	� ����
����� ������ >
�� ���@�� � ���� ���� �
	�

�����		��� ��
����
�
������� ����������
��	 ��������
����
��������	�����
��������$=�

.��4
����������*�����������	��+�����=�*�����D�����������*���	
�J������
���
:��+�����	���	�:��1���������
��������
� �����*���	
���������*����������
���
�	�������

1��+�����
�	���
��������
� ��$
� �*+��
��	��>
��*�
	����
������@�������������$����	�

������	�� �� ����(�D�>��������*+��
��	����@�������	��*����������
���
�	�������

7������%������������
���
�	�����	�$
� �$������������
��� ������	�����$�*�>
�����@J�

�
	�	����
	���!�
���������$ ���*�����	��������������
�������
����������

'�� �
�
1
����
��� ������
����� �������

/�	��"��#��%	�����������	

+�����
������� ����
��
���	����� ��)�+�������	���
�����������$���
	�
��������	����

��������
�
��������������$�����������
$�����������
�
#����������
�����
������
�
���

	���
�	�-3��.30��

,������
����������
$������������
�
���
	�
������������������
�
������������
�	�

���$���� �	��'	� ���
��	� $
�
�� �� 	
�����
	������ � �� ��
���
	� � ��� � �� �� ��
��� ���

��
�
���������
��	��������
�����������������
��	����%���������� ��	�������%�������

�������
�
���
��	����������
�������
������
������������� ��������
���
�	���
�������
	�

��
��
���� � �����
�� 	�������)��	�!�����������������
���
�	��������������%� ������

���$���� ���� $��
	����	� $
� ����
�	� ��������� �������		��	�� +��� ���
$����

��������
�
��� ����$	� �	� ���
����
��� ���	��� 	��
	���
�	� -30� ��
��� ��� �%�������

���������
�	� ���� � �	� �����	���
��� ���	
	����� ��
�	� ��� $��
�� $
� � ���� ���

�%� ���������$������������
����	��	�	������������������ ��� ����

+��������� 	�� ����������
�	� �������������� ������������� � ��
�����
���� 	���������

��� � �� ��
�
���� �	� $���� �	� � �� �%������� ����������� �
���� ������ C� ����������

������
���
�	�����	� ���� ��� ������ K�����L� � �� �
���� ���� $
�
�� � �� ������ 9������

�������� ���������� �����
� �� ���� 	��
	����� �%�����
��� -..0�� $
� �
	� ����	�� �	�

	
����� �	� 	������� 	�����
���� ����
�	� ���
�� ���� � �� �
���� �����	���� ����
�
��� ���

���
�
����$�������
����
��
������	
	�������
�	����$��
��

+������%�����
���������	
	�������
�	����$��
�������	��	'�$��
	����	������ ��������

�����������
�
���C����$����C�
	��%���
��������������
��������
��	����$����������
��	�

���
���������
���������	��	��	���
����	�����	
	�����	�����
������������������
������

� �� ��	���	� ���
��
�
����� ���
�
�
�	�� 4��$���� ��������
�
��� �������
�	� ���� � ��

��� ��	����� ����������������	������
���
	�����������	�����
#�������$��

������
��	� '���>���������@� �	����>��������%#�@� ������>�����@� *���>*�����������%#�@�

'���>���������@�
��������
�

������,���
� � �

�	����>����

����$��@�

��������
�

$���
���-�

��������
�

$�����%#��
� �

������>�����@�
��������
�

������,���

��������
�

%#��
���-�
��"�� �

*���>�������

����$��@�

.���������
�

������
�

�������,��/��

.��������
��

$���
���-/�

.���������
�

.�+��!� �����%#���

��+��
����%#�//��

.��������
��

$�����%#�/�

.���������
�

�������,��/��

.��������
��

$���
���-/�

A�������B���

A*������B�D���

M�+���������
��
	���	�����	����������������� �	��������
��	��	������
��
���

�$ ���$���G�.�����
�������������������������
����������
�
���
�������������	�	�

!����	���4��$������������
�
��������
��	�>	������
�@��

�����
��	������������	������ � ��� ��
�
���������
��	���� � �� �%������������������

�
���� ������ ����
��� �
	
���� ������������ �����
�	� ������
��� ��� � �� ��
�
����

�����	����,��
	���$�������� ����	��	������������$��
����� ��	����	������	����
��������

���
��	� � ��� ���� ���
�����
��� ��� ���� �������� ���� $ ���
	� ������ �
���� �%�����	�

������������� ���
���
����������	
���������	������
�
�������� �������
�
����	��

'�(����� ���	
���
��� �"�+,##����
% �"-� �.�#��%"��/� �0����%"��

0�	�����������	���	.���"��	��� 	

,���
	��������� ��������������
��������������� �	�������%��������������	����� ��

���������������
�����	���������
�
���������
��	��

��� � �%���	
��� �	� �������� ��
� ��� ������ ��� ������������ ������ ��������
���

�	��	������ ��	�����
�������
�
�����������������	����������������
���� �
�����
�
�
�	�

�� ����������
��� �
���� ��� ��
��� ���
�������	�� +��
�
�������� ��&��� ����	���
�����

�	����	� ��� � �� ��
�
���� �����	��� -..0� $���� ���	������
�� �� $��� ��� ��	���� ���
�
����

�������
���	 ��
��������%� ������

<���������� ����	���	�����
	�$��
������������������ �����������
���������	������

�����
�����������4���
�	���������������
������������	�!�����	������
����	������	����

	������ 	�!�����	� ���� ���
�� 	������	�� � �� ����������� �
���� ������ ���� ���

����	�������
���� ����������� ���
��� $
� � ���� ��� ������ �	�����
�� � �� 	
�
����

��� ��
������
�������	��

+	�����		
�����
����
���������� �����	���� ��
���	�
���
���������	
��
���	�����������

	��������������� ����	
	�����
	�$��
�
	����	
�������

(�	
��	�� ������������ ��� �� ���������� 	�	���� �����	����
��� ���	
�
�
��� ��� � ��

���	������������� �
	�����������	�����		���
������������ ���������$��
��

4����
	������	���� ����
	����
�����
��������
�
#��� ���������������������+��������

+�� ��
���4������-8��./0�����
�	������	�������"N��(�	
�������� ��++4��
����������
	�

���
���	������
���� 	�������� �	���
����� ��	
����� ����
����� ����� ��� �����	
�
�����

���������� ���$���� ���
��	�����
���
�� ��� ��
��� ����	�� +�� � ��������� ��� $�
�
���

�
	��������	��������
������
�
�������
���
��	� ���������������
�����������
�����������

�����
�����$
� �++4�� ,�� ����
�������+���������
���� ���� -:0�
	� ����� ��� �%�����
�	�

���&���	�
���
	�������������

�� ������%�(����	

����
��� � ��
	� ���� �%���		��� ��� (��
	� 5��

��� ���� �������������� ����

�
	��		
��	����� �����
���

��*��������

-.0�� +���
�� ����)������� N�����) ���� ���� I����� N��� ����� ���
���� O�=� � �� ��������� �
����

�������
��� 	�	���=� "���� 	��������	� ���� !����� �����		
���� <���
���
�� ��	���	�� O���7��

����	�.8:�.2;��.33;�

-:0��+������+���������
��������8�6=� ���=PP$$$����������P�������	P����
�����:667�

-10��(��� �������<����������Q�=����������������������
��� ������������
�������
���
����
�
���

	�	����,�,���,������������ ��,�������
�����)��������<���
�<��
��<����
��������	�./3�.81��

�
���������.331�

-70�� (���������� "�)�+��� 9�������� R�=� <���
���
�� ��� ��
��� ����	=� ������ ��� � �� ���� ����

��	���� �� �������	��,��R�������5���	�
��)����������
�����S.666�����
�����O�������.33/�

-/0�� "��
	�� +�9��� �����)��� R��� T�=� Q������
#
��� ������
����� ����	������
��� ��� � �� 	��������

�����������
�������������,������������ ��:66:�+)<���������������)������������������

)�������
���*��
������	�/2�;8��5�$�������	����+��5��������:66:�

'�� �
�
1
����
��� ������
����� �������

-;0�� "���	�� <��� R�#����� ���� 4������� <��)��� <���
��� 9��� �� ����� ���)�=� +� 	�!��������	���

��&������
������������ ���� �
���� ������	�	��<���
���
�� ����	� ���� +���
���
��	��O���.2��

,		���1������	�:73�:88��:66:�

-80��Q
������(�=�++4�C�� ��+��������+�� ��
���4�������

 ���=PP$$$�����		��
��
������P ���P��P:3.U�
����.U686:�����

-20�� ,���	���� <��� <��	
��� ,�=� �����(�	���)�����������)�������
�� "
	��
������ Q����$�����

)������������������)�������
���*��
��O���.:��5��1������	�1:3�1/6��:661�

-30�� N�
��������� T��� ��	� �� ���� *�	� �� T�=� ������
�	���	��� ����	���
��� ����������� ����

��������
�������
���
��	��,������������ ��,�������
�����*��
	 ������+������������	���
���

<����	�����+��
�������	������	�:17�:/:��Q����,��
���+���	��������������.33;�

-.60��<��
����*�I���(������
��R������<�=�",O+=��%��������������������	
	�$
� �����
���
��

	�����	��)����� ������ ��� 9����� ������	�
�� ������
��� 	�	���	�� ����	� 7.;�7:1�� R�	�

+�����	����+��+��
��.332�

-..0��5��

����(������	
���
�����=���$���	�����������
����
������� ��
����,������������ ��8� �

I�	��I��������)���������� ��� +������	�
�� "�����	�	� ���� ,�������
��� ��	���	�� ����	�

186�127��"��	�����Q������������������:661�

-.:0����������I�������
���N�=��O,"=�"�	
�������
����������
���������
������&����������	��

	�	����� ,III� ����	���
��	� ��� N��$������ ���� "���� I��
����
���� O���/�� 5��7�� +���	��

.331�

-.10�� ��	
�

�$
�#��<��� N��	��*��� ��	� �� ����*�	� �� T��� <�� �� ��=� ��$���	� �� ��������
���

����	���
��� ������ �� � �� ��������
��� ���
�
��� ������� ,�� ������ ��� � �� :.	�� ,�������
�����

)���������� ��� O���� R����� "�����	�	�� ����	� .37�:6/�� V��
� �� �$
�#�������� ����������

.33/�

-.70�� ��	� �� ���� *�	� �� T�=� ����	���
��� 	������� ���� ��������
��� �������
�� ���������

��� ��
���C���	����������!�
������	��,������������ ��2� �I�),<�"�����	����	���� �Q�����

*��
	 ��� ��� "�����	�� ,		��	� ���� ,����	���������
��)�������
��� ,�������
��� ��	���	�

>I"�Q�2@������	�1.�7:������� �
���5��$����+���	��.33/�

-./0����������(�=�+���$���
���������$��
��O
������	���	��"��������:66:��

 ���=PP�
���	�	���	����P��P�
���U��$U����$��
�

-.;0���������<��
�����
������8�6=� ���=PP$$$����������P�	���:667�

-.80�� *����� N�=� � �� ��	
��� ��� �%����
���
��
�
����� ����
���
�� ��� ��
��� ��� ��������
���

����
���
�� ��� ��
���� ,�� ������ ��� � �� 4���� � ,�������
�����)���������� ���� W�����

)����������
���
	�	�>,)W)�'3/@��(�
&
����)
����T����.33/�

-.20�� *�	� �� T��� N��	�� *�=� 9
	����� ����
��� �	� �� ��� ��
	�� ���� ������������ ��������
��

��������
��� ���
�������	�� ,�� ������ ��� �,"I�,����������
�
��� ��� 5������
�
�����"�����	��

��	���	������	�8;�2/��5�$�������	����+��4��������.33;�

-.30��*�
 ���*�I�=�)�������
�
�����	��� ������������ �������� ���� ��	������ ����� ����	�� ,III�

����	���
��	����)�������	��O���18��5��.:������	�.722�./6/��"��������.322�

-:60��*�

����Q�=���
��
���	���������
#��
���	������
�	��������
����������	���
���������������

+)<�����	���
��	����"�����	����	���	��O���.;��5��.������	�.1:�.26��<��� �.33.�

-:.0��*�
		������"�����+���Q
�������"�=�)����	
�
�������	���� �$
� ����
������������� ,III�

<���
���
���O���:��5��.������	�.:�:/��.33/�

-::0��X
����(�=�)���������
�������
���
����� ��
��=� 	�����
�	��������	
	��������
����������

,�� ������ ��� � �� 4���� � ,�������
�����*��
	 ��� ���)���������
��� I�
�
��� ��	���	�� 5�$�

������	����+��5��������:66:�

�

The Middleware Support for Consistency in Distributed
Mobile Applications*

Anna Kozlova, Dmitry Kochnev, Boris Novikov

University of Saint-Petersburg

Universitsky pr., 28, Peterhof, Saint-Petersburg, Russia

anet@ntc-it; dmitry@smartphonelabs.com; borisnov@acm.org

Abstract. This paper presents a model of the distributed middleware with

transactional support. Our approach provides for high availability of the

system in the fluctuated mobile environment and a high degree of a

consistency when network connections are stable. The proposed set of the

high-level operations allows high level of concurrency while processing

XML-like data structures. A concept of the "accumulator" is introduced,

providing for efficient conflict resolution during reconciliation.

Keywords: nomadic system, mobile transactions, high-level operations,

accumulators.

1. Introduction

Business goes mobile. Cellular mobile networks allow for high-speed data

transfer. Cellular networks coverage becomes more and more comprehensive. The

number of high performance mobile devices which support complex applications is

increasing from year to year. One of the most promising directions of the mobile IT-

industry [1] is the development of applications with the vertical architecture known

as business-to-employee (B2E) applications. Such applications provide solutions for

interaction problems between the company and its employees, for example,

enterprise resource planning (ERP), customer relationship management (CRM) or

sales force automation (SFA).

The mobile environment imposes a number of restrictions on the applications:,

such as limited sizes of memory and storehouse of the data, small computation

power and small power resources, etc. [2].

The performance and communication characteristics of a cellular network may

fluctuate depending on a place, time of day, weather, activity of subscribers and

many other factors. A stable cellular network possesses good communication

characteristics (i.e. "big enough" data amounts can be transferred "quickly enough"

between the client and the server) and the intermittent connection (i.e. network

connection can not be kept alive for a long time).

*
 This research was partially supported by RFBR grant. No. 04-01-00173

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()'��� 	�

'�� �
�
*
����
��� ������
����� �������

1.1. Problem statement

The basic problem which should be solved when creating a B2E-system is to

adapt a well-known design of wired solution, which uses wired business processes

for the mobile environment. The usual, albeit not the best, approach frequently used

in the industrial applications, is as follows: the conflicts which arise after

disconnection in such applications, are resolved by using one of the predetermined

rules, for example, that the user should choose a solution for each conflict manually.

In this article we propose a solution, which involves both application-transparent

and application-aware adaptation approaches [3].

The system, which is considered in the scope of this paper, has a nomadic

architecture [4], and the clients do not communicate directly among themselves. The

primary server is a high performance computer, which manages numerous

connections and large amounts of data. The client manages a local replica of data

and allows disconnected operation. Technological restrictions and features related to

implementation of client application for such system are described in detail in [2].

The purpose of this paper is to design the prototype of middleware for the mobile

distributed system with the support of transactions, which provides high level of

availability of system in the unstable (fluctuated) mobile environment and high

degree of a consistency of the data in the environment of a stable mobile network.

2. Related Works

Distributed systems include traditional distributed systems, nomadic distributed

systems, and ad-hoc mobile distributed systems. The current document is focused

on the concept of the middleware for nomadic systems. The detailed middleware

review is resulted in [4].

2.1. Middleware

Most of existing middleware technologies, such as object-oriented middleware

[5], message- and transaction-oriented systems, hide from the application the

heterogeneity and the distributed nature of its environment. This approach, although

very efficient and cost-effective in "wired" environment, is not well-suited for the

systems that work in wireless environment [6].The basic problems arising at moving

of the system to a mobile environment are synchronization of the data (i.e.

restoration of data consistency) and maintenance of availability (inapplicability of

data locking) [7].

One of the major issues targeted by data-sharing middleware systems such as

Bayou [8], Coda [9], its successor Odyssey [10] and Xmiddle [11], is the support for

disconnected operation and data-sharing.

The proposed solution inherited some features from Bayou [8], but the proposed

solution supports the correct histories on the clients and on the server and allows

processing the reconciliation and further replaying of histories instead of applying

replica merging.

'����� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

As Odyssey [10] the proposed solution introduces context-awareness and

application-dependent behaviors. It focuses on efficiency of data granularity and

improves Odyssey’s architectural solution on application-aware approach by

offering server-based accumulator abstraction.

Xmiddle [11] allows mobile hosts to share data when they are connected, or

replicate the tree-like data and perform operations on them off-line, when they are

disconnected. Reconciliation policies are specified as part of the XML Schema

definition of the data structures that are handled by Xmiddle itself. The weakness of

such system is that the policies of reconciliation are statically defined and strongly

related to the data structures used by the application. We improve this approach in

such a way that the application may contain additional server-side units

implementing conflict resolution policies as accumulators.

Tuple space based systems for logical and physical mobility such as JavaSpaces

[12], Lime [13], Limbo [14], and IBM T Spaces exploit the decoupling in time and

space of these data structures in the mobility context. Tuple-spaces are multi-sets,

which means that every tuple can be duplicated in the space. Tuple spaces are very

general concept that looses data structures, so this approach cannot be applied to the

highlighted problem because it has irresolvable disadvantages with data

reconciliation.

2.2. Mobile Transactions

The classical concept of transaction is not applicable in a mobile environment

[6, 7]. There are some approaches, which take into account the specifics of mobility,

expanding classical definition. Most approaches use replication of the data on a

client part of the application, which raises data availability. Pessimistic approaches

[15] do not support replication and disconnected operation, and thus cannot be

applied to the highlighted problem.

The model described in this paper uses the optimistic approach. The close

approaches are presented in [16] and [17], where the commitment is processed on a

local replica, and then the lifecycle of the application proceeds in the assumption

that the commitment will be confirmed by the server. In [16] the results of the same

transaction processing on the client and server sides may differ; and the correctness

of the result defines by client application.

As well as the approaches using broadcasting [18, 19], our approach reduces

ascending traffic (from the client to the server). For this purpose read-only

transactions are being committed on the client side without any confirmation from

the server. The local serialization graph is used for recognition of transactions that in

any way cannot be serialized on the server. The similar ideas are represented in the

approach of [20] where the server computes so called dependency information and

broadcasts it to clients.

The detailed review focused on the computational model and ACID-properties of

approaches to mobile transactions are represented in [21].

'�1 �
�
*
����
��� ������
����� �������

2.3. Data Model & Operations

Instead of Document Object Model (DOM) by World Wide Web Consortium,

the offered data representation uses unique identifiers for each node due to

distributed and replicated nature of the data.

There are a lot of data models, which have been known for a long time, that use

the abstract high-level operations defined as sequences of atomic operations. The

concept of multi-level transaction [22] is most interesting for our purpose. In most

cases the specially defined high-level operations commutate with each other in spite

of the elementary operations laying in their basis. Use of the similar approaches

raises concurrency of transactional operation in the system.

The data considered in this paper may have a non-numerical nature and complex

internal structure, therefore some semantic conflicts arising between operations can

not be represented as pseudo-conflicts, and thus universal commutativity can not be

achieved as in pseudo-conflicts between Withdraw() and Deposit() operations

working with account [22]. The decided problem is to define the operations so that

the number of irresolvable conflicts would be as little as possible.

In [23] the ideas of the concurrent video model related to high-level operations

and unique identifiers applied to the linear data model. We admit that the further

development of these ideas will allow applying the similar approach to the XML-

structures.

3. Data Model

The data using by most B2E -applications (e.g. sales force automation) may be

represented as tree-like structures semantically associated to graphs, which are

stored in XML documents. Naturally, the organization consists of departments;

employees work in departments; each department develop some projects, related to a

client base; each projects relates to a group of employees; clients are related to the

projects, etc. Tree structure allows sophisticated manipulations due to the different

node levels, hierarchy among nodes, and the relationships among the different

elements, which could be defined.

The data used in the internal representation turn out from the normal XML by

applying the transformation, which moves the attributes into the affiliate nodes

(Figure 1). Thus, the target XML has the following properties:

¶ Non-leaf nodes contain the navigational information only.

¶ The data values are stored only in the leaf-nodes.

¶ The references are stored only in the leaf-nodes. Each reference-node points to

no more than one node. Also, the reference-nodes point to navigational nodes

only.

-ID
-CHILDREN_ID_SET []
-PARENT_ID
-REFERED_BY_ID_SET []

Navigation-Node

-ID
-DATA
-PARENT_ID

Data-Node

-ID
-PARENT_ID
-REFERS_TO_ID

Ref-Node

Figure 1. Node structure

'�2��� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

Moreover, each node is assigned to the unique identifier due to distributed and

replicated data representation. This unique identifier is kept in all replicas.

A replica presents determined by a subscription a subtree of the tree of the

master replica (Figure 2.1, 2.2). If the subscription contains a pair of nodes, so that

one node is an ancestor of another, then nodes of intermediate generations also will

be included in a subscription.

By default, the data in leaves stores according to the concept of application-

transparent adaptation [3]. In addition to this, the system allows to organize access

to some data items according to the application-aware concept. For this purpose the

leaf of a tree should detail the "accumulator" abstraction offered by us in Section 5.

The client’s replica contains only the elements of a simple type (e.g. a number or a

string) instead of accumulators.

(1) (2)

Figure 2. Client’s replica as a part of server’s replica (1) and the replica on the client side (2)

4. Operations

In the model described in this paper the following operation above tree structures

are defined: insert_node, insert_data, and insert_ref, delete, update, select and

move. The operations defined in such way are commutating with each other in most

cases. The formal definitions are presented further.

Definition. The insert operation (Insert(parent_id, sibling_id): newID)

operation inserts a new node in the data tree as a child of the node with parent_id

identifier and as a next sibling of the node with sibling_id identifier. If sibling_id is

not set, the operation creates the first child of the node with parent_id identifier. If

any required node is not found or has inappropriate type, this operation reports

failure.

Definition. The insert operation for navigation nodes (InsertNode(parent_id,

sibling_id): newID) inserts a navigation node using Insert() operation.

Definition. The insert operation for data nodes (InsertData(parent_id,

sibling_id, data): newID) inserts a data node using Insert() operation according to

the following algorithm:

1. Execute Insert (parent_id, sibling_id)

2. Associate the created node to the data entry

Definition. The insert operation for reference nodes (InsertRef (parent_id,
sibling_id, toID): newID) inserts a reference node using Insert() operation according

to the following algorithm:

1. Execute Insert (parent_id, sibling_id)
2. Find a node with toID identifier. Report failure if search failed

'(� �
�
*
����
��� ������
����� �������

3. Associate the created node to the node with identifier toID

4. Insert the identifier of created node into REFERED_BY_ID_SET

Definition. The update operation for data-nodes (Update(id, new_data)) sets

the data entry associated to the node with id identifier to new_data. If the required

node is not found operation reports failure.

Definition. The delete operation (Delete(id)) removes the full subtree with the

root node identified as id.

1. Find a node with identifier id. Set it as current node

2. Remove current node from the CHILDREN_ID_SET of its parent node

3. If this node is a reference (REFERS_TO_ID is not empty) then removes

current node from REFERED_BY_ID_SET of the node with

REFERS_TO_ID identifier

4. Apply Delete() recursively for each reference nodes listed in

REFERED_BY_ID_SET of the current node

5. Apply Delete() recursively for each node listed in CHILDREN_ID_SET of

the current node

6. Remove the current node

Definition. The select operation (Select(id)) returns the node with identifier id as

an object or reports failure if the required node does not exist.

Definition. The move operation (Move(id, new_parent_id, new_sibling_id)) sets

the subtree with root node identified by as a child of the node with new_parent_id

identifier and as a next sibling of the node with new_sibling_id identifier. If

new_sibling_id is not set, the operation inserts the first child of the node with

new_parent_id identifier. The provisional algorithm follows:

1. Find nodes with identifiers id, new_parent_id, new_sibling_id. Report

failure if such nodes do not exist.

2. Assign a node with new_parent_id identifier as a parent to a node with

identifier id

3. Insert id value after new_sibling_id into the CHILDREN_ID_SET of the

node with new_parent_id identifier.

4. Remove identifier id from CHILDREN_ID_SET of the old parent of id

In
se

rt
N

o
d

e

In
se

rt
D

a
ta

In
se

rt
R

e
f

U
p

d
a
te

D
e
le

te

S
e
le

c
t

M
o

v
e

InsertNode T T T A T* T T

InsertData T T T T T* T T

InsertRef T T T A T* (1) T

Update A T A T T* T A

Delete T* T* T* T* A (2) T*

Select T T (1) T (2) A T*

Move T T T A T* T* A

Table 1. Commutativity table.

'('��� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

The Legend.
¶ Additional assumptions for the pairs of operations marked as T* are as follows:

Op1(X) ƺ Op2(args) == Op2(args) ƺ Op1(X) only if XÎ Parent(args)

where Parent(args) is a conjunction of parent sets of all elements of args, and Op1 is Select() or

Delete().

¶ Additional conditions dependent on the parameter values of the operations (and independent on

database state) are required in the cases marked as (1) and (2)

4.1. Commutativity Table

The above table describes the commutativity aspects of proposed operations. The

pairs of operations that always commutate marked in the table as A (ALWAYS). If
the disjunction of the argument sets of both operations is empty, the pairs of

operations marked in the table as T (TRUE) will commutate. Naturally, the

commutativity between some operation and insert*() requires a weaker assumption:

the NewID generated by insert*() should not equal to any argument of the second

operation.

Thus, the proposed high-level operations in most cases commutate with each

other in spite of the elementary read and write operations laying in their basis. For

example, operations Move() and InsertNode() may be represented as a composition

of elementary read-write operations as follows:

Move(id, new_parent_id,

new_sibling_id) @

@ Read(id) Ǔ
Ǔ Read(new_parent_id) Ǔ
Ǔ Read(new_sibling_id) Ǔ
Ǔ Write(id Ą getParentID()) Ǔ
Ǔ Write(new_parent_id) Ǔ
Ǔ Write(id);

InsertNode(parent_id, sibling_id):

newID @

@ Read(parent_id) Ǔ
Ǔ Read(sibling_id) Ǔ
Ǔ Write(parent_id) Ǔ
Ǔ Write(newID);

If id==parent_id there is a conflict between elementary operations, instead of it, the

proposed high-level operations commutate with each other.

5. Accumulators

Accumulators are intended for "intervention" of the application to the conflict

resolution. As against simple types, the accumulator stores operations applied to

some initial value of simple type instead of the explicit value of the element. Thus,

accumulators allow on the air replaying the operations. It decreases number of

conflicts between update operations, i.e. reduces number of transaction aborts in the

system.

Definition. The base value is value of simple type. To compute the value of the

accumulator on any moment of time one shall apply the operations stored in

accumulator to that base value.

Definition. The accumulator stores operations in the operations collection. Each

operation in the accumulator has two timestamps. The insertion timestamp (ITS)

'(� �
�
*
����
��� ������
����� �������

defines the moment when this operation has been added into the accumulator; and

the other one is the execution timestamp (ETS) that equals to the client replica
timestamp (CRTS) that denotes a timestamp of last connection to the server with

participation of the given client, because from server’s point of view the client has

no clock. The operations are defined and implemented at the application layer.

Definition. The external functions are intended to get additional information

about the accumulator. External functions may depend not only on the operations

and the base value of the accumulator, but also on other parameters, for example,

another accumulator. An external function semantically depends on the period of
time, if it depends on operations that have been applied during this period. The

external functions are defined at the application layer.

Example. “The daily average balance on the account” may be an external

function for the account represented as accumulator. The value of this function can

be used for operation Op defined as “monthly interest of the account”. The

accumulator allows inserting into the history transactions that could not be inserted

according to application-transparent approach. If after applying of the operation Op

the server receives the operation Op1 that influence to the result of applying Op,

such operation will be just added into the accumulator. As a result, the current value

provided by the accumulator, will allow for Op1 applying, because this value is

calculated "on the air".

5.1. Accumulator Design Details

Two typical designs of the collection are introduced: list- and set-accumulators.

The application developer may also implement his own designs of the collection.

The main difference between list- and set-accumulator collections is that in a list all

elements are strictly ordered and in the set all elements are stored without any order.

Uniqueness of elements in set is not important in this context, because each

operation received by the server has unique identifier. This identifier consists of

unique identifier of the client that causes this operation and unique identifier of this

operation on that client.

For each type of collection one of the proposed strategies of modification may be

applied: the first strategy is so called insert-only strategy; the second one is insert-

and-remove strategy. The methods of replaying the operations for both strategies are

defined further. The application developer may choose between those methods

according to time-dependence of external functions and conflict presence between

defined operations.

5.2. Set-Accumulator

The time concept cannot be applied to sets, because it would define the artificial

order. Also, the values of the external functions do not depend on the order of

elements; it means that each operation in the set should commutate with each other.

Inserting or removing the new operations in such accumulator occurs as inserting

or removing the element in the set. Replaying of some operation in set can be

'(3��� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

implemented by two methods: as replacement of old operation with the new one, or

as inserting a compensational operation and then inserting of the new operation.

Because of commutativity of operations, the results of each method are the same.

The only difference is that in the first case the removed operation will not appear

anymore in the accumulator; in the second case inserting the compensational

operation requires its explicit existence.

5.3. List-Accumulator

Because of strictly defined order, each operation stored in the list-accumulator

has a context of other operations. (By the way, the list-accumulator may be applied

as a set, because each operation has its unique identifier, and the context may be

ignored in the application.) There are two kinds of list-accumulators: insert-only and

insert-and-remove list-accumulators. Inserting or removing the new operations in

such accumulator occurs as inserting or removing the element in the set. The

replaying strategies for the list-accumulator follow.

Definition. An insert-only list-accumulator supports only one way for

replaying: insertion of a compensational operation and insertion of the new

operation. There are following cases related to time-dependency of the external

functions and the commutativity of the defined operations:

¶ Case 1. There are some time-dependent external functions in the accumulator

Á If all operations in the accumulator commutate with each other,

inserting of the compensational and new operations occurs according to

the rules of detection of the ETS.

Á Else, if some operations in accumulator do not commutate with each
other, inserting of the compensational and new operations occurs

according to the rules of detection of the ETS. Because the operations do

not commutate, the application should warrant the semantic correctness

of the replaying.

¶ Case 2. All external functions are time-independent
Á If some operations in accumulator do not commutate with each other,

inserting of the new element in any place of the list does not damage the

rules of detection of the ETS because all external functions are time

independent. Thus, there are several cases to replay the operations:

o Insertion of the compensational operation and the new operation just

after the old operation

o Insertion of the compensational operation just after the old operation

and inserting the new operation according to its ETS

o Insertion of the compensational and the new operations according to

their ETS

The compensational operation and the method of replaying are defined by the

application.

Definition. An insert-and-remove list-accumulator support two approaches for

replaying: inserting of the compensational operation (the same way as insert-only

case, considered above) and removing of the old operation. If some external function

'(� �
�
*
����
��� ������
����� �������

depends on time some information related to the old operation may be lost, so this

method damages the semantic correctness of such function.

¶ Case 1. All external functions are time-independent

Á If some operations in accumulator do not commutate with each other,

inserting of the new element in any place of the list does not damage the

rules of detection of the ETS because all external functions are time

independent. Thus, there are several cases to replay the operations:

o Removal of the old operation and inserting of the new one with old

ETS

o Removal of the old operation and inserting of the new one with the

new (actual) ETS

The application defines the replaying method.

5.4. Purging of Out-of-Date Operations

While the system works the number of the operations in the accumulators grows.

To improve the performance of the system, it is necessary to purge out-of-date

operations and to replace the base value with the new one from time to time. The

new value is a result of applying the operations that will be purged to the old value,

but generally

F(b, (op1, op2, op3))¸F(op1(b), (op2, op3)) (*)

This issue may be solved using additional assumption about the external function:

it must depend on limited (explicit) period of time, i.e. depend on final number of

operations. This period of time refers to the dependent window of the external

function. Of course, this number may be great. Thus, the operation became out-of-

date if its ETS t satisfies to the following predicate:

} of windowdependent |max{
..1

iii
mi

current Ftttt --
=

<

5.5. Accumulators Advantages

The offered strategies allow the application to define the criteria of a correctness

using definition of the operations and external functions. Thus, the application is

permitted to influence resolutions of conflicts.

Purging of the accumulator from old operations also may be initiated by the

application, it allows the server to manage the instance of accumulator in the

efficiently manner.

6. Protocol for mobile transactions

The proposed protocol is based on low-level protocol that supply data transfer

between mobile hosts, for example, HTTP over GPRS or UMTS. The protocol must

satisfy to the following conceptual requirements:

1. The server must reconcile histories from all clients and keep the master replica

in consistent state.

'((��� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

2. The clients must propagate their changes to the server and receive from the

server the changes made by the other clients that modify the local replica of this

client.

3. To achieve the appropriate level of availability the client should operate in

disconnected mode.

4. During disconnected operation the client should manage two local replicas of

the data. The primary replica one should be identical to the master replica

stored on the server at the moment of the last connection to the server. All

changes during disconnected operation should be applied to the tentative
replica.

5. The local conflicts (the conflicts on the tentative replica) must be resolved by

the client without any participation from the server.

6. The client must commit read-only transactions.

7. To save its computational resources, the client should process the garbage

collection, i.e. to clean the memory from the unused structures for conflicts

resolving on tentative copy.

The typical scenario of interaction between hosts (Figure 3.1) gives a large scale

view of the system work. First, the client subscribes for the data and receives from

the server a replica marked with a special CRTS. When disconnection occurs, the

client continue working with its replica Further, at some moment depending on the

adaptation policy of the application, the client restores the connection and send its

changes to the server. The server reconciles the information received from the client

with the master replica and returns all changes that modify client’s replica. Then

client reconcile the received changes to its local replica. The large scale of the

protocol is shown on the Figure 3.2.

Client A Client BServer

Subscription

Subscription Request

Subscription Request

Update Propagation

Update Propagation

Reconciliation

Compensation

Compensation

SubscriptionDisconnected
Operation

Client (Tentative Copy)

Client Side

Client (Primary Copy) Server

Reconciliation

Replacement of the
tentative copy with

the primary one

client commited transactions,
timestamp

General Local
Commitment

Compensation

Replaying of the transactions
that began after the general
local commitment

Disconnected
Operation

all committed transactions, new client replica timestamp

(1) (2)

Figure 3. System lifecycle (1) and the protocol (2)

6.1. Client Side Algorithm

1. Disconnected operation

¶ Permanent concurrent execution of the transactions on the tentative copy

and manage the local serialization graph

¶ If the server response that was requested in the previous execution of the

step #2 has been received, go to step #3

'(� �
�
*
����
��� ������
����� �������

¶ After returning form the step #3 and #4 may continue with the step #2

2. Updates propagation

¶ Pause disconnected operations (Step #1)

¶ General local commitment processing, i.e. commitment of all local

transactions

¶ Purge all update transaction from the serialization graph

¶ Mark all read-only transactions

¶ Send the commit_request that includes all update transactions and the

CRTS to the server

¶ Continue with the Step #1

3. Compensation

¶ Receive the part global history that modifies the client’s replica and a list

of client’s transactions aborted by server

¶ Cascadely abort of all transactions that read from transactions that have

been aborted by the server

¶ Add the received transactions to the local serialization graph

¶ Cascadely abort of all transactions that conflicts with transactions that

have been committed globally

4. Reconciliation

¶ Replay the history received from the server on the primary copy

¶ Replace the tentative copy with the primary copy

¶ Pause disconnected operations (Step #1)

¶ Purge the serialization graph from all transactions with server timestamps

and from read only transactions marked on the Step #2

¶ Replay the transactions from the serialization graph on the tentative copy

¶ Continue the disconnected operations (Step #1)

6.2. Server Side Algorithm

1. Receive the transactions from the client in serial order with the CRTS.

2. Insert the received transactions into the global history using histories merging

procedure.

3. Send to the client all transactions that modify the local replica of that client and

have not been sent to him yet. Send the list of local transactions that have been

aborted by the server.

6.3. Histories merging procedure

The following algorithm is intended to the operation with non-accumulator

arguments. Otherwise the accumulators’ technique should be applied.

The operation op having timestamp t can be inserted into the history H if

)).,,(),,((,),,(iiiiiii txiopopoptxiopttHtxiop AA ¹Í" >

If it is true for each operation in the transaction then this transaction can be

serialized.

The policy the transaction aborting may be defined on the application side. For

example, it is possible to abort a transaction with the minimal timestamp. This

'(���� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

algorithm may be improved using the method [24], where for each data element the

timestamp of last read, write etc. are stored in the special structures.

6.4. Approach to Information Selection for Transferring to the Client

To determine which transactions should be sent to the client, the server uses the

CRTS. If the pre-image of the client's replica at the moment of the CRTS on the

server does not contain any elements of accumulator type, the CRTS uniquely

determines the data of this pre-image at the moment defined by the CRTS. Thus the

server should send to the client all operations from the global history, which has a

timestamp greater than the CRTS and that has the arguments from the pre-image of

the client’s replica at the moment of the CRTS.

The previous approach cannot be applied if the pre-image of the client's replica at

the moment of the CRTS on the server contains some elements of accumulator type.

For example, after the moment of the client A CRTS the client B inserts an operation

with the ETS less than the client A CRTS, and this operation does not commutate

with the subsequent operations. So, the value of the accumulator at the moment

defined by the client A CRTS was changed, but it cannot be propagated to the client

using the previous approach.

In the case of elements of accumulator type, the following approach is applied for

reconciliation client's replica with the server's data. The server sends to the client not

only the operations but also the values of the element having accumulator type at the

moment of the CRTS only if there is an operation stored in the accumulator that is

satisfying to the following predicate:

CRTS > ETS && CRTS < ITS

This value should be included into the client's primary copy. Use of this approach

warrants the appropriate level of consistency of the client and the server replicas.

To save the computational resources of the client host it is possible to transfer the

whole new client’s replica together with the operations. However, it brings an

additional load onto the network.

6.5. Correctness of the protocol

Lemma 1. Inserting the read-only transactions into a global history does not

influence its serializability:

21

22

11

 :

HHHHhistoryserialtheH

CofhistoryserialtheH

CofhistoryserialtheH

ÉØÉ-$
-"
-"

Proof.
1. Note that H1 and H2 differ only with the read-only transactions.

2. According to the proposed protocol the history

S1 := (Op(H1) \ {opÍOp(H1) | opÍ some read-only transaction of H1}, <H1)
is equivalent to

S2 := (Op(H2) \ {opÍOp(H2) | opÍ some read-only transaction of H2}, <H2)

(as it defined in [24]) and these histories are equivalent to some serial history

according to the server side algorithm.

'(1 �
�
*
����
��� ������
����� �������

3. Insert all read-only transactions of H1 and H2 to S1 (and denote it as S1') and to

S2 (and denote it as S2') according to its orders in H1 and H2

4. Since read operations do not conflict with each other, S1' and S2' are equivalent.

5. So, the global history S1' containing all transactions of all clients has been

found. Also, this history is equivalent to some serial history.

Lemma 2. The purging of the serialization graph on the client side is correct, i.e.

the transactions, which would begin after the purging, would not conflict with

transactions that have been removed from the graph.

Proof. On the client side the new transactions that began after the general local

commitment has been processed are succeeding the transaction that has been purged

from the local serializing after the commitment, so that any transaction will not go

through local commitment. Thus, the purged transactions do not influence the

processing of new transactions during disconnected operation.

Further, on the server side new transactions will receive the timestamp of the

moment of the global commitment of the transactions purged on the client side

before new transactions started. Thus, from the server point of view the new

transactions are also succeeding the transactions that were locally committed on the

client before.

Statement. Prove that the assumption of general local commitment of all

transactions on the client side is essential. It means that it is impossible to warrant

that purging of the serialization graph would not damage its integrity.

Consider the following example: the edge t1Ąt2 of the serialization graph was

assigned to of the conflict between transactions t1 and t2 cause by operations q1(x)

and p2(x). The transaction t2 has been committed and purged from the serialization

graph, but the transaction t1 continue the executing. Then t1 executes operation q'1(y)

which has to cause the conflict with the operation p'2(y) of transaction t2, but the

transaction t2 has been purged. Thus, the graph has to contain a cycle but it is an

acyclic naturally.

Theorem. The proposed protocol is correct.

Proof.
1. The correctness of the server side algorithm is demonstrated by the procedure of

merging histories at the server.

2. Lemma 1 and Lemma 2 prove the correctness of the client side algorithm.

7. Conclusion

The model of a middleware-system offered in this paper provides a model, which

supports a limited form of consistency in a distributed mobile environment, where

classical transaction models are not suitable. This approach is suitable for typical

nomadic network and may be applied to a wide class of enterprise applications

working in mobile environment.

Use of special set of high-level operations is one of the most important features of

the introduced solution. These operations work with the data having a tree structure

with XML-styled references. The key strength of the given model, in contrast with

other approaches, is that changes of the replica transfer as high-level operations and

not as simple data items. In most cases, two operations permute with each other. The

'(2��� ������	
� ��� ���
���
� ��� ��������� �+�� �% ,�-�#�� �.//"#�� !"#� �"��%����0&� ��

commutativity of those operations is based on their semantics that is defining by the

target application. Thus, it reduces number of transaction aborts and, therefore,,

availability and performance of the system increase in comparison with classical

transactional operation in mobile environment.

Apparently, within the framework of the offered model, two update operations

being the most often operation cannot be permuted. In general, a conflict like that

may be resolved only on the application layer according to its semantics. We

introduce abstraction of accumulator for effective implementation of the application-

aware approach in the application layer.

According to this approach, the proposed model allows application to define the

policy of adaptation for each node of the data tree. Unlike simple types, an

accumulator does not store an explicit value, but it contains only the base value of a

simple type and the collection of operations to be applied to the base value. The

operations are determined on application layer as well as the external functions that

return additional information about the node of accumulator type. In our prototype

system there are two different implementations of accumulator concept called list

and set. According to its semantics, the application may choose the suitable

implementation for each node of accumulator type.

The distinctive feature of our system is the ability of client to resolve local

conflicts without communication with server. To achieve the integrity of the client's

replica, its representation includes external nodes with two-way navigation. These

nodes help to recognize hierarchical relationship and allow the client to resolve local

conflicts. Resolving of local conflicts improves the performance of client part of

application and decreases communication cost.

The protocol we use has a significant limit: it requires general local commitment

of all transactions before sending of any data to server. So, short local transactions

should wait completion of long ones. That issue reduces efficiency of a client.

Our future research is focused on the issues related to replica and cache

management, system scalability and system performance analysis. Also we plan to

develop the strict theory of accumulators.

Acknowledgements

We thank Katja Perminova from SmartPhoneLabs, LLC for the comments which
helped improve this article.

References

[1] D. Kochnev Features of mobile applications development, Mobile

Communications/Russian Edition, No. 10, 2002 (in Russian).

[2] D.S. Kochnev, A.A. Terekhov Surviving Java for Mobile, IEEE Pervasive Computing,

Vol. 2, No. 2, Apr-Jun 2003. P. 90-95

[3] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, 15th ACM

Symposium on Principles of Distributed Computing’96, Philadelphia, PA, USA, pp. 1-7,

May 1996

[4] Cecilia Mascolo, Licia Capra and Wolfgang Emmerich. Mobile Computing Middleware,

http://citeseer.nj.nec.com/596660.html

[5] W. Emmerich Engineering Distribued Systems, John Wiley & Sons, 2000

'�� �
�
*
����
��� ������
����� �������

[6] L. Capra, W. Emmerich, and C. Mascolo. Middleware for Mobile Computing: Awareness

vs. Transparency (position paper). In Int. 8th Workshop on Hot Topics in Operating

Systems, May 2001.

[7] T. Imielinski and B. R.Badrinath, Mobile wireless computing: Challenges in data

management, Communications of the ACM,Vol. 37, No. 10, October 1994, pp. 19--28.

[8] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M.M. Theimer, and B. Welch. The bayou

architecture: Support for data sharing among mobile users. In Proceedings Workshop on

Mobile Computing Systems and Applications. IEEE, December 1994.

[9] Satyanarayanan, M, Kistler, J. J., Kumar, et. al., Coda: a Highly available File System for

a Distributed Workstation Environment, IEEE Trans. on Computers, 39(4): 447-459, 1990.

[10] M. Satyanarayanan, Mobile information access, IEEE Personal Communications, vol.3,

no.1, pp. 2633, 1996.

[11] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A Data-Sharing

Middleware for Mobile Computing. Int. Journal on Personal and Wireless

Communications, April 2002.

[12] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces, Principles, Patterns, and Practice.

Addison Wesley, 1999.

[13] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A Middleware for

Physical and Logical Mobility. In Proceedings of the 21 st International Conference on

Distributed Computing Systems (ICDCS-21), May 2001.

[14] N. Davies, S. P. Wade, A. Friday and G. S. Blair, Limbo: A Tuple Space Based Platform

for Adaptive Mobile Application, Proceedings of the International Conference on Open

Distributed Processing/Distributed Platforms (ICODP/ICDP '97), Toronto, Canada, 27-30

May 1997, pp291-302.

[15] S. Madria and B. Bhargava. A Transaction Model for Improving Data Availability in

Mobile Computing, in Distributed and Parallel Databases, 10(2), 2001.

[16] J. N. Gray, P. Helland, P. O’Neil and D. Shasha. The Dangers of Replication and a

Solution. In Conference on Management of Data, pp. 173-182, Canada, June 1996.

[17] E. Pitoura and B. Bhargava. Data Consistency in Intermittently Connected Distributed

Systems. In Transactions on Knowledge and Data Engineeging, Nov. 1999.

[18] E. Pitoura and P. Chrysanthis, Scalable Processing of Read-Only Transactions in

Broadcast Push, IEEE International Conference on Distributed Computing Systems,

Austin, 1999

[19] J. Shanmugasundaram, et. al. Efficient Concurrency Control for Broadcast Environments

Univ. of Massachusetts Technical Report 1999.

[20] Il Young Chung, Bharat Bhargava, Malika Mahoui, Leszek Lilien Autonomous

Transaction Processing Using Data Dependency in Mobile Environments, In: Proc. of The

Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS'03)

p. 138, San Juan, Puerto Rico, 2003.

[21] P. Serrano-Alvarado, C. L. Roncancio et M. Adiba “Mobile Transaction Supports for

DBMS” In: Proc. of 17ièmes Journées Bases de Données Avancées (BDA'2001) , Agadir,

Maroc, 2001.

[22] G. Weikum, H.-J. Schek, Concepts and Applications of Multilevel Transactions and

Open Nested Transactions, In Database Transaction Models for Advanced Applications,

ed. A.K. Elmagarmid, Morgan Kaufmann, 1992.

[23] B. Novikov and O. Proskurnin. Towards collaborative video authoring. Proc. of the

ADBIS'2003, 370-384, Dresden, Germany, 2003.

[24] P. Bernstein, V. Hadzilocs and N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, Reading, Mass., 1987.

��������������	�
�

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()'��� 	�

A Matrix Model for XML Data*

Jaroslav Pokorny, Vladimir Rejlek

Charles University, Faculty of Mathematics and Physics
Malostranske nam. 25, Praha, Czech Republic

pokorny@ksi.ms.mff.cuni.cz

Abstract. Many modern applications produce and process XML data, which
is queried in its both structural and textual component. To ensure such
functionality, it is required to approach this data with both database and
information retrieval methods. We start with a convenient vector space model
and extend it with information about structural properties of an XML data
collection C. According to the occurrences of a term t in the XML structure of
C we represent t by a vector of weights. To reduce its lengths, a form of a
DataGuide for C is considered with a path as a structure unit. Then, an XML
document D is represented by a matrix D of weights. In the paper, we discuss
possibilities of ranking in this model and adjusting D to reflect associations
among paths in the DataGuide for C. Experimental results for a standard test
collection are given and discussed.

Keywords. XM

L, vector space model, matrix model, ranking

1. Introduction

Many modern applications produce and process XML [15] data, which is queried
in its both structural and textual component. This is especially useful if we consider
a casual user who looks for information in web-based database systems or intranets
containing XML data, like online shops, airline reservations, digital libraries
catalogues or any other, and does not expect an exact answer. It is anticipated even
that in the future, many websites will be built from XML documents. A remarkable
characteristic of such XML collections is that they are mostly heterogeneous, e.g.
they contain data from on domain but, possibly, valid w.r.t different DTDs or XML
schemes. A part of these collections will be managed as XML databases [4] and will
also provide a way for users to search their contents. To ensure such functionality, it
is required to approach these websites with both database and information retrieval
(IR) methods.

It is clear that IR approaches will be useful especially in cases of text-rich XML
documents. As it is observed recently [9], current XML query languages like Xpath
and XQuery are rather data-centric than document-centric. In other words, they are
no longer appropriate for searching in such environments as they can not cope with
the diversity of data. Hence, a research of integration of database querying and IR in
context of XML is undoubtedly interesting and promising trend. Despite of the fact

* This research was supported in part by GACR grant 201/03/0912

'�� �
�
*
����
��� ������
����� �������

that a variety of systems that support such methods have been proposed,
conventional IR techniques [14] cannot be employed directly. The reason for it is
that two types of queries should be dealt with: content-only queries, i.e. the
traditional ones in IR, and content-and-structure queries.

Particularly, a number of techniques to extend the vector space model have been
designed, e.g. [1,6,7,9,10]. In [9] so-called indexing nodes are explicitly indicated.
They are disjoint and group some XML tree nodes. These structures are the basic
units of indexing. The approach [6] uses indexing the pairs (t, c) through weights,
where the term t is qualified by the context c in which it appears. The c depends on
the path to t. Measuring of a context resemblance introduces another coefficients
into query processing. In [10], a static index is built for basic indexing nodes and
then, during query processing, vector space statistics are generated. A common
property of these approaches is that these statistics are used to compute a similarity
value for an XML document and a query and a subsequent ranking of these values.

Authors of [7] have proposed to use an extension of the traditional vector space
model given by Fox [8]. Fox developed a method for representing in a single,
extended vector different classes of information about a document, such as author
name, terms etc. In [5] a weighting is applied to document fragment sequences that
are manipulated by XQuery queries. The associated weighting algorithms are then
fundamental for a rank operator.

A usual critique of the mentioned approaches is that they not sufficiently reflect
the structure of XML documents. A more advanced, two-phase evaluation schema is
proposed in [1]. First, a modified vector space model is employed to obtain
similarity scores for the textual nodes of XML trees. Then, the scores are propagated
upward in the XML-trees with a possible modification and possibly new scores of
other nodes are generated.

We use a vector space ranking technique in context of the entire collection C of
XML data. A document D is represented by a matrix D, whose each row vector wt
associated with a term t contains the weights of t for each path occurring in C. For
the path representation C we use a modification of well-known DataGuide technique
[11]. Obviously, some weights in wt will be equal to 0 dependent on whether t is
contained in path or not. The query Q is also associated with a matrix Q. The matrix
model proposes to evaluate the degree of similarity of D with regard to the Q as the
correlation between the matrices D and Q. Experiments have shown that it is not
possible to rely only on this score. Instead we adjust the matrix D by an additional
data structure, so called a path transform matrix, which reflects relationships among
paths in the DataGuide for C. Then, the resulted transformed matrices TD and TQ
are used for query processing.

The rest of the paper is organized as follows. Section 2 repeats some basics about
the vector space model. Section 3 describes its extension to the matrix model. A tree
representation of the entire collection of XML data is defined here and associated
weighting and ranking system are proposed. The notion of a path transform matrix is
introduced and discussed in this section. In Section 4, we discuss some issues
connected with the matrix model. In Section 5, we report our experiences in using
the matrix model in the application domain given by the well-known Shakespeareôs
collection. Finally, we conclude in Section 6.

'�+��� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

2. Vector space model

Suppose a collection C of documents. In the vector space model, documents are
treated as points in a high-dimensional space. As document Di Í C is represented by
a vector of term weights, i.e.

Di = [wi,1, wi,2,é, wi,m] Í <0,1>m

where m is the number of terms considered in C and i is the document number. The
weight wi,j is usually calculated as TFi,j * log(N/ni), where TFij is the number of
times the term tj occurs in a document Di, ni is the number of documents in which tj
occurs, and N is the total number of documents in the C. Similarly, a query Q can be
expressed as

Q = [q1, q1,é, qm] Í <0,1>m

To compare a query with a document, the most commonly used measure is the

so-called cosine similarity, i.e., the cosine value of the angle between both vectors.
So, we can define the similarity between a document Di and a query Q as

() =QDSim ,i

ää

ä

==

=

m

j

m

j

m

j

qw

qw

1

2

1

2

1

)(*)(

*

jji,

jji,

3. Matrix model

We will now consider a collection C of XML documents containing large
portions of text. Our goal is to model such data not only as XML trees, as usually,
but also with respect to their text characteristics as it is usual in IR. Clearly, a pure
vector model is not enough, as it does not reflect a structure of XML data.

We will use a lightweighted tree-like data model for handling XML documents,
in which we create nodes for elements and attributes. Edges model the containment
relationship between elements. The textual content of a element E with subelements
(so called mixed content) is represented as a set of child nodes of the E node. Leafs
nodes in the tree contain a piece of text (possibly empty). We neglect a difference
between elements and attributes. In other words, we deal with attributes as with
elements in the model.

Our matrix model is based on the vector space model. It only changes the
meaning of the term weight in a document. In the vector space model a weight is
expressed by a real number specifying a term weight for the entire document. In the
matrix model, the term weight is expressed by a vector. Such a weight should
reflect a distribution of the term in the XML structure of the document. Then a
document Di is represented as a matrix

'�� �
�
*
����
��� ������
����� �������

km

kmimimi

kiii

kiii

i

www

www
www

,

,,2,,1,,

,2,2,2,1,2,

,1,2,1,1,1,

1,0

...
............

...

...

>Í<

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

=D

where k denotes the number of paths in the XML structure of the entire document
collection C. The value wi,j,s Í <0,1> is the weight of the term tj on the path s in the
document Di.

3.1. DataGuide for collection

To apply the above ideas for a collection C of XML data, we need a data model
of C. A tree representation can be used also in this case. Such tree can be modelled
by the well-known DataGuide [11]. The DataGuide has been developed for the
OEM data model originally [2]. Transferring the notion of DataGuide to the XML
data model is in principle straightforward. One must however decide whether the
DataGuide describes only the primary structure or the secondary structure as well,
i.e., constructs such as IDREF. We easily will not assume mutual references among
XML documents in our approach.

The idea of a DataGuide is to provide a summary of the structure, generated from
the collection C. A DataGuide for a collection C, DGC, of XML documents is a tree
TC fulfilling the following conditions:

¶ each path in C exists in TC,
¶ each path in TC exists in C,
¶ paths in TC are unique (but not in C).
Notice, that in the case of non-existence of a common root it is possible to add

formally such node to the forest of trees and get the required tree. Every leaf node of
the tree is annotated with the IDs of those document leafs it represents (i.e. those
reached by the same label path as the index node). In fact, a leaf of the tree is
associated with a bag of element contents (PCDATA). Remind that DGC is not given
uniquely in general and does not support ordering in the XML documents in C.

Example 1: Consider a collection C1 with three documents in Fig. 1. We index
terms "David", "Morrell", "Caine". The associated DataGuide DGC1 and the list of
its paths are depicted in Fig. 2.

ß
The resulting tree is usually much smaller than the forest of document trees

constructed from C (although theoretically its size is linear in that of the document
forest). Hence it can be supposed to be held in main memory even for large
document collections.

'����� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

book

author

Morrell

surname firstname

David

book

author

David Caine

book

author

David Morrell

document D1: document D2: document D3:

Figure 1. Collection C1 of XML documents.

 book

author

surnamefirstname

paths:

a) book->author
b) book->author->firstname
c) book->author->surname

Figure 2. DataGuide for C1.

3.2. Weighting and Ranking

Assuming a DGC we now try to construct a matrix. Given a term t, path p, and
document Di, the term weight wi,t,p is defined as

TFt,p / mp

where TFt,p is the number of t occurrences on p and mp is the number of all terms
associated with p. Our matrix model will be used for tree queries, which cover the
core XPath [16] constructs. Consequently, we express such queries in a similar way
as documents, i.e. as matrices. For an evaluation of queries we will inspire by the
original vector space model and introduce a similarity Sim1 as

() ää
= =

=
m

l

k

j
jljlii qdQDSim

1 1
,,,1 *, (1)

where i, m, and k have the same meaning as above.

'�/ �
�
*
����
��� ������
����� �������

Example 1 (continued): The (3-dimensional) matrix D for collection C1 can be
represented in the following form.

 a b c a b c a b c

D1: [(0 1 0) (0 0 1) (0 0 0)]
D2: [(0,5 0 0) (0 0 0) (0,5 0 0)]
D3: [(0,5 0 0) (0,5 0 0) (0 0 0)]

 "david" "morrell" "caine"

We evaluate the queries in Fig. 3 in this model.

book

author

first name

David

book

author

David

query Q2: query Q1:

Figure 3. Queries Q1 and Q2

Thus, we obtain matrices

 a b c a b c a b c

Q1: [(1 0 0) (0 0 0) (0 0 0)]
Q2: [(0 1 0) (0 0 0) (0 0 0)]

 "david" "morrell" "caine"

Then, we get the results

Sim1(D1, Q1) = 0
Sim1(D2, Q1) = 0.5
Sim1(D3, Q1) = 0.5
Sim1(D1, Q2) = 1
Sim1(D2, Q2) = 0
Sim1(D3, Q2) = 0

ß
The results based on the Sim1 are not too successful in Example 1. Particularly,

Sim1(D1, Q1) = Sim1(D2, Q2) = Sim1(D3, Q2) = 0 is not in accordance with our
intuition. The reason is that for different XML structures their similarity is equal to

'�0��� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

0. Since our goal is to process documents from heterogeneous sources, e.g. with
different DTDs, it is necessary to add another additional structure to our
considerations which will enable to describe associations (similarity) among paths in
DGC.

3.3. Path Transform Matrix

By a path transform matrix we understand a square matrix A of dimension k ³ k,
where k is the number of paths in DGC, ai,j Í <0,1>, and ai,i = 1. For each path the
matrix A contains a vector that expresses a relationship (similarity) of the path to the
other ones. This similarity is expressed by a real number from <0,1>, where 0 means
that paths have nothing common and 1 means that the paths are the same.

Example 1 (continued): The path transform matrix could have a form

A 1 a b c
a 1 0 0
b 0,5 1 0
c 0,5 0 1

We can observe, that the weights on the path book­author­firstname have

to be 0.5 times transformed on the path book­author. Similarly weights on the
path book­author­surname are transformed 0.5 times on the path
book­author. Recalculating all weights (see (2)) we obtain matrices TD and TQ

 a b c a b c a b c
TD1: [(0,5 1 0) (0,5 0 1) (0 0 0)]
TD2: [(0,5 0 0) (0 0 0) (0,5 0 0)]
TD3: [(0,5 0 0) (0,5 0 0) (0 0 0)]
TQ1: [(1 0 0) (0 0 0) (0 0 0)]
TQ2: [(0,5 1 0) (0 0 0) (0 0 0)]

 "david" "morrell" "caine"

and associated values of Sim1

Sim1(TD1,TQ1) = 0.5
Sim1(TD2,TQ1) = 0.5
Sim1(TD3,TQ1) = 0.5
Sim1(TD1,TQ2) = 1.25
Sim1(TD2,TQ2) = 0.25
Sim1(TD3,TQ2) = 0.25

ß
Since Sim1(TD2, TQ1) = Sim1(TD3, TQ1) = 0.5 we get the same result as without

A, but due to the paths transformation, the output also contains D1
and Sim1(TD1,TQ1) is also equal to 0.5, although we work with documents of not the
same structure. The highest Sim1(TD1,TQ2)=1.25 concerns the document D1. It is
caused by the fact, that query Q2 is a subtree of D1. For the first query the structures

'�� �
�
*
����
��� ������
����� �������

of D2 and D3 are similar, but their element contents match only partially ("david" vs.
"david caine" and "david morrell"), i.e. with the result 0.5.

The high similarity of D1 a Q2 is caused also by the path transform matrix. This
matrix favours documents with more detailed structure (i.e. in path of form
book­author­firstname and book­author­surname). It is due to the
transformation book­author­firstname 0.5 times on book­author and
book­author­surname 0.5 times on book­author. In contrary the inverse
transformation from book­author to book­author­firstname is equal to 0
as well as the transformation book­author to book­author­surname.

Now we describe in detail, how the transformation is processed. Let D be a
matrix of dimension m³k, where m is the number of all terms of C, k is the number
of all paths in DGC, and wi,jÍ<0,1>. Let A be a path transform matrix of dimension
k, where ai,jÍ<0,1> and ai,i=1. Then a one step transformation is a mapping
1st_tr(D, A) returning again a matrix of dimension m³k, TD, whose items wi,j are
defined as

wl,i = max(wl,i, maxj=1,é,k(aj,i * wl,j)) (2)

A transformation of the document matrix D by the path transform matrix A is the

transitive closure of 1st_tr(D, A).
Example 1 (continued): We will try to calculate similarities for a more

complicated path transform matrix.

A2 a b c
a 1 0,2 0,2
b 0,5 1 0
c 0,5 0 1

book­author
book­author­firstname
book­author­surname

We obtain the matrices TD and TQ

 a b c a b c a b c

TD1: [(0,5 1 0,1) (0,5 0,1 1) (0 0 0)]
TD2: [(0,5 0,1 0,1) (0 0 0) (0,5 0,1 0,1)]
TD3: [(0,5 0,1 0,1) (0,5 0,1 0,1) (0 0 0)]
TQ1: [(1 0,2 0,2) (0 0 0) (0 0 0)]
TQ2: [(0,5 1 0,1) (0 0 0) (0 0 0)]

 "david" "morrell" "caine"

and associated values of Sim1.

Sim1(TD1,TQ1) = 0.72 Sim1(TD1,TQ2)=1.26
Sim1(TD2,TQ1) = 0.54 Sim1(TD2,TQ2)=0.36
Sim1(TD3,TQ1) = 0.54 Sim1(TD3,TQ2)=0.36

ß
Since the current form of function Sim1 favours a little the document D1 because

of 1s in its matrix, we normalize the vectors used in definition of Sim1. Most

'�'��� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

approaches to IR scale usually document vectors so that they all have unit length.
The length of a vector is calculated by summing the squares of all the components
and taking the square root of the answer. Consequently, we obtain a score function
based on the following formula:

() ä
ää

ä
=

==

==
m

l
k

j
jl

k

j
jli

k

j
jljli

i

qw

qw
QDSim

1

1

2
,

1

2
,,

1
,,,

2

)(*)(

*
,

Recalculating our example,

Sim2(TD1, TQ1) = 0.62 Sim2(TD1,TQ2)=1
Sim2(TD2, TQ1) = 1 Sim2(TD2,TQ2)=0.62
Sim2(TD3, TQ1) = 1 Sim2(TD3,TQ2)=0.62

the resulted ranking of documents answered for the query Q1 can be {D2 , D3, D1}.
For the query Q2 we can get {D1, D2, D3}.

4. Some results and issues

Statement 1: The similarity Sim2 is (a) irreflexive, (b) non-negative, (c)
commutative, and (d) not transitive.

Proof: It is easy to verify the (c) property. The proof of (a) can be shown by
example of Sim2(TD3,TD3) = 2. In general, the result of Sim2 can be from <0,m>, i.e.
(b) holds. For example, it is 0 in the case, if the sets of terms with non-zero weights
have empty intersection for documents Di, Dj, i ¸ j. Consequently, from the result of
Sim2(D1,D2) it is not possible to decide that D1 a D2 are the same. The (d) property
follows, e.g., from the fact that Sim2(D3, D1)+Sim2(D1, D2) = 0 < Sim2(D3, TD2) = 1
for D1 = (0, 0, 1), D2 = (0, 1, 0), and D3 = (0, 1, 0), i.e. the triangular inequality does
not hold. Thus, the similarity Sim2 is not a metric.

Example 2: In Fig. 4 the document D2 in collection C2 distinguishes from D1
and D3 in its structure, since it uses the element <title> instead of <name>.
Obviously, D2 comes from other source. Fig. 5 shows an associated DataGuide.
Since we want to work with all such documents evenly we set up the similarity
between paths book­name and book­title as 1 in A.

book

title

First blood

book

name

First blood

Document D2: Dokucent D1:

book

name

First blood

Document D3:

Figure 4. Collection C2 of XML documents

'�� �
�
*
����
��� ������
����� �������

name title

book
paths:

book->title
book->name

Figure 5. DataGuide for C2

The matrix A

A3 a b

a 1 1
b 1 1

book­name
book­titul

and the modified document matrix based on DGC2

 a b a b
TD1: [(0,5 0,5) (0,5 0,5)]
TD2: [(0,5 0,5) (0,5 0,5)]
TD3: [(0,5 0,5) (0,5 0,5)]

 "first" "blood"

used for the calculation of Sim2 provide the following results:

Sim2(TD1,TD1)=Sim2(TD1,TD2)=Sim2(TD1,TD3)=Sim2(TD2,TD3)=2

Due to the transformations specified in A, the similarity of a document to itself is

the same for all documents. It is in accordance with our requirements. We can
conclude that the impossibility to determine the sameness from the results of Sim2 is
rather contradictory.

ß
Consider the example of transformations between book­author

and book­author­firstname, book­author­surname. We can observe that
asymmetric path transform matrix favours some structures. Asymmetry of
transformation in one direction and vice verse between two paths causes that the
path with better transformation contributes more to the resulted similarity, i.e.
documents with this structure will be favoured. For usual situations we can assume
that the similarity between two paths expressed with one number is enough. Thus,
the path transform matrix can be symmetric. On the other hand, a favoring some
path can be beneficial as it is documented in Example 1.

'�(��� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

We conclude with an issue how to deal with a mixed content in this approach. In
the matrix model an element with a mixed content will be indexed as the union of its
partial text parts. For example, the element

<x>text1<z>é</z>text2<y>é</y><x>

generates paths x­z, x­y, and x, where x refers to text1 Ç text2.

5. Experiments

To use the matrix model in practice for a XML data collection C, it is necessary
to explore

¶ set of terms,
¶ list of collection paths,

and to set up the associated path transform matrix. The first two data structures are
partially generated during lexical analysis of entering the XML documents. With
paths it is possible to construct a DGC. A considerable theoretical foundation behind
DataGuides can be found in [12], which proved that creating a DataGuide over a
source database is equivalent to a well-studied problem concerning conversion of a
nondeterministic finite automaton to a deterministic finite automaton. In our case,
when the source database is a tree, this conversion takes linear time.

A computation of the transitive closure of A is relatively complex. In [13], a
greedy algorithm is considered with complexity O(k4), where k is the number of
paths in DGC. In the second step we calculate the transformation of D. Its
complexity is O(m*k2). Observe, these calculations run only once. Assuming a naµve
implementation of query evaluation, we obtain the complexity O(m*k).

Our algorithm has been implemented in Java. We did a comparison between
vector and matrix model. For our first experiments we used the well-known
collection of Shakespeareôs plays [3] and synthetic data generated by a widely used
database benchmark XBench [17]. The former dataset, C1, contains 37 plays of the
total size 7712KByte. We identified 14201 measurable terms 39 paths there.
Documents of the latter collection have been sized 9722 KByte. This collection, C2,
contained 26 documents with 22 paths in DGC and 2712 measurable terms. Since
there is no difference between a document and query in our approach we used some
members of collection directly as queries. As the efficiency has been not the main
goal our experiments we pay a rather high price to more complex calculations in the
matrix model comparing to the vector space model. Memory representations of both
type of indices are not too different.

For experiments with different queries we started with "hamlet.xml" query
against all plays in both models. (Fig. 6 and 7) and the following paths:

play­personae­pgroup­persona
to

play­personae­persona
by constant 0.2 and

play­title
to

'�� �
�
*
����
��� ������
����� �������

play­playsubt
by 0.5, and back by constant 0.5 too.

Query results (Vector model)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

hamlet.xmlrich_iii.xmlall_well.xmlhen_vi_2.xml
win_tale.xmlrich_ii.xmlhen_viii.xml
hen_iv_2.xmljohn.xmllear.xmlcymbelin.xml

hen_v.xmlpericles.xmlhen_vi_3.xmlhen_vi_1.xml
hen_iv_1.xmltimon.xmltempest.xml
merchant.xmltroilus.xmltitus.xmldream.xml
r_and_j.xmlmacbeth.xmllll.xmltaming.xml
as_you.xmlothello.xmlm_for_m.xmlcoriolan.xml

two_gent.xmlt_night.xmlmuch_ado.xml
a_and_c.xmlj_caesar.xmlcom_err.xmlm_wives.xml

Figure 6. Result of ñhamlet.xmlò query in the vector space model

We can observe from the graphs in Fig. 6-8 that the matrix model has more
balanced results, the values are less dispersed. The reason lies in the document
structures that distinguish minimally for particular plays.

Query results (Matrix model)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
hamlet.xmlcymbelin.xmllear.xml

othello.xmltroilus.xml
a_and_c.xmlrich_iii.xmlcoriolan.xml

win_tale.xmljohn.xmlhen_iv_1.xml
hen_vi_2.xmlrich_ii.xml
hen_iv_2.xmlhen_vi_1.xmlall_well.xml
r_and_j.xmllll.xml
macbeth.xmlm_for_m.xmltimon.xml

merchant.xmlt_night.xmlhen_vi_3.xml
as_you.xmlhen_viii.xml
titus.xmlm_wives.xmlhen_v.xml

much_ado.xmltempest.xmldream.xml
j_caesar.xmltwo_gent.xml
pericles.xmlcom_err.xmltaming.xml

Figure 7. Result of ñhamlet.xmlò query in the matrix model

The vector space model gives some results of lower quality. For example the
tragedies Othello, Mackbeth, and Romeo and Juliet are of less relevance comparing

'�+��� ������	
� ��� �
��
���
� ���#%,� �" �-� !"#� .��� ����

to the comedy "A Midsummer Night's Dream". For finding out a play similar to the
tragedy Hamlet it is not too good result. Othello is even under the 30%. Here the
matrix model uniquely wins since all mentioned plays have the similarity higher
than 40%.

Bigger differences are also observable with Julius Cesar, The Comedy of Errors
and The Merry Wives of Windsor However Julius Cesar did not obtain better
ranking in the matrix model too. The matrix model also gives more balanced
similarities for plays about the king Henry.

Query results comparison

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

a_
an
d_
c.
xm
l

al
l_
we
ll
.x
ml

as
_y
ou
.x
ml

co
m_
er
r.
xm
l

co
ri
ol
an
.x
ml

cy
mb
el
in
.x
ml

dr
ea
m.
xm
l

ha
ml
et
.x
ml

he
n_
iv
_1
.x
ml

he
n_
iv
_2
.x
ml

he
n_
v.
xm
l

he
n_
vi
_1
.x
ml

he
n_
vi
_2
.x
ml

he
n_
vi
_3
.x
ml

he
n_
vi
ii
.x
ml

j_
ca
es
ar
.x
ml

jo
hn
.x
ml

le
ar
.x
ml

ll
l.
xm
l

m_
fo
r_
m.
xm
l

m_
wi
ve
s.
xm
l

ma
cb
et
h.
xm
l

me
rc
ha
nt
.x
ml

mu
ch
_a
do
.x
ml

ot
he
ll
o.
xm
l

pe
ri
cl
es
.x
ml

r_
an
d_
j.
xm
l

ri
ch
_i
i.
xm
l

ri
ch
_i
ii
.x
ml

t_
ni
gh
t.
xm
l

ta
mi
ng
.x
ml

te
mp
es
t.
xm
l

ti
mo
n.
xm
l

ti
tu
s.
xm
l

tr
oi
lu
s.
xm
l

tw
o_
ge
nt
.x
ml

wi
n_
ta
le
.x
ml

Matrix model
Vector model

Figure 8. Comparison of the query results in the vector and matrix models

6. Conclusions

The matrix model solves problems connected with adding the structure of
documents to convenient vector space model known from IR. Its goal is to enhance
possibilities of integrating heterogeneous sources of XML data.

In principle, the matrix model does not distinguish between a query and a
document. It is designed for finding out the similarity of two XML documents. The
model can be extended for a multi-lingual information sources. Each path in the path
transform matrix could be set up for a different language according to the
requirements on indexing.

Similarly to other approaches based on transformations, a manual approach to
tuning the A matrix is important. Although this could be conceived as a drawback of
the method, we believe that any improving of todayôs information retrieval methods
requires such approach, as only poor statistical data is not enough for achieving this
goal. Obviously, the use of machine learning techniques and probabilistic estimation
based on training sets of appropriate benchmarks may also be beneficial.

Since nowadays XML is increasingly used as a replacement for HTML on the
Web, documents usually have XLinks or XPointers to data in other documents. Such

'�� �
�
*
����
��� ������
����� �������

inter-documents links could be also added to the searching their contents. Our future
work will aim to use the matrix model also in the context of such applications.

References

[1] Anh, V.N., Moffat, A.: Compression and an IR Approach to XML Retrieval. In: Proc. of
the First Workshop of the Initiative for the Evaluation of XML Retrieval, Dagstuhl,
Germany, December 2002.

[2] Abiteboul, S., Quass, D., McHugh, J., Widom, J., and. Wiener, J. L.: The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries, 1(1):68ï88,
1997.

[3] Bosak, J.: Shakespeare 2.00. Los Altos, California, http://www.ibiblio.org/bosak/, 1999
[4] Bourret, R.: XML and Databases. Available at

http://www.rpbourret.com/xml/XMLAndDatabases.htm.
[5] Bremer, J.-M., Gertz, M.: XQuery/IR: Integrating XML Document and Data Retrieval

In: Proceedings of the 5th International Workshop on the Web and Databases (WebDB),
June 2002.

[6] Carmel, D., Efraty, N., Landau, G.M., Maarek, Y., Mass, Y.: An Extension of the Vector
Space Model for Querying XML Documents via XML Fragments. In: Proc. of XML and
Information Retrieval (Workshop) Tampere, Finland, 2002.

[7] Crouch, C.J., Apte, S., Bapat, H.: Using the Extended Vector Model for XML Retrieval.
In: Proc. of INEX 2002 Workshop, 2002.

[8] Fox, E.A.: Extending the Boolean and Vector Space Models of Information Retrieval with
P-Norm Queries and Multiple Concept Types. PhD thesis, Cornell University Department
of Computer Science, 1983.

[9] Fuhr, N., GroÇjohann, K.: XIRQL: A Query Language for Information Retrieval. In: Proc.
of ACM-SIGIR, New Orleans, 2001, pp. 172-180.

[10] Grabs, T., Schek, H.: Generating vector spaces on-the-fly for flexible XML retrieval. In:
Proc. of XML and Information Retrieval (Workshop) Tampere, Finland, 2002.

[11] Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In: Proc. of the 25th VLDB Conf., 1997, pp. 436-445.

[12] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects: Concise
representations of semistructured, hierarchical data. In Proceedings of the 13th Int. Conf.
on Data Engineering, Birmingham, England, April 1997.

[13] Rejlek, V.: A similarity of XML documents. Master Thesis, Dep. of Software
Engineering, Charles University, 2003, (in Czech).

[14] Salton, G. (editor), The SMART Retrieval System, Prentice Hall, New Jersey. (1971)
[15] Extensible Markup Language (XML) 1.0., http://www.w3.org/TR/REC-xml, 1998.
[16] XML Path Language (XPath), Version 1.0, http://www.w3.org/TR/xpath
[17] Yao, B.B., ¥zsu, M.T., Keenleyside, J.: XBench - A Family of Benchmarks for XML

DBMSs. School of Computer Science University of Waterloo,
http://db.uwaterloo.ca/~ddbms/projects/xbench/index.html, 2002.

Querying Heterogeneous Distributed XML Data

Abdelsalam Almarimi

Czech Technical University, Faculty of Electrical Engineering
Karlovo nam. 13, Praha, Czech Republic

belgasem@cslab.felk.cvut.cz

Jaroslav Pokorny

Charles University, Faculty of Mathematics and Physics
Malostranske nam. 25, Praha, Czech Republic

pokorny@ksi.ms.mff.cuni.cz

Abstract. This paper describes a proposal for a system for XML data
Integration and Querying via Mediation (XIQM). An XML mediation layer is
introduced as a main component of XIQM. It is used as a tool for querying
heterogeneous XML data sources associated with XML schemas of diverse
formats. Such a tool manages two important tasks: mappings among XML
schemas and XML data querying. The former is performed through a semi-
automatic process that generates local and global paths. A GUI tree structure
for each XML schema is constructed, which is a simple form used for
assigning indices manually to match local paths to corresponding global paths.
By gathering all paths with the same indices, the related local and global paths
were grouped automatically, and an XML Metadata Document was
constructed. An XML Query Translator for the latter task is implemented to
translate a global user query into local queries by using the mappings that are
defined in the XML Metadata Document.

Keywords. Distributed XML data, data integration, mediation, metadata,
XML Schema

1. Introduction

Modern business often needs to combine heterogeneous data from different data
sources. Tools and infrastructures for data integration are required. Recently, XML
[16] has appeared as the standard for data representation and data exchange on the
Web. This is mainly due to the increase in distributed heterogeneous data sources.
The advantages of XML as an exchange model, such as rich expressiveness, clear
notation, and extensibility, make it the best candidate for supporting the integrated
data model. In this context, multiple heterogeneous data sources available on-line
have increased, and have thus created a need for access to these heterogeneous data
sources in a collective manner. Therefore, tools are required to mediate between
XML queries and heterogeneous data sources to translate user queries into local
queries.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '��(')'� 	�

'�* �
�
+
����
��� ������
����� �������

As the importance of XML has increased, a series of standards has grown up
around it, many of which were defined by the World Wide Web Consortium (W3C).
For example XML Schema language [17, 18, 19] provides a notation for defining
new types of XML elements and XML documents. An XML document is usually
associated with a Document Type Definition (DTD) or XML schema that is used to
define and constrain the syntax structure of a document. Due to the limitations of
DTD, we consider XML documents and their associated XML schemas. XML with
itself-describing hierarchical structure and the language XML Schema provide the
flexibility and manipulative power needed to accommodate distributive and
heterogeneous data. At the conceptual level, they can be visualized as hierarchical
trees or graphs.

The schema integration process involves three main stages: conflicts analysis,
conflicts resolution, and schemas merging. During conflicts analysis differences in
the schemas are identified. In the second stage the conflicts are resolved. Finally, the
schemas are merged into a single global schema using the decisions made during the
previous stage. In this context, it is necessary to resolve several conflicts caused by
the heterogeneity of the data sources with respect to data model, schema or schema
concepts. For schema-level conflicts several classifications were proposed in the
literature, e.g. [11, 15]. In contrast, integration on the instance level considers the
concrete data in the sources. Here, the mapping between entities from different
sources representing the same real-world objects has to be defined. The main
difficulty is that the data at different sources may be represented in different formats
and in incompatible ways. For example, the bibliographical databases of different
publishers may use different formats of authors' or editors' names or different units
of prices. Moreover, the same expression may have a different meaning, and the
same meaning may be specified by different expressions.

Our system prototype called XIQM (XML data Integration and Querying via
Mediation) has been built to perform the mappings among XML schemas, producing
a mediation layer, which is then used to generate local queries. The mediation layer
is proposed as a main component to describe the mappings between global XML
schema and local heterogeneous XML schemas. It produces a uniform interface over
the local XML data sources and provides the required functionality to query these
sources in a uniform way. It involves two important units: the XML Metadata
Document (XMD) and the Query Translator. The XMD is an XML document
containing metadata, in which the mappings between global and local schemas are
defined. The XML Query Translator, which is the integral part of the system, is
implemented to translate a global user query into local queries by using the
mappings that are defined in the XMD. Currently, we use Quilt [4] as XML query
language, but we can move to XQuery language without problems

The rest of the paper is organized as follows. Section 2 introduces the related
work. In section 3 we present an overview of XQIM architecture. Section 4
describes the schema integration process. XML schema parsing and constructing
GUI process are introduced in Section 5. In section 6 we show the XML Metadata
Document generation. Section 7 describes the query translator unit. Some query
translation examples are introduced in Section 8. Finally, we summarize the paper
and point out the future work.

'�)��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

2. Related work

In the recent years, there have been many research projects focusing on
heterogeneous information integration. Most of them are based on common
mediator architecture [6]. In this architecture, mediators provide a uniform user
interface to views of heterogeneous data sources. They resolve the query over global
concepts into subqueries over data sources. Mainly, they can be classified into
structural approaches and semantic approaches.

In structural approaches, local data sources are assumed as crucial. The
integration is done by providing or automatically generating a global unified schema
that characterizes the underlying data sources. On the other hand, in semantic
approaches, integration is obtained by sharing a common ontology among the data
sources. According to the mapping direction, the approaches are classified into two
categories: global-as-view and local-as-view [9]. In global-as-view approaches, each
item in the global schema is defined as a view over the source schemas. In local-as-
view approaches, each term in each source schema is defined as a view over the
global schema. The local-as-view approach better supports a dynamic environment,
where data sources can be added to the integration system without the need to
restructure the global schema.

Well-known research projects and prototypes such as Garlic [8], Tsimmis [7,10],
MedMaker [21], and Mix [3] are structural approaches and take a global-as-view
approach. A common data model is used, e.g., OEM (Object Exchange Model) in
Tsimmis and MedMaker. Mix uses XML as the data model; an XML query
language XMAS was developed and used as the view definition language there.
DDXMI [20] (for Distributed Database XML Metadata Interface) builds on XML
Metadata Interchange. DDXMI is a master file including database information,
XML path information (a path for each node starting from the root), and semantic
information about XML elements and attributes. A system prototype has been built
that generates a tool to do the metadata integration, producing a master DDXMI file,
which is then used to generate queries to local databases from master queries. In this
approach local sources were designed according to DTD definitions. Therefore, the
integration process is started from the DTD parsing that is associated to each source.

Many efforts are being made to develop semantic approaches, such as RDF
(Resource Description Framework) [5] and Knowledge-based Integration [2].
Several ontology languages have been developed for data and knowledge
representation to assist data integration from semantic perspective such as
Ontolingua [1]. F-logic [14] is employed to represent knowledge in the form of
a domain map to integrate data sources at the conceptual level.

We classify our system as a structural approach and differ from the others by
following the local-as-view approach. The XML Schema language is adopted
instead of DTD grammar language.

3. An overview of XQIM architecture

The entire architecture of XQIM is presented in Figure 1. We assume that all
database sources that are contain XML data, and each source is associated with its

'*� �
�
+
����
��� ������
����� �������

XML schema definition. The main component of the system is the mediation layer,
which comprises the XML Metadata Document (XMD) and the Query Translator.
The XMD is an XML document containing metadata, in which the mappings
between global and local schemas are defined.

The function of the query translator is rewriting a parsed global query into
a subquery for each local source. The main idea is that when a global query over the
global XML schema is posed, it is automatically translated by the Query Translator
unit to subqueries, called local queries, which fit each local database format using
the information stored in XMD.

Figure 1. XQIM Architecture.

4. XML schema integration process

The integration process involves a set of data sources contain heterogeneous
XML data. The integration is obtained through a virtual global XML schema that
characterizes the underlying local sources. We used the strategy in which a set of
local XML schemas is merged into a single global XML schema. The process starts
with detecting the differences and the semantic correspondences in the schemas.
Then, the conflicts are resolved and the global XML schema is defined in which all
local elements are included. To clarify our approach, we introduce an example in
which three publishers' database sites are used. Our objective is to create a global
view over these heterogeneous sites. The publishers are Addison Wesley (AW),

'*'��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

Prentice Hall (PH), and Wiley. The structure of each site was studied carefully and
their XML schemas were defined. For clarity we present in Figure 2 the tree
structures of the global and Wiley schemas, respectively. In Figure 3 we show a part
of XML schema definition for the global XML schema.

Figure 2. The global and Wiley tree structures.

Figure 3. A part of the global XML schema.

'*� �
�
+
����
��� ������
����� �������

5. XML schema parsing

We have used JDOM API for reading an XML schema document in memory.
JDOM is a tree-based, pure Java API for parsing, creating, manipulating, and
serializing XML documents. JDOM represents an XML document or XML schema
document as a tree composed of elements, attributes, comments, processing
instructions, text nodes, CDATA sections, and so forth. The entire tree is available
at any time. JDOM itself does not include a parser. Instead it depends on a SAX [12]
parser to parse documents and build JDOM models from them. Once a document
has been loaded into memory, whether by creating it from scratch or by parsing it
from a stream, JDOM can process the document. A JDOM tree is fully updateable.
Once we have parsed a document and formed a document object, we need to
search it to select out those parts, which we are interested in. Formally, we introduce
a function

CHILD: ELEMENTS ­ Â(ELEMENTS)

which assigns a multiset of child elements to each element in an XML document1

.
A GUI tool, which is a simple form, is used in XQIM to simplify the mappings

between schemas. A part of a GUI is shown in Figure 6. The second column is used
for assigning a unique index number for the related element paths. The third column
is used to specify the functions, which needed to resolve heterogeneity conflicts.

In our example, for each source, its XML schema document is read, parsed and
its root element passed with a depth of zero and a tree representation is produced as
in Figure. 4. The number of spaces indicates the depth in hierarchy. This tree
represents the whole XML schema document including the name and the type of
each node. For example element AW AWType in XML Schema language is
interpreted as: element is a defined name in the language, its value is AW, and its
type is AWType, which is defined as a complex type.

We divided the process of XML schema parsing and GUI constructing for each
source into the following steps:
1. Element names' values (exclude the name and type) are extracted and a new tree

data structure x is constructed.
2. A unique number is given to each node of x to resolve naming conflicts.
3. A depth-first traversal is performed on x; the CHILD function is materialized.

Figure 5 shows the generated function (represented by a table) for AW source.
We observe that, e.g. for the node AW 1 we obtain the associated set of its
children (here represented as an array)[Discipline 2, Curriculum 3,
Course 4, Books 5].

4. A GUI is generated for the global schema with a sequence of indices for the
global elements appeared in the second column.

5. Finally a GUI is generated for each local schema. This can be used by the
designer to assign manually the indices and the required functions that is
conforming the global and local element paths.

1 In our implementation CHILD is realized by the JAVA 2 hash table feature assigning to a
parent as the key its children as values.

'*0��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

Figure 4. Parsed XML schema for the source AW.

6. The XMD generation

The XMD is an XML document containing the path information to be applied to
each local source, along with identification information to be used for query
translation. From Figure 8, we observe that XMD document contains the <source>
element (for each global element path) followed by their <destination> elements
(represent corresponding local element paths). Moreover, it contains the information
about the required functions, which is represented by <path> element for each
global element path followed by <function> element for each local source. The
value of the <function> element indicates the required operation for such global
element. For each source, its XML schema is parsed as explained in Section 5.

The XMD generation process comprises the following steps:
1. The generated CHILD table for each schema is traversed to generate all paths of

the XML schema tree structure from the root to each element.
2. The same index number is assigned for each local element path corresponding

with its global element path using the second column in the GUI that is
generated in Section 5. Figure 7 shows a sample of mappings among global and
local paths.

3. In the third column of the GUI either the Null value is specified in the case of
one-to-one mapping, or the required function name is specified in the other
cases.

'*� �
�
+
����
��� ������
����� �������

4. By gathering the same indices of each local element with its corresponding
global element, the XMD document is easily created.

Figure 5. CHILD function table for the source AW.

Figure 6. A part of the GUI for the source Wiley.

'*1��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

Figure 7. Sample of global and local paths mappings with index numbers.

Figure 8. A part of an XMD document.

'*� �
�
+
����
��� ������
����� �������

7. Query translation process

We developed a method to query the distributed heterogeneous XML data
sources. A query translator unit is implemented, which is an integral part of the
mediation layer. Its function is the translation of the global queries, which are
expressed in the language Quilt, to a set of local queries also expressed in Quilt.
That is if there is a correspondence between the elements in the global and the local
XML schemas. When a global user query is posed, first it is parsed, then The XMD
document is read, parsed by SAX, and the number of local sources is identified. A
CHILD function table t is constructed for the XMD, in which each <source>
element value in XMD (global element path) is represented as a key and associated
with their <destination> elementsô values as values (local elementsô paths). Also
<function> elementsô values in XMD are represented in t as values and its
corresponding <path> value as key.

 For each element in the global query (should be a <source> element in XMD),
if there is a non-empty value of the corresponding local elements (<destination>
element in XMD) is non-empty, then paths in that query are replaced by paths to the
<destination> elements to get a local query, by navigating the XMD document.
Otherwise, an empty query is generated for the corresponding path in the local query
that means this query cannot be applied to such local source. Each (generated) local
query is sent to the corresponding local source engine, which will execute the query
locally and return the result to the global query. Figure 9 shows an example of
a global user query translation.

Algorithm: Global query translation process
Input: global XML query q, global XML schema, and XMD document
Output: local XML queries q1, q2é, qn
Step1: parse q;
Step2: read XMD, identify the number of local sources;
Step3: construct CHILD function t for XMD; // source elements as keys and

destination elements as values.
Step4: for each global element ge in q do

materialize t;
for each source Si in t having the corresponding local element

 le to ge do
 generate local query qi for the first element occurrence;

//only once
 for each ge whose Function element value is not Null
 generate the required function operation
 endfor

 replace ge by le in qi;
 endfor
 endfor

Step5: execute the generated local queries locally.

'*���� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

Figure 9. Example of a global query translation.

8. Examples of Query Generation

In this section we introduce examples of Quilt queries, which are provided to
support our analysis. Three cardinality cases are investigated in the following
subsections: one-to-one, one-to-many, and many-to-one.

8.1 One-to-One mapping example

Q1: FOR $a IN document ("global.xml") //Book
 RETURN <Book> $a/Title</Book>

In this case, the steps follow this order:
1. Q1 is parsed and <Title> element is detected and treated as a <Source>

element in the XMD document.
2. The CHILD function is constructed for the XMD document by putting each

<source> element path as a key and their <destination> element paths
as values.

3. The CHILD(óTitleô) function is executed to get the destination values for
the <source> element Title.

'** �
�
+
����
��� ������
����� �������

4. A local query is generated for each <destination> element whose value
is not null.

8.2 One-to-Many mapping query example

Q2: FOR $b IN document ("global.xml")//Book
 RETURN <Book>$b/Format</Book>

This case can happen when there is a node in the global schema mapped to many

nodes in a local schema. Figure 10 below describes the mapping of this query. When
running the above query, the routine work that was mentioned in the case of one-to-
n is also applied. Here, we have more than one element path in local schema holds
the same index number. Hence, we need to combine these paths in a one-destination
element. Therefore, to answer this kind of mapping we need to provide a specific
function to perform this task. For example, the global element Format is
represented in Wiley by two different local elements: Pages and CoverTypes. The
following fragment of code illustrates the desired generated local query for source
Wiley (source3.xml).

FUNCTION Concat_fun($par1, $par2)
{ concat($par1, $par2) }
FOR $b IN document(ñsource3.xmlò) // Book
RETURN <Book> Concat_Fun($b/Pages, $b/CoverType) </Book>

Figure 10. One-to-Many mapping example.

8.3 Many-to-One mapping query example

Q3: FOR $a IN document ("global.xmlò)//Author//Name
 RETURN <Author><Name> $a/LName, $a/FName </Name></Author>

If two or more nodes of the global schema correspond to one node in a local

schema, then the node in the local schema will have more than one path. Figure 11

'*)��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

Figure 11.

GUI tool for assigning index numbers to all database elements' paths. The same

Many-to-One mapping example.

9. Conclusions and future work

In this paper, we have described our system for resolving structural and semantic
conflicts for distributed heterogeneous XML data. We developed a mediation layer
for querying heterogeneous distributed XML data sources. This layer holds two
main parts: the XMD and the Query Translator. We used XML Schema language for
defining the XML data sources. The mediation layer is used for describing the
mappings between global and local schemas. XML schemas' trees are generated
automatically, each with a GUI. Semantic discrepancies are resolved by using the

describes this mapping case. Here, LName and FName elements in the global schema
are mapped to Name element in a local schema. That means we need to provide
a specific function to separate the full name into a first name and last name. Also,
for this kind of mapping, the same routine work that was mentioned in the
subsection 7.1 is applied.

From the XMD fragment in Figure 8 we observe that two different <source>
element values (in XMD document) have the same <destination> element
values. In other words, we need to split the instance value of the destination element
value to generate the appropriate local queries. The resulting local query for AW
source as following:

FUNCTION Fname_fun($par)
{ split(ñ ñ, $par)[1] }
FUNCTION LName_fun($par)
{ document (split(ñ ñ, $par)[2]) }
FOR $b IN document(ñsource1.xmlò) // Book
RETURN <Book> FName_Fun($a/name), LName_Fun($a/name) </Book>

')� �
�
+
����
��� ������
����� �������

index number is assigned to nodes with the same meaning to resolve the conflicts.
The same index numbers are collected to generate a global path for each element
with their corresponding local element paths. Then, the XMD is generated.

Also, we have presented the second part of the mediation layer, the Query
Tr

we can only handle simple mappings among elements. In future, we
aim

References

[1] A. Farquhar, R. Fikes and J Rice: The Ontiliqua Server: A tool for Collaborative

[2] her, A. Gupta, and M. E. Martone: Model-based Mediation with Domain

[3] ano, Y. Papakonstantinu, P. Velikhov, and V.

[4] ge for

[5] Specification

[6] rhold, Mediators in the Architecture of Future Information System, IEEE

[7] . In: Proceedings of the

[8] ries across Diverse Data

[9] Data Integration : A Theoretical Perspective. In Proc. Of the ACM

[10] Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,

[11] gration of

[12] XML.
http://www.perfectxml.com/wp/3110_Chapter06/contents.htm

anslator. It acts to decompose global queries into a set of subqueries. A global
query from an end-user is translated into local queries for XML data sources by
looking up the corresponding paths in the XMD. Java 2, JDOM, JavaCC, and the
Java servlet server were used as tools for the prototype implementation of this
proposal.

In this work,
 to handle mappings that involve attributes; for example an attribute in one

schema is represented as an element in another one. The integration of the local
queries' results is not yet implemented. In addition, we plan to move to XQuery,
instead of Quilt.

Ontology Construction. International Journal of Human-Computer Studies, 1997, pp.
707-728.
B. Ludasc
Maps. In: Proc. of ICDE, 2001, pp. 81-90.
C. Baru, A. Gupta, B. Ludascher, R. Marci
Chu. XML-Based Information Mediation with MIX. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1999, pp. 597-599.
D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Langua
Heterogeneous Data Sources. WebDB 2000, LNCS 1987, Springer, 2001.
D. Brickley, R. Guha, "Resource Description Framework (RDF) Schema
1.0", W3C Candidate Recommendation, Mar 27, 2000, http://www.w3.org/TR/rdf-
schema.
G. Wiede
Computer Magazine, Vol. 25, No. 3, March 1992, pp. 38-49.
J. Ullman: Information Integration Using Logical Views
International Conference on Database Theory, 1997, pp. 19-40.
L. Haas, D. Kossman, E. Wimmers, J. Young: "Optimizing Que
Sources", 23rd Int. Conf. On Very Large Databases (VLDB97), Athens, Greece, 1997,
pp. 276-285.
M. Lenzeini.
Symposium on Principles of Database Systems (PODS), Madison, Winsconsin, USA,
June 2002, pp. 233-246
S. Chawathe, H. Garcia-
and J. Widom: The TSIMMIS Project: Integration of Heterogeneous Information
Sources. In: Proc. of IPSJ Conference, Tokyo, Japan, October 1994, pp. 7-18.
S. Spaccapietra, C. Parent, Y. Dupont: Model independent assertions for inte
heterogeneous schemas. In: VLDB Journal, Vol. 1, No. 1, pp. 81-126.
SAX 1.0: The Simple API for

')'��� ��������	�
�� ��
������ ,-�#&%�.� /���#".���"-�� �%��#%�-�� � ��

[13] V. K. ri, A har, e BC: Open Connectivity 2.0. Chaudh . Farqu t al. OK Knowledge Base
tanford, July 1997.

2, pp. 12-18, 1991.

Technical report KSL-98-06, Knowledge System Laboratory, S
[14] W. May: A Rule-Based Querying and Updating Language for XML. In: Proceedings of

DBPL, Springer LNCS 2397, 2001, pp. 165-181.
[15] W. Kim, J. Seo, Classifying Schematic and Data Heterogeneity in Multidatabase

Systems, IEEE Computer Magazine,Vol. 24, No. 1
[16] W3C Consortium: Extensible Markup Language (XML).

http://www.w3.org/TR/2000/REC-xml
[17] W3C rtium: XML ma Part 0 : mer. http://www.w3.org/TR/2001/REC-Conso Sche Pri

xmlschema-0-20010502/
[18] W3C Consortium: XML Schema Part 1: Structures. http://www.w3.org/TR/2001/REC-

xmlschema-1-20010502/.
[19] W3C Consortium: XML Schema Part 2: Datatypes. http://www.w3.org/TR/2001/REC-

xmlschema-2-20010502/.
[20] Y. Nam, J. Goguen, G. Wang, A Metadata Integration Assistant Generator for

Heterogeneous Distributed Databases. In: Proc. of Confederated International

[21]
e on

Conferences DOA Irvine CA, October 2002, LNCS 2519, Springer, pp. 1332-1344.
Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. MedMaker: A Mediation System
Based on Declarative Specifications. In: Proc. of the IEEE International Conferenc
Data Engineering (ICDE), New Orleans, LA, February 1996, pp. 132-141.

Evolution of Schema of XML-documents Stored in a
Relational Database

Andrey Simanovsky

St Petersburg State University

Math&Mech, CS Dept.

asimanovsky@acm.org

Abstract. XML is today a standard for manipulating semistructured data. One

of widely used industrial solutions, especially for systems with a fairly well de-

fined data structure, is storing XML in a relational database, while XML queries

are converted to SQL queries to the underlying relational database. A software

product that produces XML “interface” to an underlying relational database com-

monly requires revision of XML and relational schemas with every new version

of the product. Those schema and subsequent data transformations are selected

and performed using ad-hoc algorithms. We propose a framework, namely for-
mal evolution model, allowing semi-automatic schema transformation and data

transformation for a new product version, thus discarding the necessity of ad-
hoc algorithm design. The framework also allows a-priory estimating of query

conversion performance.

Keywords. schema evolution

1 Introduction

The eXtensive Markup Language is today a de facto standard for manipulating

semistructured data. This creates a set of data management challenges of storing and

querying XML documents. One of widely engaged approaches is storing XML in a

relational databases and providing query processor, which converts queries to XML

documents to SQL queries to these underlying databases [6]. Even though industrial

systems provide XML support and there are native XML databases, the relational ap-

proach dominates because it allows utilizing highly developed RDBMS technologies.

In many applications XML documents belonging to a particular domain comply

with a particular schema designed for the domain. A number of algorithms of storing

XML documents in relational databases, in particular those based on inlining [11],

make use of the schema to provide better performance of the system.

Schemas used for particular domains tend to evolve in time, while many documents

satisfying old schemas are already stored in relational database. E. g. it is a common

practice for many software products to change both, XML and relational schema,

with every next version of the product, whereas the transformation algorithms for old

versions of the database are developed ad-hoc. Such changes are often driven by new
functionality requirements and, thereupon, regard performance as a minor question.

Our example on Figure 1 models that case.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '(�)���� 	�

'(*��� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

DTD99:

<!ELEMENT book (booktitle, author)>
<!ELEMENT article(title, author*, contactauthor)>
<!ATTLIST contactauthor authorID IDREF IMPLIED>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor(monograph*)>
<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, address)>
<!ELEMENT name(firstname?, lastname)>
DTD01:

<!ELEMENT book (booktitle, price?, author, authority*)>
<!ELEMENT authority (authname, country)>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor(monograph+)>
<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, address)>
<!ELEMENT name(firstname, lastname)>

Figure 1. Two DTDs for books taken from [9] (DTD99) and [11] (DTD01).

We argue that schema evolution is a framework that enables partial automation

of the process of schema and data transformations and allows discarding of ad-hoc
algorithms. We present a schema evolution model for a schema of XML documents

that especially takes into account relational storage and introduces guidelines for the

relational schema design as well.

There are two issues that a schema evolution problem consists of: the semantics

of change, i. e., the changes of database structure, and change propagation, i. e., the

transformation of existing data so that it complies with the new schema. The latter

question was largely investigated in recent time ([10], [13], [15]) and has no specifics

for XML documents stored in a relational database as compared to a general case. In

this paper we concentrate on the former issue.

The model has many in common with traditional approach to evolution of object-

oriented data. However, it is less restrictive than straight-forward application of tech-

niques used for temporal object-oriented databases (i. e. those described in [1]).

1.1 Related work

Many research projects address storing XML in relational databases and providing

efficient querying to the stored data. [5] and [8] provide an overview together with

approximate performance estimates of main ideas underlying the majority of tech-

niques of storing XML documents in a relational database for both situations: when

the schema of the document is known and when it is not. [6], [9], [11] propose dif-

ferent algorithms based on shredding (storing) an XML document into a relational

database with inlining method as well as algorithms of translation of queries over

XML into relational queries. [12] discusses questions of storing order information for

inlining methods and other algorithms of XML document shredding. However, these

works do not address the issue of schema evolution concentrating rather on the per-

'(� �
�
2
����
��� ������
����� �������

formance questions. Our work utilizes the results obtained in these works considering

them in the new aspect of schema evolution.

The schema evolution problem was largely investigated for temporal relational and

object-oriented databases (e .g. in [1]). There were attempts to apply solutions for

object-oriented databases to the evolution of schemas of XML documents. An evo-

lution model and a classification of elementary schema transformations, with which

it was suggested to describe general schema transformations, are proposed in [14].

However, presented evolution models often require multiple steps to acquire intu-

itively elementary schema changes. E. g. in our example swapping tags contactauthor
and authorid may seem an atomic action while it would require three elementary op-

erations to be performed on the schema if we employ general evolution model from

[14].

1.2 Roadmap

In Section 2 we review the notion of a DTD-graph. In Section 3 we discuss DTD-

graph factorizing. We use DTD-graph factorizing to build a lattice similar to the type

lattice used when evolution of object-oriented databases is described. In Section 4 we

present invariants for a factorized DTD-graph, and describe schema evolution in their

terms. In Section 5 we describe elementary operations of the model and corresponding

DTD transformations. In Section 6 our results are summarized and future research

directions are outlined.

2 Building a DTD-graph

The process of building a DTD graph is explained in [11]. However, since its notion

is slightly different in our work, and since it is essential for the understanding of the

evolution model we present it in detail. A general DTD can be defined as follows:

Definition 2.1. DTD definition. Let C be a class of languages over an alphabet V . A
DTD over V with respect to C is a mapping : V → C.

Note that defining DTD as a mapping over a (necessarily) finite set allows describ-

ing DTD with a mapping table.

An example of C can be the class of regular languages, or a more sophisticated

language, e. g. one used for DTDs defining XML document schemas. In the process

of building a DTD-graph we consider a class of languages C0 that can be defined

with use of two constructs: a star (“∗′′) and grouping (“ . . .′′). We will call DTDs
with respect to that class a simplified DTDs to distinguish them from DTDs used to

describe real-life XML documents, which we will address to as regular DTDs.

The first stage of building a DTD-graph is obtaining a simplified DTD from a

regular one. The process may be described as follows:

• The elements that are defined with <!ENTITY> tags are substituted with their
definitions.

• The alphabet V is a union of tag and attribute names of the original DTD.

'(3��� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

• Each <!ELEMENT> or <!ATTLIST> element of the DTD is considered as an

entry in the mapping table that defines the simplified DTD.

• Words REQUIRED, IMPLIED etc are interpreted in terms of “∗′′ and “ ′′ signs.

• Regular expression language over DTD tags used in ELEMENT tags is replaced
with a language from the simplified DTDs language class using the rules pre-

sented in [11] and replacing all ‘|’ with grouping.

DTD99:

<!ELEMENT book (booktitle, author)>
<!ELEMENT article(title, author*, contactauthor)>
<!ELEMENT contactauthor (authorID)>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor(monograph*)>
<!ELEMENT author (name, address)>
<!ELEMENT name(firstname, lastname)>
DTD01:

<!ELEMENT book (booktitle, price, author, authority*)>
<!ELEMENT authority (authname, country)>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor(monograph*)>
<!ELEMENT editor (name)>
<!ELEMENT author (name, address)>
<!ELEMENT name(firstname, lastname)>

Figure 2. Simplified DTDs for DTD99 and DTD01.

The simplified DTDs on Figure 2 correspond to the regular DTDs of the example

described earlier.

Having a simplified DTD over an alphabet V with respect to a set of languages C0

we define a DTD-graph as follows:

Definition 2.2. DTD-graph. DTD-graph is a graph (V,E) where V is the mentioned

above set of attributes and E ⊆ V × V × {“∗′′, “ ′′}

Vertices of the DTD-graph denote the tags and attributes of the original DTD.

Edges of the DTD-graph denote the nesting relations between tags. The “∗′′-mark
appears on those edges that denote one-to-many nesting relationship. Figure 3 demon-

strates a DTD-graph obtained for DTD99.

A number of algorithms (e. g., those in [12]) use similar notions of a DTD-graph

extending it with additional information to provide a mapping of XML documents into

relational database.

'(� �
�
2
����
��� ������
����� �������

✍✌✎�
monograph ✍✌✎�

article ✍✌✎�
book

✍✌✎� ✍✌✎� ✍✌✎� ✍✌✎�
editor title author contactauthor ✍✌✎�

booktitle

✍✌✎� ✍✌✎� ✍✌✎�
name id address ✍✌✎�

authorID

✍✌✎�
firstname ✍✌✎�

lastname
❄

❄

❄

�

❍❍❍❍❍❥

�

✘✘✘✘✘✘✘✘✘✘✾

✟✟✟✟✟✙ ❄

✘✘✘✘✘✘✘✘✘✘✾
*

✟✟✟✟✟✙ ❄

❍❍❍❍❍❥

✘✘✘✘✘✘✘✘✘✘✾

❍❍❍❍❍❥

*

Figure 3. DTD-graph for DTD99.

3 Introducing a lattice

At first we consider a factorization (normalization) of the DTD-graph. The following

notions are used.

Definition 3.1. DTD-graph roots. Roots is an explicitly selected non-empty subset
of DTD-graph (Roots ⊆ V ∧ Roots 	= ∅) vertices including all vertices without
incoming edges: ∀v In(v) = ∅ ⇒ v ∈ Roots

The roots of a DTD-graph are vertices corresponding to XML tags that can appear

as outermost tags of an XML-document. We will assume that there is just one root

where the existence of multiple roots is insignificant.

Definition 3.2. Dominator. A vertex of a DTD-graph is a dominator of a given vertex

iff it appears on any path from any root to the given vertex. The domination relation

is denoted as a < b (denotes that a is a dominator of b).

Definition 3.3. Immediate dominator. Immediate dominator of the given vertex is a

dominator of the given vertex, which is connected to the vertex with an edge without

“∗′′-mark on it.
Note that “∗′′-mark restriction makes our notion of immediate dominator more

restrictive than the generally accepted term is.

Definition 3.4. Attribute. Attribute is a vertex without outgoing edges.

Definition 3.5. Factorized DTD-graph. Factorized DTD-graph G is a 4-ple

(V ′, E′, A, α) where V ′ ⊆ V ∗ and the following is true:

• factorized vertex sets are disjoint : V1 	= V2 ∈ V ′ ⇒ V1 ∩ V2 = ∅;
• no “∗′′-marked edges are present in a factorized vertex :

((v1, v2), sign) ∈ E ∧ ∃V0 | v1, v2 ∈ V0 ⇒ sign = “ ′′;

• sets are normalized with respect to the domination relation < :

v1, v2 ∈ V0 ∧ v1 < v2 ⇒ ∀v ∈ In(v1) v < v2;

'(���� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

• E′ is a multi-set of pairs from V ′ × {“∗′′, “ ′′};

• set of attributes A : A = {v |Out(v) = ∅};

• vertex attributes α is a mapping : V ′ → A∗ such that α(V0) ⊆ V0.

Note that G can be created from a DTD-graph by merging vertices with their im-

mediate dominators. G is obtained as soon as there are no more vertices to merge.

Many algorithms build relational schema on the basis of a DTD-graph. The fac-

torization technique described largely follows the method used in [11] to construct

relational schema. We do not assume that the created sets of attributes are the rela-

tions that are stored in a database, though we expect that the attributes ofG correspond

to attributes of the relational schema. I. e., results of the mapping α are views over the
relational schema, and the stored procedures that calculate the views are stored in the

database.

✍✌✎� ✍✌✎� ✍✌✎�B={book,booktitle} M={monoghraph,editor}
A={article,contact,authorID}

✍✌✎�
U={author,id,address}✍✌✎�

T={title}

✍✌✎�
N={name,firstname,lastname}❄

�

✘✘✘✘✘✘✘✘✘✘✾

✑
✑

✑
✑

✑
✑

✑
✑

✑✑✰

❄

�

✘✘✘✘✘✘✘✘✘✘✾
*

❄

*

Figure 4. Factorized DTD-graph for DTD99.

A factorized DTD-graph for our working example is presented on Figure 4.

4 Factorized DTD-graph invariants

We suggest describing schema evolution model through a set of invariants applied

to G. A natural way to formalize restrictions on the graph would be requiring that

selected sets of vertices or attributes should (not) appear on each (or any, especially if

an original DTD contained ‘—’ rather than grouping) (acyclic) path from any root to

the given vertex. These restrictions are invariants (axioms) that any accepted schema

should comply with.

In the case of acyclic DTD-graph a possible set of invariants was presented for

object-oriented databases in [1]. This set of axioms is presented on Figure 5. It can be

applied with slight terminology changes. The following notions is used.

Definition 4.1. Immediate predecessors. The hierarchy on V ′ is defined by the sets of
immediate predecessors P (t) for each vertex t. Immediate predecessors are vertices
that explicitly include vertex t and do not include t indirectly (through a transitive
inclusion).

'(4 �
�
2
����
��� ������
����� �������

1. Closure: ∀t ∈ V ′ Pe(t) ⊆ V ′

2. Acyclicity: ∀t ∈ V ′ t /∈ ∪αx(PL(x), P (t))

3. Rootedness: ∃T ∈ V ′ ∀t ∈ V ′ T ∈ PL(t) ∧ Pe(T) = ∅
4. Pointedness: ∃ ⊥ V ′ ∀t ∈ V ′ t ∈ PL(⊥)

5. Immediate predecessors:

∀t ∈ V ′ P (t) = Pe(t) − ∪αx(PL(x) ∩ Pe(t) − {x}, Pe(t))

6. Predecessors graph: ∀t ∈ V ′ PL(t) = ∪αx(PL(x), P (t)) ∪ {t}
7. Interface: ∀t ∈ V ′ I(t) = N(t) ∪H(t)

8. Nativeness: ∀t ∈ V ′ N(t) = Ne(t) −H(t)

9. Inheritance: ∀t ∈ V ′ H(t) = ∪αx(I(x), P (t))

Figure 5. Axiom set for acyclic case.

Definition 4.2. Essential predecessors. Essential predecessors Pe(t) are explicitly
specified sets of vertices. It is required that P (t) ⊂ Pe(t).

Definition 4.3. Vertex subhierarchy. Vertex subhierarchy PL(t) is a sub-graph of G,
which vertex set consists of vertices, from which t is reachable.

Definition 4.4. Native attributes. Native attributes N(t) are a set of attributes defined
in vertex t.

Definition 4.5. Inherited attributes. Inherited attributes H(t) are the union of at-
tributes of all its predecessors.

Definition 4.6. Essential attributes. Essential attributes Ne(t) are explicitly specified
set of attributes. It is required that N(t) ⊂ Ne(t).

Definition 4.7. Interface. Interface I(t) is the union of its inherited and native at-
tributes.

Ne(t) denotes attributes (i. e. leaf tags or attributes of original DTD), which val-
ues are essential for working with a vertex of G, Pe denotes essential vertices (i. e.

multiple occurences of a tag in original DTD).

Existence of root T and terminating vertex ⊥ can be replaced with existence of

final sets of vertices with the same properties. That would not significantly alter any

results, so we retain the form of the corresponding axioms as they were stated in [1].

Vertices with single incoming edge are allowed in the evolution model. In that case

we assume that G has a forward-edge ending in a vertex with a single incoming edge

or the edge is marked with “∗′′. If several possibilities for a given vertex exist we
allow any — evolution model does not specify, which one to select.

'((��� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

To handle cyclic factorized DTD-graphs we introduce several additional notions.

Definition 4.8. Immediate descendants. The reverse hierarchy on V ′ is defined by
the sets of immediate descendants D(t) for each vertex t. Immediate descendants are
vertices that explicitly are included into vertex t and are not included into t indirectly
(through a transitive inclusion).

Definition 4.9. Vertex reverse subhierarchy. Vertex reverse subhierarchy DL(t) is a
sub-graph of G, which vertex set consists of vertices reachable from t.

Definition 4.10. Essential descendants. Essential descendants De(t) are explicitly
specified sets of vertices. It is required that D(t) ⊂ De(t).

1. Closure: ∀t ∈ V ′ Pe(t), De(t) ⊆ V ′

2. Rootedness: ∃T ∈ V ′ ∀t ∈ V ′ T ∈ PL(t) ∧ Pe(T) = ∅
3. Pointedness: ∃ ⊥ V ′ ∀t ∈ V ′ t ∈ PL(⊥)

4. Immediate predecessors:

∀t ∈ V ′ P (t) = Pe(t)−∪αx(PL(x)∩Pe(t)∩(PL(t)−DL(t))−{x}, Pe(t))−
∪αx(PL(x)∩Pe(t)∩(PL(t)∩DL(t))−{x}, Pe(t))−∪αx((PL(x)−P (x))∩
(PL(t) −DL(t)) ∩ Pe(t), PL(x) ∩DL(x) − {x})

5. Predecessors graph: ∀t ∈ V ′ PL(t) = ∪αx(PL(x), P (t)) ∪ {t}
6. Immediate descendants:

∀t ∈ V ′ D(t) = De(t) − ∪αx(DL(x) ∩ De(t) ∩ (DL(t) − PL(t)) −
{x}, De(t)) − ∪αx(DL(x) ∩ De(t) ∩ (DL(t) ∩ PL(t)) − {x}, De(t)) −
∪αx((DL(x) −D(x)) ∩ (DL(t) − PL(t)) ∩De(t), DL(x) ∩ PL(x) − {x})

7. Descendants graph: ∀t ∈ V ′ DL(t) = ∪αx(DL(x), D(t)) ∪ {t}
8. Interface: ∀t ∈ V ′ I(t) = N(t) ∪H(t)

9. Nativeness: ∀t ∈ V ′ N(t) = Ne(t) −H(t)

10. Inheritance: ∀t ∈ V ′ H(t) = ∪αx(I(x), P (t))

Figure 6. Axiom set for general case.

The axiom set for a general case is shown on Figure 6.

We introduce new axioms for controllingD(t) andDL(t) sets and modify axiom 4.

The idea of modification is to avoid transitive inclusion to be passed through recursive

vertices inclusion. The new axiom 4 states that P (t) consists of those vertices from
Pe(t) that:

• do not lie in the area marked 2 (vertices of Pe(t) that are both predecessors and
descendants of t) on Figure 7 and transitively include t through a vertex from
area 2,

��� �
�
2
����
��� ������
����� �������

✡
✡

✡
✡

✡
✡

✡✡

❏
❏

❏
❏

❏
❏
❏❏

PL(t)

✡
✡
✡

✡
✡

✡
✡✡

❏
❏

❏
❏

❏
❏

❏❏

DL(t)

� t✫✪
✬✩

Pe(t)1
2

Figure 7. Understanding general case immediate predecessors axiom.

• do not lie in the area marked 1 (vertices of Pe(t) that are not descendants of t)
on Figure 7 and transitively include t through a vertex from area 1,

• do not lie in area 1 and transitively include t through a vertex from area 2.

The calculation of N(t), I(t) and H(t) sets requires calculation of PL(t) set.
Provided that initially all sets except essential ones are empty PL(t) can be calculated
by iterative application of the axioms. The following claim states that the set will have

the same contents regardless of axiom application order.

Claim 4.1. PL(t) set value does not depend on calculation order and its calculation
requires at most Card(V ′∗) applications of the predecessors graph axiom.
Proof. Due to lack of space only a sketch of proof is given. PL(t) calculation
through application of axioms can be regarded as an iterative algorithm (see [3]) on

G with a distributive function PL defined over a semilattice V ′∗ with operation of
strict set inclusion. Since V ′∗ is a finite set the semilattice complies the finite chains
condition (each chain contains at most Card(V ′∗) elements). Thus, we can apply
theorem from [3], which states that PL(t) calculation process is finite and does not
depend on calculation order.

The PL set can be calculated by applying the following calculation algorithm:

∀tP (t) := Pe(t);
∀tD(t) := De(t);
∀tPL(t) := DL(t) := {t};
while (∃t | one of the axioms does not hold for t)
Recalculate PL(t) applying axioms 4 – 7 to t.

The while loop runs at most number of attributes by number of vertices times. The
worst case graph for the algorithm is a bidirectional list with attributes in each vertex.

5 Elementary operations

Now when we have a set of invariants that establish requirements for G we consider

a set of elementary operations of the evolution model. Each elementary operation

should retain invariants defined in Section 4 if they were present in an initial schema.

��'��� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

We introduce eight elementary operations: adding/ removing an edge, adding/ re-

moving an attribute, adding/ removing a vertex and splitting/ merging a vertex. Each

of these operations has an equivalent operation on initial DTD. We describe under

what conditions the evolution model accepts an operation for a given schema, and

what changes occur in the model when the operation is performed.

• AddAttribute. Attribute a (the one being added) of vertex t is included
into Ne(t). The sets Ne, N , H are recalculated for the vertex t and vertices
reachable from t. Schema designer (or an external algorithm) may include this
attribute into Ne sets of some successors of vertex t. The equivalent operation
on simplified DTD is adding <!ELEMENT A> and including it in an element
T: <!ELEMENT T(A,..)>.

• RemoveAttribute. Attribute a (the one being deleted) of vertex t is ex-
cluded from Ne(t), the sets Ne, N , H are recalculated for the vertex t and
vertices reachable from t. Note, if t ∈ P (s) ∧ a ∈ Ne(s), then according to
axioms 8 and 9 attribute a is included into N(s). The equivalent operation on
simplified DTD is removing element <!ELEMENT A> and excluding it from

an element T: <!ELEMENT T(A,..)>.

• AddEdge. Let edge (t, s) is added. s is added into Pe(t) and t is added into
De(s). Expressions dependent on Pe(t) and De(s) are recalculated. Note, that
s is added into P (t) if there is no other path from s to t (same for D(s)). The
equivalent operation on simplified DTD is including element <!ELEMENT S>
into element T: <!ELEMENT T(S,..)>.

• RemoveEdge. This operation is complex, it may cause generation of new

edges in the schema according to axioms 4 and 6. New edges will start in

some predecessors of the end vertex of a deleted edge and end in its successors.

Provided we remove edge (t, s), s is deleted from Pe(t). All expressions de-
pendent on Pe(t) are recalculated. If axiom 2 is violated then the operation is

rejected by the system. (Alternatively, the vertex t may be included into root
vertex T , the change can be achieved in two stages: adding T into Pe(t), and
RemoveEdge for the edge (s, t). Similarly, axiom 3 for vertex s may be vi-
olated. However, if s ∈ Pe(t), then s is added into the graph). Analogous

operations are performed withDe(s). In simplest case this operation equivalent
is excluding element S from element T: <!ELEMENT T(S,..)> is replaced
with <!ELEMENT T(...)>.

• AddVertex. Provided vertex t is added. t is included into V ′. The sets

Pe(t) and De(s) are to be defined by schema designer (or an external algo-
rithm), to generate incoming edges of t. t is added into Pe(s) to satisfy axiom
4. Basically, Pe(t) = T , and changes are made using modification AddAt-
tribute. In case a new root is added the operation is equivalent to introducing

new <!ELEMENT T(...)>, where . . . contains an old root.

• RemoveVertex. It is a complex modification. First, the vertex t is to be
removed with the edges starting and ending in it. Second, a number of edges

��� �
�
2
����
��� ������
����� �������

from its predecessors to its successors may be added. Third, attributes of vertex

t, that are essential for its successors should migrate properly. The operation
is implemented in three stages: applying RemoveAttribute to all attributes of

t, applying RemoveEdge to all outcoming edges, and applying RemoveEdge
for all incoming edges. In the case of root removal the operation is equivalent

to deleting a root element <!ELEMENT T(...)>, where . . . contains a new
root(s).

• MergeVertex. Vertices being merged must be connected by an edge. Merged
vertex Pe, De and Ne sets are unions of Pe, De and Ne sets of vertices being

merged with exclusion of themselves. In Pe sets of reachable amd De set of

reaching vertices occurrences of merged vertices are replaced with occurrence

of merged one. A merge equivalent is either replacing “∗′′-inclusion with or-
dinary one: <!ELEMENT T(S*)> is replaced with <!ELEMENT T(S)>, or
removing inclusion of S into a third element V: <!ELEMENT V(..,S)> →
<!ELEMENT V(...)>.

✍✌✎�
M={monograph,editor}

✍✌✎�
T={title}❄
*

✟✟✟✟✟✙

✘✘✘✘✘✘✘✘✘✘✾

*

✲✲

✍✌✎�
MT

✟✟✟✟✟✙

✘✘✘✘✘✘✘✘✘✘✾

*

Figure 8. Merge vertex sample.

• SplitVertex. Pe, De and Ne sets of split vertex are separated into two dis-

joint sets each. In Pe and Ne sets of reachable vertices occurrences of split ver-

tex are replaced with one or both of the created without violating P (t) ⊂ Pe(t)
andD(t) ⊂ De(t) properties. A split equivalent is either replacing ordinary in-

clusion with a “∗′′-inclusion, or introducing inclusion of S into a third element
V: <!ELEMENT V(...)>→ <!ELEMENT V(..,S)>.

✍✌✎�
B={book,booktitle,authority}

❍❍❍❍❍❥
✲✲

✍✌✎�
B={book,booktitle}

✍✌✎�
N={authority}❄
*

❍❍❍❍❍❥

Figure 9. Split vertex sample.

The evolution from DTD99 to DTD01 for the working example may have the fol-

lowing sequence:

• MergeVertex(monograph,title)

• RemoveVertex(article)

– RemoveAttribute(article,authorID)

��*��� �����	
��
�� �+",-�%"�� "!� �./�$�� "!� 0��1 ".-$����� ��"#� � ��

– RemoveAttribute(article)

– RemoveEdge(article,author)

– RemoveEdge(article,author)

• SplitVertex(book,authority,{authority},book)
• AddAttribute(authority,country)

• RemoveAttributeauthority

• AddAttribute(authority,authname)

• AddAAttribute(book,bestseller)

• AddAttribute(book,price)

The ability to apply one or the other elementary operation depends on the restric-

tions implied by the model axioms. In the evolution process the Pe, De and Ne (i. e.

essential) sets of the model may need to be changed. The cost of an elementary opera-

tion is defined by the number of essential sets affected by it. The cost of application of

a sequence of elementary operations is the sum of their costs. The preferred schema

for a new version is one that requires less costly operation sequence to obtain it.

6 Conclusions

In this paper we presented a framework for schema evolution of relational database-

based systems with XML interface. Through definition of Pe, De and Ne sets of

our model it becomes possible to ensure that evolved schemas designed to answer

new functional requests while still conform to both, domain-based and performance-

oriented restrictions.

Our future plans include designing a more flexible way to meet performance-

oriented requirements than employing inline shredding technique. We also explore

ways to extend the evolution model to control more XML DTD and XML-Schema

features.

References

[1] R. J. Peters, M. T. Ozsu. An Axiomatic Model of Dynamic Schema Evolution in Object-

base Systems. ACM Transactions on Database Systems, 22(1), pp. 75–114, 1997.

[2] I. A. Goralwalla, D. Szafron, M. T. Szu. Managing Schema Evolution Using a Temporal

Object Model. In proceedings of the 16 International Conference on Conceptual Modeling

(ER’97), 1997.

[3] M. Yamamoto, K. Takahashi, M. Hagiya, S. Nishizaki, T. Tamai. Formalization of graph

search algorithms and its applications. In proceedings of Theorem Proving in Higher Or-

der Logics (TPHOLs’98), LNCS, vol. 1479, pp. 479–496. Springer-Verlag, 1998.

��� �
�
2
����
��� ������
����� �������

[4] S. Y. Lee, M.-L. Lee, T. W. Ling, L. A. Kalinichenko. Designing Good Semi-Structured

Databases and Conceptual Modeling. In proceedings of International Conference on Con-

ceptual Modeling / the Entity Relationship Approach, pp. 131–145, 1999.

[5] D. Florescu, D. Kossman. A performance evaluation of alternative mapping schemes for

storing XML data in a relational database. Technical Report 3684, INRIA, 1999.

[6] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. J. DeWitt, J. F. Naughton. Rela-

tional databases for querying XML documents: Limitations and opportunities. In proceed-

ings of 25th International Conference on Very Large Data Bases (VLDB’99), Edinburgh,

Scotland, pp. 302–304, 1999.

[7] D. Florescu, D. Kossmann. Storing and Querying XML Data Using an RDBMS. IEEE

Data Engineering Bulletin, 22(3), pp. 27–34, 1999.

[8] A. Deutsch, M. Fernandez, D. Suciu. Storing semistructured data with STORED. Pro-

ceedings of the 1999 ACM SIGMOD International conference on mamagement of data.

pp. 431–442, 1999.

[9] Y. Men-hin, A. W.-C. Fu. From XML to Relational Database. In proceedings of 8th Inter-

national Workshop on Knowledge Representation meets Databases, KRDB’2001, Rome,

2001.

[10] I. Tatarinov, Z. Ives, A. Y. Halevy, D. S. Weld. Updating XML. In SIGMOD, pp. 413–424,

2001.

[11] J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R. Krishnamurthy, S. Vigilas,

J. F. Naughton, I. Tatarinov. A General Techniques for Querying XML Documents us-

ing a Relational Database System. SIGMOD Record, vol. 30(3), pp. 20–26, 2001.

[12] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, C. Zhang. Storing

and Querying Ordered XML Using a Relational Database System. International. In pro-

ceedings of the 2002 ACM SIGMOD international conference on Management of data

table of contents, Madison, Wisconsin, pp. 204–215, 2002.

[13] B. Kane, H. Su, E. A. Rundensteiner. Consistently updating XML documents using incre-

mental constraint query checks. In Web Information and Data Management (WIDM’02),

pp. 1–8, 2002.

[14] S. Coox. Axiomatization of Schema Evolution in XML Databases. In Programming (3),

pp. 1-9, 2003.

[15] Y. Papakomstantinou, V. Vianu. Incremental validation of XML documents. In ICDT,

2003.

�����������������

�����	�
��
�����

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ���'�(�� 	�

Application of Data Mining Methods for Bad Debt
Recovery in the Healthcare Industry

Jozef Zurada
1
, Subhash Lonial

2

Department of Computer Information Systems
1

Department of Marketing
2

College of Business and Public Administration

University of Louisville

Louisville, KY 40292, USA

{jmzura01,lonial}@louisville.edu

Abstract. The healthcare industry, specifically hospitals and clinical organizations,

are often plagued by unpaid bills and collection agency fees. Therefore, in recent

years the industry has started to apply data mining tools to reduce bad-debt balance.

This paper compares the effectiveness of five such tools - neural networks, decision

trees, logistic regression, memory-based reasoning, and the ensemble model in

recovering bad debts. The data analysis and evaluation of the performance of the

models are based on a fairly large unbalanced data sample provided by a healthcare

company, in which cases with recovered bad debts are underrepresented. Computer

simulation shows that the neural network, logistic regression, and the combined

model produced the best classification accuracy. More thorough interpretation of the

results is obtained by analyzing the response and receiver operating characteristic

charts. We used the models to score all “unknown” cases, which were not pursued

by a company. The best model classified about 34.8% of these cases into “good”

cases. (This may potentially bring a company the total of about $423,000 - 58% in

the additional recovered income.) To collect bad debts more effectively, we

recommend that a company first deploy and use the models, before it refers

unrecovered cases to a collection agency.

Keywords. Healthcare industry, Bad-debt recovery, Data mining methods

1. Introduction

The healthcare industry, specifically hospitals and clinical organizations, are often

plagued by unpaid bills, collection agency fees and outstanding medical testing costs. As

a matter of fact, hospitals typically end up paying 30% to 50% of recovered bad-debt

revenue to outside collection agencies [14]. Galloro [4] reported that Nashville-based

HCA’s provision for bad debt rose to 10.3% of its revenue for the third quarter,

compared to 8.3% of revenue in the same quarter the previous year. Pesce [9] argues that

��) �
�
*
����
��� ������
����� �������

hospitals should secure the funding for and invest in modern information technology to

reduce bad-debts, which along with other factors such as billing errors, insurance

underpayments and inability to collect accurate patient and payer information throughout

delivery of care, account for 13% of a hospitals’ lost revenue each year. The matter of

recovering bad debts has become serious and has even involved hospitals suing patients.

A review of court records and interviews with hospital trade groups, collection attorneys

and consumer advocates shows that hospitals in several states of the U.S. are beginning

to use harsh measures to collect debts and secure the arrest and even imprisonment of

patients who miss court hearings related to their healthcare debts [8].

Predicting whether a particular customer is likely to repay a healthcare debt is an

inherently complex and unstructured process. What makes this process especially

difficult in the healthcare context is the hospital’s inability to obtain detailed financial

information concerning the patients. Due to moral and practical constraints, the hospital

has to perform the necessary medical services on credit. Given all the difficulties of bad-

debt recovery, the healthcare institution that provided data for this paper successfully

recovered bad debts from only about seven percent (7.3%) of its total customers, even

though the healthcare institution must have used some initial scoring model to target

“good” customers who were likely to repay bad debts. Some of debt defaults may be

attributed to unforeseen events (i.e. divorce, death, loss of employment) or be governed

by factors that may be difficult or impossible to see in the attributes of the consumer (i.e.

stability of marriage, general health, job stability). Any improvement in making a

reliable distinction between those who are likely to repay the debt and those who are not

would allow the healthcare institution write off the debts which are unlikely to be paid

off, and hence save collection expenses.

The volume and complexity of raw data inherent in bad debt recovery can be

handled by several knowledge discovery and data mining tools. Knowledge discovery is

defined as the process of identifying valid, novel, and potentially useful patterns, rules,

relationships, rare events, correlations, and deviations in data [6]. This process relies on

well-established technologies, such as machine learning, pattern recognition, statistics,

neural networks, fuzzy logic, evolutionary computing, database theory, artificial

intelligence, and high performance computing to find relevant knowledge in very large

databases. The knowledge discovery process is typically composed of the following

phases: understanding the overall problem domain; obtaining a data set; cleaning,

preprocessing, transforming, and reducing data; applying data mining tools; interpreting

mined patterns; and consolidating and implementing discovered knowledge.

Data mining, which is an important phase in the knowledge discovery process, uses

a number of analytical tools: discriminant analysis, neural networks, decision trees,

fuzzy logic and sets, rough sets, genetic algorithms, association rules, and k-nearest

neighbor (or memory-based reasoning) which are suitable for the tasks of classification,

prediction, clustering, summarization, aggregation, and optimization. Classification and

prediction are the two tasks that we deal with in this paper. These are the most common

and perhaps the most straightforward data mining tasks. Classification consists of

examining the features of a newly presented object and assigning it to one of a

��+��� ������	�
�� ��
�����
,,-%.��%"�� "!� ����� �%�%�/� ���0" �� !"#� *� � ����� ��."1�#&� ��

predefined set of classes or outcomes (“debt recovered” or “debt unrecovered”). A data

mining model employing one of the data mining tools must be trained using pre-

classified examples. The goal is to build a model that will be able to accurately classify

new data based on the outcomes and the interrelation of many discrete variables (debt

amount, injury code, patient age etc.) contained in the training set.

This paper examines and compares the effectiveness of four data mining techniques

(neural networks, decision trees, logistic regression, memory-based reasoning) and the

ensemble model in recovering bad debts. The target/dependent variable in a fairly large

data set (comprised of the training, validation, and test subsets) provided by a healthcare

company represents the following three classes: 1 - “good” customers (those who repaid

the debt), 2 - “bad” customers (those who defaulted), and 3 - “unknown” customers

(those who were not pursued). The number of “good” customers is vastly

underrepresented in the data set. To build the models, we only used cases representing

“good” and “bad” customers, rejecting all “unknown” cases. Computer simulation shows

that on the test set, the logistic regression model, neural network model, and the

ensemble model (combines logistic regression, neural network, and decision tree)

produces the best overall classification accuracy rates, and the decision tree is the best in

predicting “good” customers. More subtle and meaningful interpretation of the results

are obtained by analyzing the response and receiver operating characteristic charts. After

building and testing the models, we used them to score 2,896 “unknown” cases, which

had not been pursued by a company. The neural network model classified 1008 (34.8%)

of these cases into “good” cases. This may potentially bring a company about an

additional $423,000 in recovered income. In addition, our models provide the patient

financial service department a list of “unknown” patients sorted from the most likely to

pay the bill to the least likely to pay the bill.

The paper is organized as follows. Section 2 reviews the recent literature first in

more recent business data mining applications and then in bad debt recovery

applications. Section 3 describes the data sample, whereas section 4 presents some

experiments and simulation results. Finally, section 5 concludes the paper and makes

recommendations for future work.

2. Literature review

There is ample evidence in the literature that in cases where nonlinearities and

complexities among variables are present, data mining tools such as neural networks,

genetic algorithms, decision trees, fuzzy logic, rough sets, and memory-based reasoning

often provide better classification accuracy rates than common statistical techniques such

as regression analysis and discriminant analysis.

In more recent papers, Jagielska et al. [7] used the credit approval data set to

investigate the performance of neural networks, fuzzy logic, genetic algorithms, rule

induction software, and rough sets when applied to automated knowledge acquisition for

classification problems. They concluded that the genetic/fuzzy approach compared more

�(� �
�
*
����
��� ������
����� �������

favorably with the neuro/fuzzy and rough set approaches. Piramuthu [10] analyzed the

beneficial aspects of using both neural networks and nuerofuzzy systems for credit-risk

evaluation decisions. Neural networks performed significantly better than neurofuzzy

systems in terms of classification accuracy, on both training as well as testing data. West

[15] investigated the credit scoring accuracy of five neural network architectures and

compared them to traditional statistical methods. Using two real world data sets and

testing the models using 10-fold cross-validation, the author found that among neural

architectures the mixture-of-experts and radial basis function did best, whereas among

the traditional methods regression analysis was the most accurate. Thomas [13] surveyed

the techniques for forecasting financial risk of lending to consumers. Glorfeld and

Hardgrave [5] presented a comprehensive and systematic approach to developing an

optimal architecture of a neural network model for evaluating the creditworthiness of

commercial loan applications. The neural network developed using their architecture

was capable of correctly classifying 75% of loan applicants and was superior to neural

networks developed using simple heuristics. Yang et al. [16] examined the application of

neural networks to an early warning system for loan risk assessment. Finally, Zurada

[18] investigated data mining techniques for loan-granting decisions and predicted

default rates on consumer loans.

In this paper we apply data mining tools to data-driven marketing applications. In a

typical application, solicitations are mailed with the aim of achieving a certain result.

Some examples include (1) credit card applications, (2) insurance policies, (3) service

contracts, and (4) bad-debt recovery. Regardless of the specific application maximizing

the response rate is usually the desired objective.

For example, VISA International’s use of neural networks to detect fraudulent credit

card transactions provided savings estimated to be $40 million over a six month period

[1]. An English company has applied neural networks in direct marketing to identify the

characteristics of people most likely to respond to a direct mailing campaign. The effort

was worth 40,000 new customers, equivalent to $500,000 savings in mailing costs.

American Express Co. has deployed neural networks in three projects. One involves a

character recognition system, another is for direct mail prospects, and the third is for

portfolio management trading support system [2]. In a pilot study to detect fraud

conducted at American Express, neural networks provided an improvement of 3% over

the previously used logistic regression models [11].

The healthcare industry has been focused on ways to reduce bad-debt balance for

the last several years. In one of the earlier studies, Zollinger et al. [17] identified a

sample of 985 patients classified as bad debt and charity cases from 28 Indiana hospitals.

They built a multiple regression model and found that several institutional variables such

as total hospital charge and the total hospital revenue and patient variables such as

marital status, gender, diagnoses, insurance status, employment status, and discharge

status were significant factors in recovering unpaid hospital bills. A similar study was

performed by Buczko [3] who analyzed data on charges assigned to charity care and bad

debt for 82 short-stay hospitals in Washington. The study confirmed that uncompensated

�((��� ������	�
�� ��
�����
,,-%.��%"�� "!� ����� �%�%�/� ���0" �� !"#� *� � ����� ��."1�#&� ��

care has become a major issue in hospital finance as the number of uninsured persons

has increased and hospital revenues have declined.

In one of the most recent articles, Veletsos [14] described the predictive modeling

software (IBM Intelligent Miner and DB2) used for bad-debt recovery implemented by

the IBM Company for the Florida Hospital at Orlando. The final study was completed in

2003 and included approximately 2,400 patients. The model is based on a variety of data

variables, including credit factors, demographic information and previous organizational

payment patterns. The model provides the patient financial service department a list of

patients sorted from the most likely to pay the bill to the least likely to pay the bill. The

model yielded approximately $200,000 in savings. In our study, which is an extension of

the approach discussed by [14], we use a larger and unbalanced sample of patients and

fewer variables to test the effectiveness of the five data mining models for recovering

bad-debts.

3. The data sample

The healthcare company, which is the subject of this study, relied on only four

factors to determine whether the bad debt was recoverable: (1) Patient Age (PA), (2)

Patient Gender (PG), (3) Injury Diagnosis Code (IDC), and (4) Dollar Amount of the

Claim (DAC). Over one quarter the company identified 6,319 new cases with an

outstanding balance. The dependent variable Status represented groups 1, 2, and 3

containing “good”, “bad”, and “unknown” cases, respectively. After eliminating cases

which had at least one missing value, we obtained a data set containing 6180

observations unequally divided into 449 “good” cases (group 1); 2,835 “bad” cases

(group 2); and 2896 “unknown” cases (group 3).

To learn more about the distribution of the variables within the data set and to find

out whether any transformation of the variables is needed, we performed a simple

bivariate exploratory data analysis. For the DAC variable, the average dollar amounts of

the recovered cases (group 1); not recovered (group 2); and not pursued claims (group 3)

are $1,052; $417; and $254; respectively. Furthermore, the total amounts for the DAC

variable for each of the 3 groups are $472,461; $1,182,350; and $734,188; respectively.

Thus it appears that a company used common sense and some procedure, which allowed

it to target the patients with larger debts and ignore those with smaller debts. We also

performed additional transformation for the three variables. To improve the distribution

of the DAC variable and obtain better prediction results, we computed and used

log(DAC) instead of DAC. Furthermore, to decrease the dimensionality of the data set

(the number of distinct values in the data set), we grouped the PA variable into several

bins. Finally, we recorded a nominal independent variable IDC into 24 categories, which

were then converted to 23 dummy variables.

�(� �
�
*
����
��� ������
����� �������

4. The experiments and simulation results

We employed SAS Enterprise Miner (EM) (www.sas.com) [12] to build an initial

model and a final model. The initial model was trained, validated, and tested on an

unbalanced sample which contained 3,284 cases. The test data set was used to check the

performance of the initial model. The initial model’s overall classification accuracy was

excellent and the classification rate of “bad” cases was almost perfect (100%). However,

the classification rate of “good” cases was poor because “good” cases were vastly

underrepresented in the training data sample, and the model classified the majority of

“good” cases as “bad” cases. As a result, the initial model was found unacceptable.

In the final model, we performed stratified sampling to balance the data sample, by

randomly selecting 449 “bad” cases from 2835 “bad” cases and matching them with all

449 “good” cases. After sampling, the data sample contained 898 cases equally divided

between 449 “good” cases and 449 “bad” cases. This data set was divided into training,

validation and test sets, each containing 450 (50%), 224 (25%), and 224 cases (25%),

respectively, evenly representing the 2 groups. The first two subsets were used to build

the model, whereas the test subset was used to check the performance of the model. It

was assumed that detecting “good” cases was the target event.

Table 1. The test set correct classification accuracy rates for the 5 methods used. (It shows the percentage and

number of test cases classified correctly.)

 Decision

Tree

Neural

Network

Logistic

Regression

Memory-

based

Reasoning

Ensemble

Model

“Overall" 67.9%

(152/224)

72.3%

(162/224)

75.0%

(168/224)

61.2%

(137/224)

73.7%

(165/224)

"Good" 75.0%

(84/112)

67.9%

(76/112)

71.4%

(80/112)

72.3%

(81/112)

71.4%

(80/112)

"Bad" 60.7%

(68/112)

76.8%

(86/112)

78.6%

(88/112)

50.0%

(56/112)

75.9%

(85/112)

Table 1 compares the test set classification accuracy of decision trees, neural

networks, logistic regression, memory-based reasoning, and the ensemble model for one

of several computer simulations. (We ran computer simulation for a random selection of

several different sets of 449 “bad” cases. Each of them was matched with the same 449

“good” cases. We also ran the experiments for several different training, validation, and

test subsets. All the above scenarios yielded similar classification accuracy rates across

the five models.) The ensemble model combines the best three models (neural network,

logistic regression, and decision tree) by averaging the posterior probabilities of the

response variable Status. It is clear that in the overall classification accuracy, logistic

regression, ensemble model, and neural network outperform the other models. The

decision tree, however, does the best job in classifying “good” cases. The classification

accuracy rates obtained seem to be excellent if one considers the fact that the healthcare

�(2��� ������	�
�� ��
�����
,,-%.��%"�� "!� ����� �%�%�/� ���0" �� !"#� *� � ����� ��."1�#&� ��

institution that provided data for this paper successfully recovered bad debts from only

about 449 of its 6180 total patients (7.3%).

Figure 1. The test set cumulative percent response chart for the five methods. Target event: 1 (“good” cases).

The performance of the five models, however, can be best and more thoroughly

evaluated by using a combination of cumulative and non-cumulative response and the

receiver operating characteristic (ROC) charts. A cumulative response chart shows the

overall strength of the models. To properly interpret a cumulative percent response chart,

one needs to understand how the chart is constructed. In the chart (Fig. 1), a respondent

is defined as an individual from whom payment is recovered (“good”, Status=1). For

each individual, the fitted models predict the probability that the individual will repay

the debt. The observations are sorted by the predicted probability of response from the

highest probability of response to the lowest probability of response, and then grouped

into ordered bins, each containing approximately 10% of the data. Using the target

variable Status, one can count the percentage of actual responders in each bin. If the

model is effective, the proportion of individuals with the event level being modeled (in

this example, those who will repay dues) will be relatively high in bins in which the

predicted probability of response is high. The chart shows the percentage of respondents

in the top 10%, top 20%, and so on. In a chart, the response rate for each decile of the

score includes all of the responses for the deciles above it.

One sees (Fig. 1) that the 5 models predict that between 65% and 100% of the

respondents in the first 10% decile will repay dues. The logistic regression, ensemble,

and neural network models outperform the other 2 models with the 100%, 92%, and

�(� �
�
*
����
��� ������
����� �������

83% repay rate, respectively. The regression model needs to be chosen if a company

intends to target only 10% of the patients. The ensemble model, however, predicts that

75% of the respondents in the 5 first deciles (50% percentile) will repay dues, and it is

slightly better than the regression model (74%) and neural network model (71%). The

decision tree and memory-based reasoning (denoted as User) models undoubtedly

performs worst in all deciles. The horizontal response line represents the baseline rate

(approximately 50%) for comparison purposes, which is an estimate of the percentage of

payers that one would expect if one were to take a random sample.

Figure 2. The test set non-cumulative % response chart for the five methods. Target event: 1 (“good” cases).

To analyze the performance of the models at each decile (strata) of the score, it is

necessary to examine a non-cumulative percent response chart, which shows the

percentage of “good” respondents in each decile. Fig. 2 shows that the percentage of

“good” respondents for the neural network model and the ensemble model is the highest

(76%) and the lowest (62%), respectively, in the 4
th

 decile. The curves for all 5 models

decline significantly between the 5
th

 decile and the 6
th

 decile and drop below the baseline

for the 6
th

 through the 10
th

 decile. Below the baseline, the models become

counterproductive and actually represent “bad” respondents.

The ROC charts display the global measure of the predictive accuracy of the

models. They display the sensitivity on the vertical axis against 1-specificity on the

horizontal axis of a classifier for a range of cutoffs. Sensitivity is a measure of accuracy

for predicting events that is equal to the true positive divided by total actual positive. 1-

specificity is a measure of accuracy for predicting nonevents that is equal to the true

�(3��� ������	�
�� ��
�����
,,-%.��%"�� "!� ����� �%�%�/� ���0" �� !"#� *� � ����� ��."1�#&� ��

negative divided by total actual negative. Each point on the curves represents a cutoff

probability. Points closer to the upper-right corner correspond to low cutoff probabilities.

Points in the lower left correspond to higher cutoff probabilities. The extreme points

(1,1) and (0,0) represent no-data rules where all cases are classified into class 1 or class

0, respectively. The performance quality of the models is demonstrated by the degree to

which the ROC curves push upward and to the left. The curves will always lie above the

45¯ line. The area between the curves and the line provides a quantitative performance

measure called the Gini index. This area will range from 50, for a worthless model, to

100, for a perfect classifier.

Figure 3. The test set receiving operating characteristics (ROC) chart for the five methods. Target event: 1

“good” cases.

The ROC chart (Fig. 3) indicates that the predictive power all 3 models (neural

network, regression analysis, and combined model) stand out and appear to be better at

predicting “good” respondents than the decision tree and memory-base reasoning

models.

Finally, the best three models (logistic regression, neural network, and ensemble

model) were used to score how many out of the 2896 “unknown” cases would be

classified as “good” cases, bringing a company additional revenue. The results

summarized in Table 2 are striking. For example, the neural network model classifies

1008 of all “unknown” cases as “good” cases (34.8%), potentially yielding the amount

of $422,861 in additional revenue. This amount constitutes about (58%) of the total

�(� �
�
*
����
��� ������
����� �������

amount of $734,188 for not pursued cases. The results can be explained by the fact that

the models learned how to target patients with larger debts.

Table 2. The results from the Score node.

Tool Logistic

Regression

Ensemble

Model

Neural Network

Number and

percentage of cases

classified as 1

(”good”) - cutoff

probability ² 0.5

886/2896

(30.6%)

910/2896

(31.4%)

1008/2896

(34.8%)

The additional amount

potentially retrieved

[in US $]

$374,185 $382,148 $422,861

5. Conclusion

The paper compares the effectiveness of neural networks, decision trees, logistic

regression, memory-based reasoning, and the ensemble model in recovering bad debts.

The data analysis and evaluation of the performance of the various models is based on a

fairly large unbalanced data sample provided by a healthcare company, in which cases

with recovered bad debts are underrepresented. Computer simulation shows that the

logistic regression model, neural network model, and the combined model produced the

best overall classification accuracy, and the decision tree was the best in classifying

“good” cases. More subtle and meaningful interpretation of the results is obtained by

analyzing the response and ROC charts. We used the models to score the “unknown”

cases, which were not pursued by a company. The neural network model classified more

“unknown” cases into “good” cases than any other remaining models. This may

potentially bring a company the additional recovered income. In addition, our models

can provide the patient financial service department a list of patients sorted from the

most likely to pay the bill to the least likely to pay the bill. To collect bad debts more

effectively, we recommend that a company first deploy and use the models, before it

turns over unrecovered cases to a collection agency.

Although the results obtained from this study could be generalized, one of its

limitations may be a small number of independent variables used for prediction. In

future work, we plan to (1) include for analysis more input variables including insurance

employment and discharge status, if they become available to the company; (2) consider

the cost profit matrix; and (3) adjust the results by prior probabilities/conditions to avoid

a potential bias in the results.

�(���� ������	�
�� ��
�����
,,-%.��%"�� "!� ����� �%�%�/� ���0" �� !"#� *� � ����� ��."1�#&� ��

References

[1] Anonymous. Visa Stamps on Fraud. International Journal of Retail and Distribution
 Management. Vol. 23, Iss. 11, pg. 1, 1995.

[2] Berry, J., A Potent New Tool for Selling: Database Marketing. Business Week. Iss. 3388, pg.

 56, 1995.

[3] Buczko, W. Factors Affecting Charity Care and Bad Debt Charges in Washington

 Hospitals. Hospital and Health Services Administration. Vol. 39, Iss. 2, 179-191, 1994.

[4] Galloro, V. Bad News on Bad Debt. Modern Healthcare. Vol. 33, Iss. 43, pg. 8, Oct 2003.

[5] Glorfeld, L.W., Hardgrave, B.C. An Improved Method for Developing Neural

 Networks: The Case of Evaluating Commercial Loan Credit Worthiness. Computer &
 Operations Research. Vol. 23, No. 10, 933-944, 2000.

[6] Fayyad, U.S., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (Eds.). Advances in
 Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, Menlo Park,

 California, USA, 1996.

[7] Jagielska, I., Matthews, C., Whitfort, T. An Investigation into the Application of

 Neural Networks, Fuzzy Logic, Genetic Algorithms, and Rough Sets to Automated

 Knowledge Acquisition for Classification Problems. Neurocomputing. Vol. 24, 37-54, 1999.

[8] Lagnado, L. Hospitals Try Extreme Measures to Collect their Overdue Debts. The Wall Street
 Journal. Oct 30, 2003.

[9] Pesce, J. Satnching Hospitals’ Financial Hemorrhage with Information Technology. Health
Management Technology. Vol. 24, Iss. 8, pg.12, Aug 2003.

[10] Piramuthu, S. Financial Credit-Risk Evaluation with Neural and Neurofuzzy Systems.

European Journal of Operational Research. Vol. 112, 310-321, 1999.

[11] Punch, L., 1994, "When Big Brother Goes to Far", Credit Card Management. Vol. 7, Iss. 7,

pg. 22.

[12] SAS Institute. Data Mining Using Enterprise Miner Software: A Case Study Approach, 1
st

edition, http://www.sas.com, 1999.

[13] Thomas, L.C. A Survey of Credit and Behavioral Scoring: Forecasting Financial Risk of

Lending to Consumers. International Journal of Forecasting. Vol. 16, 149-172, 2000.

[14] Veletsos, A. Getting to the Bottom of Hospital Finance. Health Management Technology.

Vol. 24, Iss. 8; pg. 30, 2003.

[15] West, D. Neural Network Credit Scoring Models. Computers & Operations Research. Vol.

27, 1131-1152, 2000.

[16] Yang, B., Li, L.X., Ji, H., Xu, J. An Early Warning System for Loan Risk Assessment Using

Artificial Neural Networks. Knowledge-Based Systems. Vol. 14, 303-306, 2001.

[17] Zollinger, Terrell W., Sawyell, Robert M. Jr., Chu, David K. W., Ziegert, Andrea, Woods,

John R., LaBov, Dean. A Determination of Institutional and Patient Factors Affecting

Uncompensated Hospital Care. Hospital & Health Services Administration. Chicago, 36(2),

243-256, 1991.

[18] Zurada, J., Zurada, M. Data Mining Techniques in Predicting Default Rates on Customer

Loans. Review of Business Information Systems. Vol. 6, No. 3, pp. 65-83, 2002.

Storage Structures for Sharing Data in Multiversion
Data Warehouse 1

Bartosz Bňbel*, Robert Wrembel*, Bogdan Czejdo**

*Institute of Computing Science, PoznaŒ University of Technology
ul. Piotrowo 3A, PoznaŒ, Poland

{Bartosz.Bebel, Robert.Wrembel}@cs.put.poznan.pl
**Loyola University, New Orleans, USA

Abstract. A data warehouse (DW) is used for the integration of data coming
from external heterogeneous data sources and making them available for
analytical processing, decision making, as well as data mining. The structure
and content of a DW not only reflects a real world, i.e. data stored in a DW
come from real production systems, but also a DW and its tools may be used
for predicting trends and simulating alternative business scenarios (the what-if
analysis). External data sources usually evolve in time that requires evolution
of existing data warehouses. Traditional DW systems have a limitation that
they are not capable of supporting any dynamics in their structure and content.
For such applications as well as for the what-if analysis, a multiversion DW
seem to be more appropriate. In such a DW, each DW version describes a
schema and data at certain period of time or in a given business scenario. In
many cases (e.g., the what-if analysis) two consecutive DW versions may
contain identical sets of data. In such a case one set of data is shared by these
DW versions, in order to reduce storage overhead. In this paper we propose
data version storage structure, that allow sharing data between several DW
versions.

Keywords. Data warehouse, schema change operations, multiversion data
warehouse, data sharing.

1. Introduction

A data warehouse (DW) integrates autonomous and heterogeneous external data
sources (EDSs) in order to provide an information for analytical processing, decision
making, and data mining tools. Operational data, produced by OLTP (On-Line
Transaction Processing) applications are periodically loaded into a DW, previously
being cleaned, integrated, and often summarized. Then the data are processed by
OLAP (On-Line Analytical Processing) applications in order to discover trends,
anomalies, patterns of behavior, in order to predict future business trends, and to
support pertinent business decisions. The subjects of analysis are called facts and
they are described by dimensions th

at set up a context for facts.

1 This work is partially supported by the grant no. 4 T11C 019 23 from the Polish State

Committee for Scientific Research (KBN), Poland

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()�*'� 	�

�'+��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

External data sources are autonomous, i.e., they may evolve in time
independently of each other and independently of a DW that integrates them [22].
Changes in EDSs can be categorized as: (1) content changes, i.e.
insert/update/delete data, and (2) changes to the structure of data, further called
schema changes, i.e. add/modify/drop an attribute or a table. The system has to
ensure the correct propagation of these changes to a DW, i.e. the structure and
content of a DW must be correctly adjusted. The DW schema adjustments can be
done in two different ways, namely schema evolution [5] and schema versioning
[21, 19].

The first approach consists in updating the schema and transferring the data from
an old schema into a new schema. Only the current version of the schema is present.
In contrast, the second approach keeps track of the history of all versions of a
schema. Versioning can be done implicitly by temporal extension or explicitly by
physically storing different versions of a schema.

The process of good decision making often requires forecasting future business
behavior, based on present and historical data as well as on assumptions made by
decision makers. This kind of data processing is called the what-if analysis. In this
analysis, a decision maker simulates in a DW changes in a real world, creates a
virtual possible scenarios, and explores them with OLAP queries. To this end, a DW
must provide means of creating various DW alternatives, represented by different
DW versions. A DW capable of managing its various versions will be further called
a multiversion data warehouse (MVDW). In order to analyze data stored in a
MVDW, new analytical tools and extended query language is required.

Commercial DW systems and OLAP tools existing on the market (e.g. Oracle9i,
Oracle Express Server, IBM DB2, Sybase Adaptative Server Enterprise, Ingres
DecisionBase OLAP Server, NCR Teradata Hyperion Essbase OLAP Server)
support neither managing changes of a DW structure, nor the what-if analysis
functionality, nor querying multiversion data. The exception is SAP Business
Warehouse, that is capable of handling only simple changes in dimension data.
Oracle's what-if analysis allows to create only the simplest hypothetical rankings of
records.

Our approach and contribution. In our approach, changes in EDSs are handled
in versions of a data warehouse. A DW version is composed of a schema version
and a data version. A DW administrator can group several schema changes and then
apply them to a new DW version. Managing versions of a DW allows us to: (1)
clearly separate various structures and contents of a DW corresponding to various
periods of time; (2) create and manage various alternative virtual business scenarios
required for the what-if analysis; (3) run queries addressing a particular DW version
or addressing several versions and compare various factors computed in those
versions often without the need of excessive transformations of data, unlike in the
case of temporal approaches (e.g., [8, 9]).

In cases where two consecutive DW versions differ only by the structure of
dimensions, data stored in fact tables are often the same, i.e. are not directly affected
by dimension structural changes. In such cases, an identical set of fact data is shared
by these DW versions, in order to reduce storage overhead. In this paper we
contribute by presenting a data version storage structure, called bitmap storage, that
allows sharing data between several DW versions. In our prototype system data
sharing technique consists in physically storing in a given DW version only those

��� �
�
0
����
��� ������
����� �������

data that were changed in a given version or were newly inserted to this version.
Other data, common to a parent and its child versions are stored only in the parent
version and are shared by its child versions. For the data sharing purpose, every
record, in a fact or in a level table, has attached the information about all DW
versions this record belongs to. At the implementation level, the information about
all versions a given record belongs to is represented in the set of bitmaps, where one
bitmap represents one DW version.

Paper organization. The rest of this paper is organized as follows. Section 2
presents basic definitions in the field of DW technology. Section 3 discusses
existing approaches to handling changes in the structure of a DW. Section 4
overviews our concept of a multiversion DW and discusses possible changes in a
DW schema and dimension instance structure. Section 5 discusses our approach to
sharing data and preliminary experimental results on query processing efficiency.
Finally, Section 6 summarizes and concludes the paper.

2. Basic Definitions

A DW takes advantage of a multidimensional data model [10, 12, 13, 18, 23]
with facts representing elementary information units in a multidimensional cube. A
fact contains quantifying values, called measures, which are the subjects of
analysis. Examples of measures include: number of items sold, income, turnover,
etc. Measures depend on a context set up by dimensions.

Based on the definitions given in [23], a dimension schema is defined as a tuple
(Dname, Lev, Attr, ¢, LA), where Dname is the name of a dimension, Lev represents a
finite set of levels containing a special level lAll. Attr respresents a finite set of
attributes and LA is a function that for a given attribute ai returns a level li the
attribute belongs to. Every dimension level li has associated a domain, denoted as
dom(li); the values in this domain are called level instances. For level lAll the
following is true: dom(lAll)={all}. ¢ is a partial order on levels with a unique bottom
level lBott and a unique top level lAll, such that for a given level li: lBott ¢ li ¢ lAll.
Moreover, for given two levels lo and lp where lo ¢ lp there is no level lj such that lo ¢ lj
¢ lp.

An example of a hierarchical dimension is Geography (cf. Figure 1a), with
Countries at the top, that are composed of Regions, that in turn are composed of
Cities. Countries, Regions, and Cities constitute levels in this dimension.

A dimension instance of dimension Di is composed of hierarchically assigned
instances of levels in Di, where the hierarchy of level instances is set up by the
hierarchy of levels. Formally, a dimension instance of Di is defined as a tuple (Vali,
Fi). Vali consists of pairwise disjoint sets Vl1 Ç Vli Ç ... Ç Vlm: " k in (1, ..., m) Vlk Ì
dom(lk), where lk is a level in Di. Fi is the set of functions that for two given levels lo
and lp in Di: lo ¢ lp connect instances of lo to instances of lp such that an instance of lo
is connected to exactly one instance of lp.

Examples of the instances of level Countries may include: Great Britain and
France. Examples of level Regions may include: Scotland, Wales, and Bretagne.
Examples of Cities level may include: Edinbourgh, Glasgow, Cardiff, Swansea,
Brest, and Rennes. An example of the Geography dimension instance is shown in

��'��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

Figure 1b. Arrows between level instances represent functions in Fi. The values of
dimension instances and hierarchies they form constitute a dimension instance
structure.

Figure 1. A dimension schema and its instance

Multidimensional data model can be implemented either in MOLAP
(multidimensional OLAP) servers or in ROLAP (relational OLAP) servers. In the
former case, data are stored in n-dimensional arrays. In the latter case, n-
dimensional data are stored in the set of relational tables. Some of the tables
represent dimensions, and are called dimension level tables, while others store
values of measures, and are called fact tables. In a sequel, we will focus our
discussion on ROLAP implementation of a DW.
Example 1. As a leading example let us consider a DW schema presented in Figure
2. It is used for analyzing sale of cosmetics by shops in various periods of time. The
schema consists of three following dimensions: TIME ï with the Time level,
LOCATION ï with the Shops and Cities levels, COSMETICS ï with the Cosmetics
and Categories levels.

Figure 2. An example DW schema on sale of cosmetics

3. Related Work

The approaches to the management of changes in a DW can be classified into the
two following categories that support: (1) schema and data evolution: [5, 11, 12, 15],
(2) temporal and versioning extensions [7, 8, 9, 17, 1, 2, 6, 14, 16, 20, 22].

��� �
�
0
����
��� ������
����� �������

The approaches in the first category support only one DW schema and its
instance. When a change is applied to a schema, then all data described by the
schema must be converted into a new structure, that incurs high maintenance costs.

In the approaches from the second category, in [7, 8, 9, 17] changes to a DW
schema are time stamped in order to create temporal versions. However, [7] and [17]
expose their inability to express and process queries that span or compare several
temporal versions of data. On the contrary, the model and prototype of a temporal
DW presented in [8, 9] supports queries for a particular temporal version of a DW or
queries that span several versions. In the latter case, conversion functions must be
applied, as data in temporal versions are virtual.

In [14, 16, 20, 22] implicit versions of data are used for avoiding conflicts and
mutual locking between OLAP queries and transactions refreshing a DW. As
versions are implicitly created and managed by a system, these mechanisms can not
be used in the what-if analysis. The same drawback applies to the previously
discussed temporal DW that can manage only consecutive versions linearly ordered
by time.

On the contrary, [2] proposes permanent user defined versions of views in order
to simulate changes in a DW schema. However, the approach supports only simple
changes in source tables and it does not deal either with typical multidimensional
schemas or evolution of facts or dimensions. Also [6] supports permanent time
stamped versions of data. The proposed mechanism, however, uses one central fact
table for storing all versions of data. In a consequence, the set of schema changes
that may be applied to a DW is limited, and only changes to a dimension schema
and a dimension instance structure are supported.

An approach supporting the what-if analysis was presented in [1]. It may be
considered as a kind of virtual versioning. A hypothetical query is executed on a
virtual structure, called scenario. Then, a system using substitution and query
rewriting techniques transforms a hypothetical query into an equivalent query that is
run on a real DW. As this technique computes new values of data for every
hypothetical query, based on virtual modifications, performance problems will
appear for large DWs.

4. Multiversion Data Warehouse: Concept and Operations

4.1. Concept

In our approach, changes made to the structure and content of EDSs are handled
in a multiversion data warehouse (MVDW) that is composed of the set of its
versions (formally defined in [19]). Every version of a MVDW is in turn composed
of a schema version and an instance version that represents data described by its
schema version. A DW version, called a child version, is derived from a previous
DW version, called a parent version. Versions of a DW form a version derivation
graph. Each node of this graph represents one version, whereas edges represent
derivedïfrom relationships. A version derivation graph is a DAG.

��*��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

example: changing organizational structure of a company, changing geographical
borders of regions, creation and closing shops, changing prices/taxes of products.
Real versions are linearly ordered by the time they are valid within.

The purpose of maintaining alternative versions is twofold. Firstly, an
alternative version is created from a real version in order to support the what-if
analysis, i.e. it is used for simulation purposes. Several alternative versions may be
created from the same real versions. Secondly, such a version is created in order to
simulate changes in the structure of a DW schema. The purpose of such versions is
mainly the optimization of a DW structure or system tuning. A DW administrator
may create an alternative version that would have a simple star schema instead of an
original snowflake schema, and then test the system performance using new data
structures.

We distinguish two following groups of operations that modify a DW version:
¶ operations that change the schema of a DW (further called schema change

operations);
¶ operations that change the structure of a dimension (further called dimension

structure change operations).
All the above operations address a particular version of a data warehouse.

Applying some of these operations to a given DW version results in the creation of a
new DW version, whereas applying other operations may not necessarily cause the
creation of a new version. In the latter case, a DW administrator may however
explicitly create a new DW version and apply these operations. All operations
discussed below can be applied to a real DW version as well as to an alternative
version.

4.2. Schema change operations

Schema change operations include the following.
1. Creating a new level. The operation creates a level table with a given

structure.
For example, let us assume the creation of level Regions with attributes
region_id name as well as level CashRegister with attributes register_id
and register_name. This operation is applied to the same DW version as the
operation discussed in point 2.

2. Connecting a level into a dimension hierarchy. The operation connects a
given level table with its sub- and superlevel tables.
For example, the Region level can be connected as a superlevel of Cities.
Since this operation does not change the granularity of facts stored in the
Sales table it may either be executed in the original DW version or in a new
one, depending on requirements. Let us also consider inserting level
CashRegister as a sublevel of Shops. In this case the granularity of facts
will certainly increase and therefore, the modification is applied to a new
DW version. This new version will store sales data for each cash register,
whereas old sale data for shops will be stored in a parent DW version.

��� �
�
0
����
��� ������
����� �������

3. Disconnecting a level from a dimension. The operation detaches a given
level table from the dimension hierarchy it belonged to.
For example, the Product level could be detached from the
ProductCategory hierarchy. Since this operation changes the granularity of
fact data from finer to coarser, the operation is applied to a new DW
version if we do not want to loose historical information about sales of
products. In this case, an old DW version will store old data (sales of
products), whereas a new one will store new sales data only for each
product category.

4. Removing a level. The operation removes from the schema previously
disconnected level.
This operation is applied to the same DW version as the operation from
point 3.

5. Adding a new attribute to a level. The operation augments the structure of
a given level table with a new attribute.
For example, the City level could be augmented with attribute population.
This operation may easily be applied to an existing DW version.

6. Dropping an attribute from a level. The operation removes form a level a
non primary key or a non foreign key attribute.
An attribute being removed may be used by analytical queries. In such a
case, the queries will no longer be valid. For this operation, a DW
administrator decides whether to handle it in a new or an existing DW
version.

7. Changing the domain of a level attribute. This operation changes the
domain of a level attribute.
If it is applied to a primary key, then all foreign keys that point to this
attribute (either in sublevel tables or fact tables) have be modified, that
impacts data. This change do not need to be applied to a new DW version
as it does not impact user analytical queries. The decision whether to create
a new DW version in order handle this change is left to a DW
administrator.

8. Creating a new fact table. The operation creates a new, empty fact table,
without any associations to dimensions.
Creating a new fact table in a new version of a DW may be helpful for
preparing different/alternative data analysis scenarios. The decision
whether to create a new DW version in order to handle this change is left to
a DW administrator.

9. Creating a new attribute for a fact table. The operation creates a new
non primary or non foreign key attribute for a given fact table.
Operation of this type should result in the derivation of a new DW version.
Otherwise old fact records would have null values for a new attribute
resulting in wrongly interpretable query results. New values of this attribute
appear only for records in the new DW version, after loading from external
data sources.

10. Creating an association between a fact table and a dimension. The
operation associates a given fact table with a given dimension.

��1��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

This operation is implemented by adding a foreign key attribute to a fact
table. This operation should be executed in a new DW version for the same
reason as in operation 9.

11. Removing an attribute from a fact table. The operation removes a non
primary key or a non foreign key attribute from a given fact table.

12. Removing an association between a fact table and a dimension. The
operation is manifested by removing from a fact table an appropriate
foreign key.

13. Removing a fact table. The operation causes the removal of the whole fact
table, previously disconnected from a schema.

Since operations 11, 12, and 13 have a direct impact on existing analytical
queries and cause the lost of data, they are applied to a new DW version.

4.3. Dimension instance structure change operators

In addition to the above 13 schema modification operations, we distinguish 5
operations that change the structure of a dimension instance. Since the operations
have an impact on results obtained form analytical queries, c.f. [4] they are applied
to a new DW version. These operations include:

1. Inserting a level instance. The operation inserts a new level instance into a
given level. In this case, no action is required on fact data.
For example, a new shop instance <1000, 'Marks&Spencer', 20> can be
inserted into the Shop level.

2. Deleting a level instance. The operation deletes an instance of either a top,
or an intermediate, or a bottom level. Appropriate instances of sublevels must
also be deleted or reclassified, down to a fact table. In these cases, an old DW
version stores fact and dimension data before the change, whereas a new DW
version will store new data.

3. Reclassifying a level instance. The operation changes the association of a
sublevel instance with another superlevel instance.
For example, product 'Eau de toillette CK' originally belonging to the
category of luxury cosmetics may be move to a new category of popular
cosmetics. Old classification (dimension instances) and fact data are stored in
an old DW version, whereas new classification and fact data are stored in a
new DW version.
This operation can be useful for the what-if analysis. For example, an
alternative version of the example DW could be created in order to analyze
the increase or decrease of shops income when taxation of luxury and popular
cosmetics differs.

4. Merging n level instances into a new one. The operation merges several
instances of a given level into one instance of the same level.
For example, shop_1 and shop_2 is merged into shop_3. This change is
reflected in a new DW version. Old fact and dimension data remain in an old
version, whereas a new DW version stores only new sales data and
dimension data.

��� �
�
0
����
��� ������
����� �������

5. Splitting a level instance into n new instances. The operation splits a given
instance of a given level into several instances of the same level. For each
new instance a split ratio is specified.
For example, shop_3 is divided into two shops, namely shop_31 and shop_32
at a split ratio equaled to 2/3. This ratio may mean for example that 2/3 of the
original budget of shop_3 is assigned to shop_31, and the rest of budget is
assigned to shop_32. In this case, old fact and dimension data remain in an
old version, whereas a new DW version stores only new sales data and
dimension data, after shop splitting.

5. Data Sharing

Two consecutive versions of a DW may differ marginally from each other. For
example, reclassifying product 'Eau de toillette CK' from luxury to popular
cosmetics requires changes in its dimension instance structure only. Fact data are not
impacted by the change. In such a case, the same fact table is common to two DW
versions.

A naive approach to dealing with versions of data consists in storing a physical
copy of data in every DW version. As the size of data warehouses is of terabytes,
this approach is not suitable. Another approach is based on sharing common
versions of data between several versions of a DW. On the one hand, data sharing
reduces storage overhead, but on the other hand, it introduces query execution time
overhead since in order to answer a given query, a system has to infer the set of data
belonging to a certain DW version. In a consequence, there exist a trade off between
good query execution time and storage overhead.

In our prototype multiversion data warehouse management system (overviewed
in [19]) we use data sharing strategy. If however, a user requires very high query
performance, DW versions of interest can be explicitly materialized, i.e. each of the
DW version will contain its own full set of data. Currently, we are implementing and
testing data sharing mechanisms based on bitmaps that describe data sharing
between DW versions.

5.1. Bitmap storage

This mechanism is based on storing with every record, in a fact or a level table,
the information about all DW versions this record belongs to. At the implementation
level, the information about versions a record belongs to is represented as the set of
bitmaps, where one bitmap represents one DW version. The number of bitmaps
equals to the number of versions sharing data. The number of bits in a bitmap equals
to the number of records in a given table. The ith bit in a bitmap, describing version
Vm, is set to 1 if the ith record in a table, in DW version Vm, exists in this version.
Otherwise the bit is set to 0. This storage is currently implemented in two variants.
The first one, called in-table bitmap storage, consists in storing every bitmap in a
table whose records are shared. The second variant, called out-of-table bitmap
storage, stores bitmaps out of the table in a separate structure.

������ ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

In-table bitmap storage. As a simplified example illustrating our in-table bitmap
storage let us consider the content of the Sale table (from Example 1), as shown
below. Initially this table existed in version R2. Let us further assume that an
alternative version A2.1 was derived from R2. The change in A2.1 concerned
reclassifying 'Eau de toillette CK' from luxury to popular. In this case, original
records from version R2 are shared also by A2.1. To this end, two bitmaps, called R2
and A2.1, are added to the Sale table, as shown in Table 1. All sales records are
shared by versions R1 and A2.1, i.e. all bits in these bitmaps are set to 1.

Sale (R1) bitmap bitmap bitmap
sale_id cosm_id shop_id time_id quantity R2 A2.1 A2.2
1 cosm_1 shop_2 time_1 3 1 1 1
2 cosm_1 shop_2 time_2 1 1 1 1
3 cosm_2 shop_3 time_3 5 1 1 0

Table 1. An example of in-table bitmap storage

Let us further assume that another alternative version A2.2, was derived from R2.
In A2.2 the Cosmetics level instance identified by cosm_2 was deleted. An
appropriate bitmap, called A2.2, was added to the Sales table, c.f. Table 1. The
bitmap informs that sale record identified by sale_id=3 is shared by versions R2 and
A2.1 and not by A2.2.

Out-of-table bitmap storage. In this storage mechanism, bitmaps are stored out
of the table in a separate structure, called bitmap table. This table has the following
schema: {ROWID, bitmap1, bitmap2, ..., bitmapn}, where ROWID is a physical address
of a record, whereas bitmap1, bitmap2, ..., bitmapn are bitmaps, each of which
represents a DW version and its records. A bitmap table is created for every DW
table, either fact or dimension, whose data are shared between DW versions. As an
example let us consider table Sale and its content as shown in Table 1. The out-of-
table storage for the Sale table is shown in Table 2. The ROWID values in the Sale
bitmap table correspond to the ROWID values in the Sale (R1) table. For example,
record located at 0x0009 address is shared by versions R2, A2.1, and A2.2.

Sale (R1) Sale bitmap table

ROWID sale_id cosm_id shop_id time_id quantity ROWID R2 A2.1 A2.2
0x0009 1 cosm_1 shop_2 time_1 3 0x0009 1 1 1
0x000A 2 cosm_1 shop_2 time_2 1 0x000A 1 1 1
0x000C 3 cosm_2 shop_3 time_3 5 0x000C 1 1 0

Table 2. An example of out-of-table bitmap storage

The in-table bitmap storage decreases concurrent processing since locking a
record also causes locking version information. Moreover, reading version
information requires reading whole records, thus more data is transferred from disk.
The opposite characteristics has the out-of-table storage. Locking a record does not
require locking a bitmap and vice versa. Reading version information is accessed in
an appropriate bitmap table which is much smaller than fact tables. Additionally, a
table being shared and its bitmap table can be placed on different disks allowing
parallel access. However, the out-of-table bitmap storage requires joining a table
with data with a bitmap table, that introduces additional query processing overhead.

��(�
�
0
����
��� ������
����� �������

5.2. Experimental results

In this paper we focus on evaluating our in-table as well as out-of-table bitmap
storage. Our test environment is characterized as follows:

¶ a PC with Celeron 333MHz, 512MB of RAM, Linux;
¶ an Oracle 9.2 database with 73MB SGA;
¶ total size of a fact table, being shared by several DW versions equaled to 790

MB (11 million of records);
¶ queries being tested were based on a standard TPC-D benchmark;
¶ queries were run on a standard star schema with the Sales fact table as well

as Products, Times, Shops, and Customers as dimension tables.
In order to test query response time overhead we run various TPC-D benchmark

queries; five of them are discussed below. The queries address one particular DW
version, out of 12 versions stored in our MVDW.

Q1: select sum(quantity)
 from sales
 where time_id >= '00/03/01' and time_id <= '00/04/30'
 and quantity > 5;
Q2: select product_name, sum(quantity)
 from sales, products
 where sales.product_id = products.product_id
 and category = 'CAT_02'
 group by product_name;
Q3: select city, sum(quantity)
 from sales s, shops sh, products p
 where s.product_id = p.product_id
 and s.shop_id = sh.shop_id
 and p.category in ('CAT_01','CAT_02')
 group by city;

Q4: select sh.city, sum(quantity)
 from sales s, shops sh, products p, customers c
 where s.product_id = p.product_id
 and s.shop_id = sh.shop_id
 and s.customer_id = c.customer_id
 and p.category in ('CAT_01','CAT_02')
 and c.city in ('CITY_01','CITY_08')
 group by sh.city;
Q5: select month, sum(quantity)
 from sales s, shops sh, products p, customers c, times t
 where s.product_id = p.product_id
 and s.shop_id = s.shop_id
 and s.customer_id = c.customer_id
 and s.time_id = t.time_id
 and p.category in ('CAT_01','CAT_02')
 and c.city in ('CITY_01','CITY_08')
 and sh.city in ('CITY_02','CITY_03')
 group by month;
The queries were run for three different cases of data sharing between DW

versions. In the first case (marked in Figure 3 as mat. version) every DW version
was materialized, i.e. it stored its full set of data, without any data sharing. In the
second case (marked in Figure 3 as in-table stor.) the in-table-storage was

��+��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

implemented for data sharing. Finally, in the third case (marked as out-of-table stor.)
the out-of-table storage was implemented for data sharing.

Figure 3. Experimental results of processing queries on multiversion DW instance

As we can observe from Figure 3, the in-table storage introduces smaller time
overhead than the out-of-table storage. The in-table-storage, in the best case, slows
down query processing by 1.4 (query Q5) as compared to processing of the same
query on a fully materialized version. (cf. processing time of Q5 for in-table storage
divided by processing time of Q5 for out-of-table storage). In the worst case, the in-
table-storage caused 4 times increase in query processing time as compared to a
fully materialized DW version (cf. query Q2 and Q4). The out-of-table storage gives
worse results as it slows down query processing from 5.7 (Q5) to 8.7 (Q1) times as
compared to the query processing in a fully materialized DW version. As our
experiments show, the time overhead introduced by data sharing has less impact on
total query processing time for more complex queries.

5.3. Additional storage overhead

The management of a multiversion DW requires additional data storage overhead
for metadata information. The information concerns: (1) multiversion schema and
(2) multiversion data.

The metadata information about a DW schema is stored in a metaschema (cf. [3]),
implemented as 17 tables. The average length of a metadata record equals to 120B.
Therefore, the average amount of metadata information describing one version of a
simple snowflake schema ranges from 10kB to 20kB. For example, a DW schema
from Figure 2 requires 11kB metadata information. Thus, metadata information
about a MVDW schema is very small.

A more substantial storage overhead is caused by data sharing information, as
discussed in Section 5.1. If a bitmap is implemented as a separate attribute in a table
(the in-table storage), then the smallest attribute size is 1B. In this case, the required
additional storage is computed by the following formula: nb_of_bitmaps x 1B x
nb_of_records. If however, every bitmap is stored as a separate bit, then the storage
will be much smaller. The out-of-table storage requires additional space for storing

�*� �
�
0
����
��� ������
����� �������

physical addresses of records. For example, in an experimental DW that we used,
data sharing information for 12 DW versions took 126MB and 315MB of disk space
for the in-table and out-of-table storage, respectively.

7. Summary, Conclusions, and Future Work

Handling changes in external data sources, supplying data to a DW, and applying
the changes to the DW become important research and technological issues.
Structural changes to a DW schema applied inappropriately may result in wrong
analytical results. Most of commercial DW systems existing on the market have
static structure of their schemas and relationships between data. In a consequence,
they are not well suited for handling of any changes that occur in a real world.
Moreover, the existing systems do no support the creation of alternative business
scenarios for the purposes of the what-if analysis. Research prototypes and solutions
to this problem are mainly based on temporal extensions that limit their use. Our
approach to this problem is based on a multiversion data warehouse.

In this paper we briefly presented our concept of a MVDW, we discussed types of
versions needed in such a warehouse, overviewed schema change operators and
dimension instance structure change operators. A unique feature of our model of a
MVDW is its ability to represent alternative versions of a DW (required for the
what-if analysis) as well as physical separation of different DW versions, unlike in
other approaches.

Since two DW versions may differ marginally, we proposed data sharing
mechanism between these DW versions. The mechanism uses bitmaps describing
data sharing between DW versions. We evaluated experimentally two alternative
implementations, namely the in-table as well as out-of-table bitmap storage. The
obtained results, presented in this paper, show that the in-table-storage slows down
query processing by 1.4 in the best case, that still can be an acceptable delay. The
presented concept of a MVDW and data sharing techniques are being developed an
implemented in a project whose goal is to build a multiversion data warehouse
system.

Future work will concentrate on: (1) experimental evaluation of scalability of our
storage technique with respect to the number of versions as well as volumes of data
being shared, (2) developing new mechanisms of indexing multiversion data, (3)
developing a model of transactions for a MVDW, and (4) analyzing inter-version
and intra-version integrity constraints.

References

[1] Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.: Hypothetical Queries in an OLAP
Environment. Proc. of the VLDB Conf., Egypt, 2000

[2] Bellahsene, Z.: View Adaptation in Data Warehousing Systems. Proc. of the DEXA
Conf., 1998

[3] Bňbel B., Kr·likowski Z., Morzy T., Wrembel R.: Tranasction Concepts for Supporting
Changes in Data Warehouses. Proc. of the 6th International Conference on Enterprise
Information Systems (ICEIS), Porto, Portugal, April, 2004 (to appear)

�*'��� ������� ��� 	
������� ��� �
������ ��"#�,�� ��#-.�-#��� !"#� �/�#%�,� ����� ��

[4] Bňbel B., Morzy T., Wrembel R.: Querying a Multiversion Data Warehouse. Proc. of the
SOFSEM Conference, Czech Republic, 2004

[5] Blaschka, M. Sapia, C., Hºfling, G.: On Schema Evolution in Multidimensional
Databases. Proc. of the DaWak99 Conference, Italy, 1999

[6] Body, M., Miquel, M., B®dard, Y., Tchounikine A.: A Multidimensional and
Multiversion Structure for OLAP Applications. Proc. of the DOLAP'2002 Conf., USA,
2002

[7] Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. Proc. of the Data
Warehousing and Knowledge Discovery DaWaK, Italy, 1999

[8] Eder, J., Koncilia, C.: Changes of Dimension Data in Temporal Data Warehouses. Proc.
of the DaWak 2001 Conference, Germany, 2001

[9] Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data
Warehouses. Proc. of the 14th Int. Conference on Advanced Information Systems
Engineering (CAISE'02), Canada, 2002

[10] Gyssens M., Lakshmanan L.V.S.: A Foundation for Multi-Dimensional Databases. Proc.
of the 23rd VLDB Conf., Grece 1997

[11] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Maintaining Data Cubes under
Dimension Updates. Proc. of the ICDE Conference, Australia, 1999

[12] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Updating OLAP Dimensions. Proc. of
the DOLAP Conference, 1999

[13] Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data
Warehouses. Springer-Verlag, 2000, ISBN 3-540-65365-1

[14] Kang, H.G., Chung, C.W.: Exploiting Versions for Onïline Data Warehouse
Maintenance in MOLAP Servers. Proc. of the VLDB Conference, China, 2002

[15] Koeller, A., Rundensteiner, E.A., Hachem, N.: Integrating the Rewriting and Ranking
Phases of View Synchronization. Proc. of the Int. Workshop on Data Warehousing and
OLAP (DOLAP), USA, 1998

[16] Kulkarni, S., Mohania, M.: Concurrent Maintenance of Views Using Multiple Versions.
Proc. of the Intern. Database Engineering and Application Symposium, 1999

[17] Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in OLAP. Proc. of the VLDB
Conference, Egypt, 2000

[18] Letz C., Henn E.T., Vossen G.: Consistency in Data Warehouse Dimensions. Proc. of the
Intern. Database Engineering and Applications Symposium (IDEAS'02), 2002

[19] Morzy, T., Wrembel, R.: Modeling a Multiversion Data Warehouse: A Formal
Approach. Proc. of the Int. Conf. on Enterprise Information Systems - ICESI'2003,
France, 2003

[20] Quass, D., Widom, J.: OnïLine Warehouse View Maintenance. Proc. of the SIGMOD
Conference, 1997

[21] Roddick J.: A Survey of Schema Versioning Issues for Database Systems. In Information
and Software Technology, volume 37(7):383-393, 1996

[22] Rundensteiner E., Koeller A., and Zhang X.: Maintaining Data Warehouses over
Changing Information Sources. Communications of the ACM, vol. 43, No. 6, 2000

[23] Vaisman A.A., Mendelzon A.O., Ruaro W., Cymerman S.G.: Supporting Dimension
Updates in an OLAP Server. Proc. of the CAiSE'02 Conference, Canada, 2002

Abstract. Treating data with temporal information as temporal data, and not as

static, is becoming the concern of different domains. Temporal Web mining is a

new approach, which deals with real time data. Temporal Web mining extends

temporal data mining and Web mining. It concerns the Web mining of data with

significant temporal information. It can be used in different areas, such as fi-

nance, engineering, environmental sciences, earth sciences, and medicine. Its

main goal is to analyze local and Web data in real time in order to discover rele-

vant temporal information. This paper presents the new concept Temporal Web

Mining (TWM), focuses on its architecture, and discusses some of its applica-

tion scenarios, such as volcanism and seismology, and flooding.

Keywords. Temporal Web Mining (TWM), TWM Architecture

1 Introduction

The ability to obtain real time data from multiple different sources, to share it, and

to analyze it is of great importance for the development of the information society.

Temporal Web mining aims at treating data with temporal information in real time

over the Web. It extends temporal data mining and Web mining. Its main goal is to

query local and Web data in real time, analyze these temporal sequences in order to

discover previously unknown important temporal knowledge. Another purpose is to

introduce prediction as a main issue in Web mining, specifically Web content mining.

Furthermore, it uses Web data with temporal information in the temporal data min-

ing process. Temporal Web mining can be used in different domains, such as finance,

engineering, environmental sciences, medicine, and earth sciences. One of its appli-

cation scenarios is flooding. Flooding can threaten the public safety and potentially

damage properties [14]. Combining and analyzing data about flooding, such as histor-

ical flood damage records and flooding data hazards, flooding relationships to other

� This work is supported by the German Academic Exchange Service (Deutscher
Akademischer Austausch Dienst DAAD).

From Temporal Data Mining and Web Mining
To Temporal Web Mining

Mireille Samia � Stefan Conrad

Institute of Computer Science

Databases and Information Systems

Heinrich-Heine-University Düsseldorf

D-40225 Düsseldorf, Germany

{samia|conrad}@cs.uni-duesseldorf.de

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'�(��)� 	�

�''��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

hazards (such as earthquakes, landslides) as well as auxiliary information (such as me-

teorological data), in real time locally and/or over the Web, can enhance the capability

of predicting a flooding.

Another instance is volcanoes and earthquakes. Data about volcanic and seismic phe-

nomena, such as historical volcanic data, historical seismic data, data about any cur-

rent volcanic or seismic activity, are received from different sources (such as stations),

and combined with other data, such as meteorological data, in order to be queried in

real time, locally and/or over the Web. Hence, the obtained data is analyzed in order

to extract the needed temporal data which can be a way to forecast to a certain extent

earthquakes and volcanic activities, and a possibility to enhance the safety measures.

Another goal of temporal Web mining is to make good use of the vast amount of data

that has been accumulated over the past decades. It encourages and aims at contribut-

ing in building a common reference data warehouse which improves data record, data

exchange, data manipulation, data standardization and data analysis between different

institutions and communities, such as researchers.

In this paper, section 2 gives a brief overview of temporal data mining and Web min-

ing, and discusses related work. In section 3, we define temporal Web mining after

describing its process. In section 4, we present the temporal Web mining architecture,

and analyze it. Then, we discuss some of its application scenarios in flooding, and

earth sciences. Section 5 concludes this paper and points out our directions for future

work.

2 Overview and Related Work

This section gives a brief overview of temporal data mining and Web mining before

discussing further related work.

2.1 Overview

Temporal Data Mining

Data mining is the process of discovering and extracting relevant hidden relation-

ships and previously unknown interesting patterns that exist in information reposito-

ries, such as databases or data warehouses [8].

Temporal data mining mines data collected over time. It concerns the analysis of tem-

poral data and the search for important hidden relationships and patterns between

data with temporal information. In other words, its goals are to discover and analyze

previously unknown hidden relations between temporal data, and to predict temporal

sequences. Depending on the type of temporal data, the approaches to solve the min-

ing problem could differ [1]. A temporal sequence is defined as a sequence of nominal

symbols from a particular alphabet, and a time series as a sequence composed of con-

tinuous real valued elements.

The discovery of relations between temporal data starts with the representation and

modeling of the temporal data. The data can be represented into time series data in

�'� �
�
.
����
��� ������
����� �������

either continuous or discrete, linear or non-linear models, stationary or nonstation-

ary models and distribution models (e.g., time-domain representation or time series

model representation) [12]. It can also be represented into time series data using a con-

tinuous or a discrete transformation (e.g., discrete fourier transform, discrete wavelet

transform and discretization transformation). To find subsequences of events, a sliding

window of size w can be used, and placed at every possible position of the sequence

[1].

After representing the temporal data, similarity measures between sequences of events

are defined. For example, the distance between temporal characteristics in a contin-

uous time domain can be measured using the Euclidean squared distance function.

Measuring similarities in discrete spaces can be done using the Shape Definition Lan-

guage [1].

After finding similarities between sequences of events, temporal data mining tech-

niques are applied, such as the discovery of association rules, classification, and clus-

tering [1, 12].

Web Mining

The Web is a large distributed repository of data, which provides the opportunity to

use data mining techniques to analyze Web data. The application of data mining tech-

niques to the Web data is called Web mining.

Web mining is defined as the application of data mining techniques to automatically

discover and extract useful information within the Web data and services [6].

Web mining is divided into the following subtasks [6, 10]:

1. Resource Finding: Intended Web documents are retrieved.

2. Information Selection and Pre-processing: Specific information is automatically

selected and pre-processed from the retrieved Web resources.

3. Generalization: At individual Web sites and across multiple sites, general patterns

are automatically discovered.

4. Analysis: The mined patterns are analyzed.

Web mining can be classified into three major categories [10]:

– Web Content Mining: Web document content patterns are automatically discov-

ered.

– Web Usage Mining orWeb Log Mining: Web server access patterns are automati-

cally found.

– Web Structure Mining: Hypertext and linking structure patterns are automatically

discovered.

2.2 Further Related Work

Roddick and Spiliopoulou [19] discuss two directions of temporal data mining. One

concerns the discovery of causal relationships among temporal events that may be

causally related. The other concerns the identification of similar patterns within the

same time sequence or among different time sequences. Following Antunes and

�')��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

Oliveira [1], the data should be viewed as a sequence of events, and not as an un-

ordered collection of events. Lin et al. [12] discuss two kinds of fundamental prob-

lems in temporal data mining. One is the similarity search problem which is defined

as the problem of seeking for sequences that are similiar to a given query sequence.

The other is the periodical problem which is the problem of finding periodic patterns

or cyclicity occurring in time-related databases.

The World Wide Web is growing rapidly. Its large amount of data is widely distributed

and lacks a unifying structure. Web mining assists different researches in intelligently

searching and extracting relevant data. Craven et al. and Madria et al. [5, 13] focus

on Web mining in order to discover new knowledge from the information available

on the Web. Madria et al. [13] suggest a Warehouse of Web data, called Whoweda,

containing Web data to support its research issues of Web mining. Following Leung et

al. [11], Web Archeology’s approach is to explore the content of the Web and locate

relevant information sources. It studies pages collected from millions of Web sites.

However, the lack of structure limits the discovery of important information and the

data retrieval performance.

Following Kosala et al. [10], the problem of personalization of Web information is of-

ten associated with the type and presentation of data. For example, although the data

can contain temporal knowledge, it is treated as static.

The creation of Web archives is receiving a substantial interest. The Internet Archive

project [3, 17] aims at building an Internet library with the purpose of preserving Web

information for a long-term and of offering free access to historical digital collections.

It receives its data archive from third parties. The main contributor is Alexa Inter-

net which is a Web navigation service [4]. The Austrian On-Line Archive (AOLA)

[2, 17] is a project which creates a permanent archive documenting the evolution of

the Austrian Web space. Its aim is to build an archive of the national Austrian Web

space. In the Austrian On-Line Archive Processing (AOLAP) project [18], Web data

obtained from crawls of the Austrian Web space as part of AOLA and information

collected from additional sources, such as the WHOIS database, are combined. The

resulting data warehouse facilitates data analysis and the exploration of the selected

Web pages.

Temporal Web Mining (TWM) is an extension of temporal data mining and Web min-

ing. We propose to combine temporal data mining and Web mining in order to deal

with real time data and multiple sequences. Real time data received by one or multi-

ple sources is analyzed using temporal data mining techniques in order to extract new

temporal information. The new temporal information is sent over the Internet and is

combined with auxiliary data from other sources. Then, it is used in the Web mining

process in order to discover new relevant temporal data in real time and to predict pre-

viously unknown temporal information. TWM supports the temporal aspect of Web

data by mining Web data with temporal information as temporal data, and not as static

data. Its purpose is to introduce prediction as a main issue in Web mining, specifically

Web content mining. In other words, TWM aims at predicting temporal data from the

content of the Web data. Furthermore, TWM uses Web data, such as temporal data

from the Web, in the temporal data mining process.

�'� �
�
.
����
��� ������
����� �������

Fig. 1. An Overview of the Temporal Web Mining Process

In Figure 1, SourceA receives data with temporal information (m1..mp) from one or

different sources in real time. The combined data TA is analyzed using temporal data

The Web seems to be too huge and lacks of structure for effective data mining and

data warehousing. For this reason, our goal is to encourage building a common refer-

ence data warehouse. The essential difference between the existing data warehouses

(such as [3, 13]) and our common reference data warehouse is that the analysis of the

data derived from the application of temporal data mining techniques and Web mining

techniques is stored in addition to the data received from different sources, such as

conventional data warehouses, and the World Wide Web. This can enhance the com-

munication, coordination and integration of different societies and communities, such

as researchers. It improves data sharing, data exchange and data manipulation between

these different communities and societies. Since the analysis of the data obtained by

applying the previous mentioned mining techniques is also saved in our data ware-

house, TWM improves different mining techniques. New previously unknown crucial

relationships and patterns can be extracted. This contributes to discover, for instance,

standard patterns and relationships that can be used in different mining techniques,

such as classification. It can also be a clue for representing data, defining similarities

between sequences, and finding periodic patterns. Interpreting data in real time and

improving data analysis enhance data prediction.

3 Temporal Web Mining Definition

In this section, we define temporal Web mining after describing its process.

3.1 Description of the Temporal Web Mining Process

�'���� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

mining techniques. This analyzed temporal data TAanalyzed
is forwarded to SourceB

in real time over the Internet, and added to data obtained from other sources (n1..nq).

This temporal data TB is analyzed using Web mining techniques. The derived previ-

ously unknown temporal data TBanalyzed
can reveal new valuable information which

can support the data analysis of SourceA. In this case, TBanalyzed
is forwarded to

SourceA, and is used in the data analysis of this source by the application of temporal

data mining techniques.

In the TWM process, data with temporal information from the Web is considered as

temporal data, and not as static. This temporal data is used in the Web mining pro-

cess in order to predict new temporal knowledge from the content of the Web data.

Then, TWM extends Web mining. TWM aims at using data with temporal informa-

tion from the Web as temporal data, and at introducing prediction as a main aspect in

Web mining, specifically Web content mining. Moreover, by sending the analysis of

SourceB to SourceA, TWM uses data from the Web, such as temporal Web data, in

the temporal data mining process.

3.2 Definition of Temporal Web Mining

Temporal data discovered by the application of temporal data mining techniques is

used in the Web mining process in order to retrieve useful data with temporal infor-

mation in real time over the Web. The derived useful data with temporal information

discovered by the application of Web mining techniques is used again in the temporal

data mining process.

We define Temporal Web Mining (TWM) as the process of discovering, extracting,

analyzing, and predicting data with significant temporal information from the tempo-

ral information discovered by the application of temporal data mining techniques, and

applying Web mining techniques to this data in real time over the Web (cf. Figure

1)[21].

4 Temporal Web Mining Architecture

In this section, we present the architecture of temporal Web mining, and analyze it.

Then, we discuss some of its application scenarios in volcanism and seismology, and

in flooding.

4.1 Description of TWM Architecture

The architecture of temporal Web mining consists of three main components: original

source component, destination source component and global source component (cf.

Figure 2).

The aims of our new architecture are to discover, extract, query, analyze, exchange,

record, use, and predict (if possible) data between these main components in real time

and over the Web.

�'/ �
�
.
����
��� ������
����� �������

Fig. 2.Main Components of TWM Architecture

Figure 3 represents the architecture of TWM. It describes the three TWM main com-

ponents. The connections between these components depict the exchange of data in

the indicated directions. Temporal data represents the data derived from the applica-

tion of temporal data mining techniques. New temporal data is the data obtained from
the application of Web mining techniques.

Original Source Component

In Figure 3, multiple different sources interact, in real time, with each other to retrieve,

combine, and analyze data.

One or more of these multiple different sources receive real time data. The obtained

temporal data is collected in order to be selected and explored. Applying temporal data

mining techniques, this temporal data is analyzed. From the temporal data database,

it is sent to the global source component, where it is saved. Furthermore, in order to

reveal more important information, this temporal data may be combined with other

data retrieved from the global source data component. It can also be added to other

data received from the destination source component. In this case, it is sent over the

Internet to the destination source component.

Destination Source Component

The destination source component provides an environment for decision support using

mining techniques. The new temporal data database receives the analyzed temporal

data from the original source component in real time and over the Web (cf. Figure

3). It is examined and, if needed, combined with auxiliary data acquired from other
multiple different sources or from the global source component. Then, it is analyzed

in order to extract derived temporal data. The new temporal data is sent back, in real

time over the Internet, from the new temporal data database to one or more sources of

the original source component. It is also saved in the global source component.

Global Data Source Component

The global source component consists of the global data source database (also called
common reference data warehouse) and the global data source backup database. The
global data source database receives data from the original source component and the

�'0��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

Fig. 3. Temporal Web Mining Architecture

destination source component. It backups this data in the global data source backup
database.

Whenever needed, the global data source component forwards the requested data to

the original source component or to the destination source component. Copies of

the same data are sometimes requested similtaneously from different sites. Instead of

sending that data to just one site at a given time, it can be sent to more than one site at

more or less the same time by using our multicast network (cf. Figure 4) [20]. Hence,

our multicast network is responsible for handling concurrent data requests of multiple

sites. It is provided with additional functions, such as backup and error recovery. It

consists of a source node connected to a number of networks. Each of these networks

is connected to an intermediate site (i.e. a router). Each intermediate site is connected

to several networks which lead to a number of destination sites. The source node is

��� �
�
.
����
��� ������
����� �������

the global data source component and the destination sites are those that requested

concurrently the same data.

Fig. 4.Multicast Network

4.2 Analysis of the TWM Architecture

TWM collects, exchanges, interprets, and predicts (if possible) data between different

sources, in real time and over the Web.

Causal relationships among temporal related events have to be discovered by using

mining techniques, in order to find the cause of an event and predict its result, if nec-

essary.

The quality of data is one of the most crucial factors to be taken into account [9, 16].

Data is collected from different sources in real time in order to be queried and ana-

lyzed. Then, relevant data is to be distinguished from the noise, or any data error. In

other words, the ability to deal with any abnormality in data is to be taken into account

in order to be reduced.

Since temporal Web mining deals with data changing rapidly over the time, delay and

interruptions in data transfer should be minimized. This can be done by optimizing

the query execution, by finding a correct representation of the temporal knowledge in

question, and by selecting the right path to retrieve the required data.

Because it is difficult to locate and track appropriate data from the huge number of

semi-structured documents, our aim is to contribute in building logical structured in-

formation sources, such as a common reference data warehouse, that combine data

from multiple different sources. This minimizes the cost of data access time, as well

as delay, and reduces data redundancy. The structure can be optimized by analyzing

the data, the Web logs and the user’s behavior. For instance, the user’s behavior can be

studied by examining Web data, such as the page requested, the time and frequency of

request of pages. In other words, Web mining techniques can be applied to interpret

and predict user’s behavior.

Having a common reference data warehouse, temporal Web mining improves data

sharing, data exchange and data manipulation between different societies, institutions

��1��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

and communities. In Figure 3, the global data source component establishes a data ex-
change system that may be used by different communities, such as research commu-

nities and different institutions, in order to record, exchange, use, process, and analyze

data, assembled from different sources, such as the World Wide Web or conventional

data warehouses. It also acts as a backup of the data exchange communities, because

the data is regularly collected and stored in the global data source component from
databases worldwide. It is a possibility to unify the knowledge all over the world for

the rapid advance of many fields.

The global data source component sends requested data to one or more sites, when

needed. Multiple different sites may make concurrent requests of the same data. In-

stead of delivering this data to just one of these sites at a given time, it is sent to

the sites in question at more or less the same time. Our multicast network supports

concurrent data requests of multiple sites. In Figure 4, whenever data is needed to be

multicasted to different destinations, data is forwarded from the source of the data (i.e.
global data source component) along a distribution tree to each receiver (i.e. destina-
tion site)[20]. The destination sites (such as original source component or destination
source component) do not communicate directly with the global data source compo-
nent (cf. Figure 3). However, they communicate with their corresponding intermediate

site. Each intermediate site supports backup and error recovery functions [20]. Con-

sequently, whenever an intermediate site receives a corrupted piece of data or does

not receive the requested piece of data, a message is sent back to the source of data
requesting the retransmission of the needed data. Moreover, if a destination site does

not receive the correct data, a message is sent back to the intermediate site asking it

to retransmit the corresponding data. Then, a destination site does not communicate

directly with the global data source component. The load on the global data source
component is reduced which helps to reduce its response time. More clearly, the work-

load is distributed among the global data source component and the intermediate sites.
This helps to minimize delay and interruptions in data transfer, as well as data loss and

data errors.

In Figure 3, our common reference data warehouse creates a data exchange standard
by, for instance, finding a standard representation for shared data, and by creating com-

mon patterns from this data. This can also minimize the cost of data access time, and

reduce redundancy. For instance, the global data source component gives the possibil-
ity for seismologists to use the global seismological data and its analysis, collected in

the global data source component from many different institutions worldwide, in their

data analysis. This makes processing earthquake data, in real time over the Web, eas-

ier, faster and more accurate, and helps to extract and predict more relevant important

knowledge.

4.3 Application Scenarios for TWM

Collecting and exchanging data between different sources, in real time and over the

Web, provide an opportunity for various societies and communities to share informa-

tion instantly and analyze it in order to contribute to comprehension of different issues

that have far-reaching implications for the humankind and environment.

��� �
�
.
����
��� ������
����� �������

In TWM, different application scenarios can be applied, such as:

• Volcanoes and Earthquakes

Volcanoes have played an important role in forming and modifying the Earth.

More than 80% of the Earth’s surface above and below the sea level is of

volcanic origin [7]. The keeping of a detailed history of the changes in a volcano

and its surroundings helps to characterize the behavior of the corresponding

volcano. Visible changes are any observable and often measurable features by

researchers that might reflect a change in the state of a volcano. For instance,

scientists collect the eruptive products and gases for laboratory analysis, make

temperature measurements of lava and gas, and so on. Invisible changes are any

changes, which are not visible to the human eye, but measurable by precise and

sophisticated instruments and sensors, such as variations in gas compositions.

An earthquake generates seismic waves which can be sensed and recorded

over a wide range of frequencies and seismic amplitudes. The severity of an

earthquake depends on many factors, such as the measure of the amplitude of

the seismic waves (i.e. the magnitude of the earthquake), the building design

and other structures, the geologic conditions, the density of the population and

constructions in the area affected by the earthquake.

Volcanism and seismic activities are often closely related, responding to the same

dynamic Earth forces. Real time volcanic data and seismic data can be obtained

from, for instance, sensing devices located at different stations. Combining, in

real time, from different sources over the Web, the recording and analysis of

volcanic phenomena and seismograms from many earthquakes helps to better

understand and analyze the Earth’s deep interior.

Historical volcanic data, historical seismic data, and historical meteorological

data are examples of historical data. Instances of any current data related to a

volcanic event are eruption date and time, volcano location, volcano frequency

of occurrence, volcano magnitude, temperature of the lava, seismic data, and

meteorological data. Historical data and any current data related to a volcanic

event can be in real time exchanged and analyzed between different institutions

over the Web in order to better understand, determine and analyze the relations

between volcanism and seismic activities. More specifically, volcano data can be

date and time of eruption, magnitude, volcano surface temperature, variations in

gas compositions, historical volcanic eruption, type of volcanic eruption, volcano

elevation, and frequency of occurrence. Seismic data can be magnitude, location,

starting and ending date and time of the earthquake, frequency of occurrence,

temperature measurements, and barometric pressure. In Figure 3, whenever a

volcanic activity or a seismic activity occurs, volcano data and seismic data

are analyzed instantly, if required with other data (such as wind speed data,

wind direction data) from multiple different sources (such as a station where a

wind sensor is located, a seimic station) or from the global data source. The
obtained temporal data is sent, in real time over the Internet, from the temporal
data database to the new temporal data database, and is also saved in the global
data source. In the new temporal data database, it is combined, if necessary,

with new information (such as meteorological data, historical seismic data) from

��'��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

the new temporal data database, from other multiple different sources (such as

meteorological station, seismic station) or from the global data source. Then, it is
analyzed in order to extract new temporal data that can reveal crucial information

about volcanic or seismic activities. The new derived temporal data is sent back

to the original source and saved in the global data source. Analyzing this data

connects different stations and provides mutual support to increase the possibility

of searching for any warning sign that can forecast future volcanic or seismic

activities.

In this application scenario, temporal Web mining helps to create a better

image of the Earth’s deep interior, figure out any new idea about volcanoes

or earthquakes, and improve the capability for predicting future volcanic or

seismic activities. Furthermore, precise determination of every active or inactive

volcano location, the detailed analysis of their criteria, as well as the study of

damages caused by volcanoes and earthquakes reduce their losses and hazards

by enhancing the safety measures and emergencies. They also help researchers,

architects, structural engineers, or those who are working in the building or

construction domain in their researches and the structure’s building and design

[15].

• Flooding

The assembling of flood data and flood causes data between different stations,

in real time and over the Internet, creates a more complete documentation and

understanding of historical flood data (such as flood events, flood causes, flood

damages). Hence, flood data can be better analyzed, which helps to enhance the

capability of forecasting a flooding, to warn about a flooding, and to present an

effective disaster planning to reduce flood losses and hazards and improve the

public safety measures, as well as the emergency management.

5 Conclusion and Outlook

Temporal Web Mining (TWM) is a new concept which combines and extends tem-

poral data mining and Web mining. Its purpose is to introduce prediction as a main

issue in Web mining, specifically Web content mining, and to use Web data, such as

temporal data from theWeb, in the temporal data mining process. It can be used in dif-

ferent domains, such as finance, engineering, medicine, environmental sciences, and

earth sciences. Its main goal is to deal with temporal data in real time over the Web, in

order to discover, in real time, patterns and relationships among time ordered events

that may be causally related. Consequently, some disasters, such as an earthquake,

an eruption of a volcano, or a flooding can be to a certain extent forecasted, and ef-

fective disaster plannings can be enhanced. It also encourages and aims at providing

assistance in building a common reference data warehouse which gives better oppor-

tunities for data record, data sharing, data manipulation, data standardization and data

analysis between different societies, communities, and institutions.

In this paper, we give a brief overview of temporal data mining and Web mining, and

��� �
�
.
����
��� ������
����� �������

discuss related work. We describe the temporal Web mining process, and define tem-

poral Web mining. Then, we present the architecture of TWM, analyze it, and apply

application scenarios in volcanism and seismology, and flooding.

Future directions to our research include the improvement of the quality and delivery

of information, as well as data analysis, by finding an appropriate data representation.

Analyzing the users’ behavior in the Web can help to determine an effective query

execution plan. Estimating the cost of a query execution and reducing the cost of se-

lecting the adequate path to retrieve the required data can improve the data extraction

and data analysis capability. Another work can be to develop an accurate system for

data analysis which preserves security and prohibits the access to unneeded confiden-

tial information in data records.

References

1. Claudia Antunes and Arlindo Oliveira. Temporal Data Mining: an Overview. In KDD
Workshop on Temporal Data Mining, pages 1–13, San Francisco, 2001.

2. Austrian On-Line Archive. Website. http://www.ifs.tuwien.ac.at/∼aola.

3. The Internet Archive. Website. http://www.archive.org.

4. Alexa: The Web Information Company. Website. http://www.alexa.com.

5. Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell,

Kamal Nigam, and Seán Slattery. Learning to Extract Symbolic Knowledge from theWorld

Wide Web. In Proceedings of AAAI-98, 15th Conference of the American Association for
Artificial Intelligence, pages 509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

6. Oren Etzioni. The World-Wide Web: Quagmire or Gold Mine? Communications of the
ACM, 39(11):65–68, 1996.

7. The Federal Emergency Management Agency (FEMA). (2003). Hazards: Volcanoes. Re-

trieved October 13, 2003, from http://www.fema.gov/hazards/volcanoes/volcano.shtm.

8. William J. Frawley and Gregory Piatetsky-Shapiro. Knowledge Discovery in Databases.

AAAI Press/The MIT Press, 1991.

9. Jochen Hipp, Ulrich Güntzer, and Udo Grimmer. Data Quality Mining - Making a Virtue of

Necessity. In Proceedings of the 6th ACM SIGMODWorkshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD 2001), pages 52–57, Santa Barbara, California,
May 20 2001.

10. Raymond Kosala and Hendrik Blockeel. Web Mining Research: A Survey. ACM SIGKDD
Explorations, 2(1):1–15, July 2000.

11. Shun-Tak A. Leung, Sharon E. Perl, Raymie Stata, and Janet L. Wiener. (2001).

Towards Web-Scale Web Archeology. Research Report 174, Compaq Systems Re-

search Center, Palo Alto, California. Retrieved December 10, 2003 from

http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-174.pdf.

12. Weiqiang Lin, Mehmet A. Orgun, and Graham. J. Williams. An Overview of Temporal

Data Mining. In Proceedings of the 1st Australian Data Mining Workshop (ADM02), Can-
berra, Australia, December 2002.

13. Sanjay Kumar Madria, Sourav S. Bhowmick, Wee Keong Ng, and Ee-Peng Lim. Research

Issues in Web Data Mining. In Proceedings of the 1st International Conference on Data
Warehousing and Knowledge Discovery (DAWAK99), LNCS 1676, pages 303–312, Flo-

rence, Italy, 1999.

14. NASA Earth Observatory. (2002). Flooding in Germany. Retrieved June 2003, from

http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img id=10301.

��)��� ������� ��� 	
���
�� �#"$� ��$*"#�+� ����� �%�%�,� �� � -��� �%�%�,� ��

15. The Association of Bay Area Governments (ABAG). (2003). Impacts of California

Earthquakes on Buildings from Shaken Awake! Retrieved December 10, 2003, from

http://www.abag.ca.gov/bayarea/eqmaps/shelpop/bldg.html.

16. Barbara Pernici and Monica Scannapieco. Data Quality in Web Information Systems. In

ER 2002, 21st International Conference on Conceptual Modeling, LNCS 2503, pages 397–
413, 2002.

17. Andreas Rauber and Andreas Aschenbrenner. (2001). Part of our Culture is Born Digi-

tal - On Efforts to Preserve it for Future Generations. Internet-Zeitschrift für Kulturwis-

senschaften (TRANS. On-line Journal for Cultural Studies). Retrieved November 2003,

from http://www.inst.at/trans/10Nr/rauber10.htm.

18. Andreas Rauber, Oliver Witvoet, Andreas Aschenbrenner, and Robert Bruckner. Putting

the World Wide Web into a Data Warehouse: A DWH-based Approach to Web Analysis.

In Proceedings of the DEXA Workshop on Very Large Data Warehouses, pages 822–826,
Aix en Provence, France, September 2002. IEEE.

19. John F. Roddick and Myra Spiliopoulou. A Bibliography of Temporal, Spatial and Spatio-

Temporal Data Mining Research. ACM SIGKDD Explorations, 1(1):34–38, June 1999.
20. Mireille Samia. Optimization of IP Multicast Networks Performance. Master’s Thesis,

Faculty of Natural and Applied Sciences, Department of Computer Science, Notre Dame

University, Lebanon, June 2001.

21. Mireille Samia. Temporal Web Mining. In 15. GI-Workshop über Grundlagen von Daten-
banken (15th GI-Workshop on the Foundations of Databases), pages 27–31, Tangermünde,

Germany, June 2003.

Managing and Implementing the Data Mining Process
Using a Truly Stepwise Approach

Perttu Laurinen
(1

, Lauri Tuovinen
(1

, Eija Haapalainen
(1

, Heli Junno
(1

, Juha Röning
(1

 and

Dietmar Zettel
(2

.

1)
Intelligent Systems Group, Department of Electrical and Information Engineering,

PO BOX 4500, FIN-90014 University of Oulu, Finland. E-mail:

perttu.laurinen@ee.oulu.fi.

(2
Fachhochschule Karlsruhe, Institut für Innovation und Transfer, Moltkestr. 30,

76133 Karlsruhe, Germany. E-mail: dietmar.zettel@fh-karlsruhe.de.

Abstract. Data mining consists of transformation of information with a

variety of algorithms to discover the underlying dependencies. The

information is passed through a chain of algorithms and usually not stored

until it has reached the end of the chain, which may result in a number of

difficulties. This paper presents a method for better management and

implementation of the data mining process and reports a case study of the

method applied to the pre-processing of spot welding data. The developed

approach, called ‘truly stepwise data mining’, enables more systematic

processing of data. It verifies the correctness of the data, allows easier

application of a variety of algorithms to the data, manages the work chain, and

differentiates between the data mining tasks. The method is based on storage

of the data between the main phases of the data mining process. The different

layers of the storage medium are defined on the basis of the type of algorithms

applied to the data. The layers defined in this research consist of raw data, pre-

processed data, features, and models. In conclusion, we present a systematic,

easy-to-apply method for implementing and managing the work flow of the

data mining process. A case study of applying the method to a resistance spot

welding quality estimation project is presented to illustrate the superior

performance of the method compared to the currently used approach.

Key words: hierarchical data storage, work flow management, data mining

work flow implementation.

1. Introduction

Data mining consists of transformation of information with a variety of

algorithms to discover the underlying dependencies. The information is passed

through a chain of algorithms, and the success of the process is determined by the

outcome. The typical phases of a data mining process are: raw data acquisition, pre-

processing, feature extraction, and modeling. The method of managing the

interactions between these phases has a major impact on the outcome of the project.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ���'�(�� 	�

������ �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

The traditional approach of implementing the data mining process is to combine the

algorithms developed for the different phases and to run the data through the chain,

as presented in Figure 1.

The emphasis in the approach presented in Figure 1 is on the algorithms

processing the data. The information is expected to flow smoothly through the chain

from the beginning to the end on a single run, and the algorithms are usually

implemented within the same application. It is not unusual that the data analyst takes

care of all the phases, and not much attention is always paid to the (non-standard)

storage format of the data. This may result in a number of difficulties that detract

from the quality of the data mining process. To name a few, the approach makes it

more challenging to apply methods implemented in a variety of tools to the data,

requires comprehensive knowledge from the analyst, and results in incoherent

storage of the research results and data.

The approach proposed in this study has a different perspective toward

implementing the data mining process. The emphasis is on a standard way of storing

the data between the different phases of the process. This, in turn, increases the

independence between the transformations and the data storage. Standard storage

makes it possible for the algorithms to access the data through a standard interface,

which allows interaction between the data and the algorithms implemented in

various applications supporting the interface. The approach will be explained in

more detail in the next chapter, and after that, the benefits of applying it will be

illustrated with a comparison to the traditional approach and a case study.

Extensive searches of scientific databases and the World Wide Web did not bring

to light similar approaches applied to the implementation of the data mining process.

However, there are studies and projects on the management of the data mining

process. These studies identify the main phases of the process in a manner similar to

that presented in Figure 1 and give a general outline of the steps that should be kept

in mind when realizing the process. One of the earliest efforts – perhaps the very

earliest one – was the CRISP-DM, initiated in 1996 by three companies that

proceeded to form a consortium called CRISP-DM (CRoss-Industry Standard

Process for Data Mining). CRISP-DM is also the name of the process model created

by the consortium, which was proposed to serve as a standard reference for all

appliers of data mining [1]. The goal of the process model is to offer a representation

of the phases and tasks involved that is generic enough to be applicable to any data

mining effort as well as guidelines on how to apply the process model. Although it

is difficult to verify a method as generic beyond all doubt, several studies testify to

the usefulness of CRISP-DM as a tool for managing data mining ventures ([2], [3],

[4]). The approach proposed in CRIPS-DM was extended in RAMSYS [5], which

proposed a methodology for performing collaborative data mining work. Other

proposals, with many similarities to CRISP-DM, for the data mining process were

presented in [6] and [7]. Nevertheless, these studies did not take a stand on what

would be an effective implementation of the data mining process in practice. This

study proposes an effective approach for implementing the data mining process and

compares it to the traditional way of implementing the process, pointing out the

obvious advantages of the proposed method.

��) �
�
*
����
��� ������
����� �������

Raw data Feature extractionPre-processing ModellingData Data Data

Figure 1: The traditional data mining process.

2. A truly stepwise method for managing and implementing the
data mining process

This chapter presents a general framework for the proposed method and defines

the way in which it can be applied to the management of the data mining process.

The two basic issues that result in a number of difficulties when using the traditional

approach to data mining are:

1) The transformations are organized in a way that makes them highly

dependent on each other, and

2) all transformations are usually calculated at once.

To demonstrate these problems and to present an idea for a solution, the

following formalism is used. The data supplied for the analysis can be assumed to be

stored in a matrix . The result of the analysis, , is obtained when the nth

transformation (function) is applied to the data. The transformations are

applied step-by-step to the data, but they are calculated all at once, and the results

are not stored until the last transformation has been applied. Using the above

notation, the process can be defined as the inner functions of the supplied data,

which leads to:

0X nX

()Xnf

Definition: Stepwise data mining process (the traditional approach). The

stepwise data mining process is a chain of inner transformations, , that

process the raw data, , without storing it until the desired data, the output ,

has been obtained:

nff ...1

0X nX

()()()()....... 012 XX fff nn =

This points out clearly the marked dependence between the transformations and

the fact that all transformations are calculated at once. However, the data is not

dependent on the transformations in such a way that all transformations would have

to be calculated in a single run. The result, , might equally well be generated in a

truly stepwise application of the transformations, which leads to the definition of the

proposed data mining process.

nX

Definition: Truly stepwise data mining process. The results, , of each

transformation, , are stored in a storage medium before applying the next

transformation in the chain to them:

nXX ,...,1

nff ...1

��+��� �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

()
()

().)

 2)

 1)

1

122

011

-=

=
=

nnn fn

f

f

XX

XX

XX

44

This approach makes the transformations less dependent on each other: to be able

to calculate the kth transformation (k =1,…,n), one does not need to calculate all the

(k-1) transformations prior to k, but just to fetch the data, , stored after the (k-

1)th transformation and to apply the transformation k to that. The obvious difference

between the two processes is that, in the latter, the result of the kth transformation is

dependent only on the data, , while in the former, it is dependent on and

the transformations . The difference between these two definitions, or

approaches, might seem small at this stage, but it will be shown below how large it

actually is.

1-kX

1-kX 0X

11... -kff

In theory, the result of each transformation could be stored in the storage medium

(preferably a database). In the context of data mining, however, it is more feasible to

store the data only after the main phases of the transformations. The main phases are

the same as those shown in Figure 1. Now that the proposed truly stepwise data

mining process has been defined and the main phases have been identified, the

stepwise process presented in Figure 1 can be altered to reflect the developments, as

shown in Figure 2. The apparent change is the emphasis on the storage of the data.

In Figure 1, the data flowed from one transformation to another, and the boxes

represented the transformations. In Figure 2, the boxes represent the data stored in

the different layers, and the transformations make the data flow from one layer to

another. Thus, the two figures have all the same components, but the effect of

emphasizing the storage of the data is apparent. The notion of the transformations

carrying the data between the storage layers also seems more natural than the idea

that the data is transmitted between the different transformations.

A few more comments on the diagram should be made before presenting the

comparison of the two approaches. Four storage layers are defined, i.e. the layers of

raw data, pre-processed data, features, and models. One more layer could be added

to the structure: a layer representing the best model selected from the pool of

available models. On the other hand, this is not necessary, since the presented

approach could be applied to the pool of models, treating the generated models as

raw data. In this case, the layers would define the required steps for choosing the

best model. Another comment can be made concerning the amount and scope of data

stored in the different layers. As the amount of data grows toward the bottom layers,

the scope of data decreases, and vice versa. In practice, if the storage capabilities of

the system are limited and unlimited amounts of data are available, the stored

features may cover a broader range of data than pure data could. This is pointed out

in the figure by the two arrows on the sides.

�(� �
�
*
����
��� ������
����� �������

Data layer 1: Raw data

Data layer 2: Pre-processed data

Data layer 4: Models

Data layer 3: Features

P
re

-
pr

oc
es

si
ng

F
ea

tu
re

ex
tr

ac
tio

n
A

na
ly

si
s,

m
od

el
lin

g

T
h

e
sc

o
p

e
o

f
d

at
a

g
ro

w
s

T
h

e
am

o
u

n
t

o
f

d
at

a
g

ro
w

s

Figure 2: The four storage layers of the proposed data mining process.

3. The proposed vs. the traditional method

In this chapter, the various benefits of the truly stepwise approach over the

stepwise one are illustrated.

Independence between the different phases of the data mining process. In the

stepwise approach, the output of a transformation is directly dependent on each of

the transformations applied prior to it. To use an old phrase, the chain is as weak as

its weakest link. In other words, if one of the transformations does not work

properly, none of the transformations following it can be assumed to work properly,

either, since each is directly dependent on the output of the previous

transformations. In the truly stepwise method, a transformation is directly dependent

only on the data stored in the layer immediately prior to the transformation, not on

the previous transformations. The transformations prior to a certain transformation

do not necessarily have to work perfectly, it is enough that the data stored in the

previous layers is correct. From the viewpoint of the transformations, it does not

matter how the data was acquired, e.g. whether it was calculated using the previous

transformations or even inserted manually.

The multitude of algorithms easily applicable to the data. In the stepwise

procedure, the algorithms must be implemented in one way or another inside the

�(,��� �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

same tool, since the data flows directly from one algorithm to another. In the truly

stepwise approach, the number of algorithms is not limited to those implemented in

a certain tool, but is proportional to the number of tools that implement an interface

for accessing the storage medium. The most frequently used interface is the database

interface for accessing data stored in a database using SQL. Therefore, if a standard

database is used as a storage medium, the number of algorithms is limited to the

number of tools implementing a database interface – which is large.

Specialization and teamwork of researchers. The different phases of the data

mining process require so much expertise that it is hard to find people who would be

experts in all of them. It is easier to find an expert specialized in some of the phases

or transformations. However, in most data mining projects, the researcher must

apply or know details of many, if not all, of the steps of the data mining chain, to be

able to conduct the work. This results in wasted resources, since it takes some of her

/ his time away from the area she / he is specialized in. Furthermore, when a team of

data miners is performing a data mining project, it might be that everybody is doing

a bit of everything. This results in confusion in the project management and de-

synchronization of the tasks. Using the proposed method, the researchers can work

on the data relevant to their specialization. When a team of data miners are working

on the project, the work can be naturally divided between the workers by allocating

the data stored in the different layers to suit the expertise and skills of each person.

Data storage and on-line monitoring. The data acquired in the different phases of

the data mining process is stored in a coherent way when, for example, a standard

database is used to implement the truly stepwise process. When the data can be

accessed through a standard interface after the transformations, one can peek in on

the data at any time during the process. This can be convenient, especially in

situations where the data mining chain is delivered as a finished implementation.

When using a database interface, one can even select the monitoring tools from a set

of readily available software. To monitor the different phases of the stepwise

process, it would be necessary to display the output of the transformations in some

way, which requires extra work.

Time savings. When the data in the different layers has been calculated once in

the truly stepwise process, it does not need to be re-calculated unless it needs to be

changed. When working with large data sets, this may result in enormous time

savings. Using the traditional method, the transformations must be recalculated

when one wants to access the output of any phase of the data mining chain, which

results in unnecessary waste of staff and CPU time.

Now that the numerous benefits of the proposed method have been presented, we

could ask what the drawbacks of the method are. The obvious reason for the need

for time is the care and effort one has to invest in defining the interface for

transferring the intermediate data to the storage space. On the other hand, if this

work is left undone, one may have to put twice as much time in tackling with the

flaws in the data mining process. It might also seem that the calculation of the whole

data mining chain using the stepwise process is faster than in the truly stepwise

process. That is true, but once the transformations in the truly stepwise process are

ready and finished, the process can be run in the stepwise manner. In conclusion, no

obvious drawbacks are so far detectable in the truly stepwise process.

�(� �
�
*
����
��� ������
����� �������

4. A case study – pre-processing spot welding data

This chapter illustrates the benefits of the proposed method in practice. The idea

is here applied to a data mining project analysing the quality of spot welding joints,

and a detailed comparison to the traditional approach is made concerning the amount

of work required for acquiring pre-processed data.

The spot welding quality improvement project (SIOUX) is a two-year EU-

sponsored CRAFT project aiming to create non-destructive quality estimation

methods for a wide range of spot welding applications. Spot welding is a welding

technique widely used in, for example, the electrical and automotive industries,

where more than 100 million spot welding joints are produced daily in the European

vehicle industry only [8]. Non-destructive quality estimates can be calculated based

on the shape of the signal curves measured during the welding event [9], [10]. The

method results in savings in time, material, environment, and salary costs – which

are the kind of advantages that the European manufacturing industry should have in

their competition against outsourcing work to cheaper countries.

The collected data consists of information regarding the welded materials, the

quality of the welding spot, the settings of the welding machine, and the voltage and

current signals measured during the welding event. To demonstrate the data, the left

panel of Figure 3 displays a typical voltage curve acquired from a welding spot, and

the right panel shows a resistance curve obtained by pre-processing the data.

Figure 3: The left panel shows a voltage signal of a welding spot measured during a welding event.

The high variations and the flat regions are still apparent in the diagram. The right panel shows the

resistance curve after pre-processing.

The data transformations needed for pre-processing signal curves consist of

removal of the flat regions from the signal curves (welding machine inactivity),

normalization of the curves to a pre-defined interval, smoothing of the curves using

a filter, and calculation of the resistance curve based on the voltage and current

signals.

The transformations are implemented in software written specifically for this

project, called Tomahawk. The software incorporates all the algorithms required for

calculating the quality estimate of a welding spot, along with a database for storing

the welding data. The software and the database are closely connected, but

independent. The basic principles of the system are presented in Figure 4. The

special beauty of Tomahawk lies in the way the algorithms are implemented as a

connected chain. Hence, the product of applying all the algorithms is the desired

output of the data mining process. The algorithms are called plug-ins, and the way

the data is transmitted between each pair of plug-ins is well defined. When the

�(-��� �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

program is executed, the chain of plug-ins is executed at once. This is an

implementation of the definition of the stepwise (traditional) data mining process.

Quality
measure

Plug-in 1:
Transformation 1

Plug-in 2:
Transformation 2

Plug-in 3:
Transformation 3

Plug-in n:
Transformation n

TOMAHAWK

Welding data

Figure 4: The operating principle of the Tomahawk software. The architecture is a realization of the

stepwise data mining process.

When the project has been completed, all the plug-ins should be ready and work

for all kinds of welding data as seamlessly as presented in Figure 4. However, in the

production phase of the system, when the plug-ins are still under active

development, three major issues that interfere with the daily work of the

development team can be recognized in the chapter “The proposed vs. the traditional

method”.

¶ Independence. It cannot be guaranteed that all parts of the pre-processing

algorithms would work as they should for all the available data. However,

the researcher working on the pre-processed data is dependent on the pre-

processing sequence. Because of this, she/he cannot be sure that the data is

always correctly pre-processed.

¶ Specialization and teamwork. The expert working on the pre-processed

data might not have the expertise to correctly pre-process the raw data in

the context of Tomahawk, which would make it impossible for him/her to

perform her/his work correctly.

¶ The multitude of algorithms easily applicable to the data. In the production

phase, it is better if the range of algorithms tested on the data is not

exclusively limited to the implementation of the algorithms in Tomahawk,

since it would require a lot of effort to re-implement algorithms available

elsewhere as plug-ins before testing them.

The solution was to develop Tomahawk in such a way that it supports the truly

stepwise data mining process. A plug-in capable of storing and delivering pre-

processed data was implemented. Figure 5 presents the effects of the developments.

The left panel displays the pre-processing sequence prior to the adjustments. All the

plug-ins were calculated at once, and they had to be properly configured to obtain

properly pre-processed data. The right panel shows the situation after the adoption

of the truly stepwise data mining process. The pre-processing can be done in its own

sequence, after which a plug-in that inserts the data into the database is applied.

�(� �
�
*
����
��� ������
����� �������

Now the pre-processed data is in the database and available for further use at any

given time.

Plug-in 1:
Transformation

1

Plug-in 2:
Transformation

2

Plug-in 3:
Transformation

3

Plug-in 8:
Transformation

8

Pre-processing in TOMAHAWK

Tomahawk
database

Expert

Plug-in 9:
Transformation

9

Tomahawk
database

Plug-in:
Output pre-

processed data
to databasePlug-in:

Load pre-
processed data
from database

A sequence of pre-
processing plug-ins

Pre-process

Figure 5: The left panel shows the application of the stepwise data mining process on the pre-

processing of the raw data in Tomahawk. The right panel shows Tomahawk after the

modifications that made it support the truly stepwise data mining process for pre-processing.

The first and second issues are simple to solve by using the new approach. The

pre-processing expert of the project takes care of properly configuring the pre-

processing plug-ins. If the plug-ins need to be re-configured or re-programmed for

different data sets, she / he has the requisite knowledge to do it, and after the

application of the re-configured plug-ins, the data can be saved in the database. If it

is not possible to find a working combination of plug-ins at the current state of

development, the data can still be pre-processed manually, which would not be

feasible when using the stepwise process. After this, the expert in working on pre-

processed data can load the data from the database and be confident that the data she

/ he is working on has been correctly pre-processed. The third issue is also easy to

solve; after the modifications, the set of algorithms that can be tested on the data is

no longer limited to those implemented in Tomahawk, but includes tools that have a

database interface implemented in them, for example Matlab. This expands

drastically the range of available algorithms, which in turn makes it also faster to

find an algorithm suitable to a given task. As soon as a suitable algorithm has been

found, it can be implemented in Tomahawk.

Finally, a comparison of the steps required for pre-processing the data in the

SIOUX project using the stepwise and truly stepwise approaches is presented. The

motivation of the comparison is to demonstrate how large a task it would be for the

researcher working on pre-processed data to pre-process the data using the stepwise

approach before she / he could start the actual work.

If one wants to acquire pre-processed data using the stepwise approach, it takes

the application and configuration of 8 plug-ins to pre-process the data. The left panel

of Figure 6 shows one of the configuration dialogs of the plug-ins. This particular

panel has 4 numerical values that must be set correctly and the option of setting 6

check boxes. The total number of options the researcher has to set in the 8 plug-ins

for acquiring correctly pre-processed data is 68. The 68 options are not the same for

all the data gathered in the project, and it requires advanced pre-processing skills to

configure them correctly. Therefore, it is quite a complicated task to pre-process the

data, and it is especially difficult for a researcher who has not constructed the pre-

�((��� �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

processing plug-ins. The need to configure the 68 options of the pre-processing

sequence would take a lot of time and expertise away from the actual work and still

give poor confidence in that the data is correctly pre-processed.

To acquire the pre-processed data using the truly stepwise approach, one only

needs to fetch the data from the database. The right panel of Figure 6 shows the

configuration dialog of the database plug-in, which is used to configure the data

fetched for analysis from the database. Using the dialog, the researcher working on

the pre-processed data can simply choose the pre-processed data items that will be

used in the further analyses, and she / he does not have to bother with the actual pre-

processing of the data. The researcher can be sure that all the data loaded from the

database has been correctly pre-processed by the expert in pre-processing. From the

viewpoint of the researcher responsible for the pre-processing, it is good to know

that the sequence of pre-processing plug-ins does not have to be run every time that

pre-processed data is needed, and that she / he can be sure that correctly pre-

processed data will be used in the further steps of the data mining process.

In conclusion, by using the stepwise process, a researcher working with pre-

processed data could never be certain that the data had been correctly pre-processed,

or that all the plug-ins had been configured the way they should, which resulted in

confusion and uncertainty about the quality of the data. The truly stepwise process,

on the other hand, allowed a notably simple way to access the pre-processed data,

resulted in time savings, and ensure that the analyzed data were correctly pre-

processed.

Figure 6: The left panel shows one of the 8 dialogues that need to be filled in to acquire pre-

processed signal curves. The right panel shows the dialogue that is used for fetching raw and pre-

processed data directly from the database.

5. Conclusions

This paper presented a new approach for managing the data mining process,

called truly stepwise data mining process. In the truly stepwise process, the

transformed data is stored after the main phases of the data mining process, and the

transformations are applied to data fetched from the data storage medium. The

benefits of the process compared to the stepwise data mining process (the traditional

�(� �
�
*
����
��� ������
����� �������

approach) were analyzed. It was noticed that the proposed approach increases the

independence of the algorithms applied to the data and the number of algorithms

easily applicable to the data and makes it easier to manage and allocate the expertise

and teamwork of the data analysts. Also, data storage and on-line monitoring of the

data mining process are easier to organize using the new method, and it saves both

staff and CPU time. The approach was illustrated using a case study of a spot

welding data mining project. The two approaches were compared, and it was

demonstrated that the proposed method markedly simplified the tasks of the

specialist working on the pre-processed data.

In the future, the possibilities to apply the approach on a finer scale will be

studied - here it was only applied after the main phases of the data mining process.

The feature and model data of the approach will also be demonstrated, and the

application of the method will be extended to other data mining projects.

6. Acknowledgements

We would like to express our gratitude to our colleagues at Fachochschule

Karlsruhe, Institut für Innovation und Transfer, in Harms + Wende GmbH & Co.KG

[11], in Technax Industrie [12] and in Stanzbiegetechnik GesmbH [13] for providing

the data set, the expertise needed in the case study and for numerous other things

that made it possible to accomplish this work. We also wish to thank the graduate

school GETA [14], supported by Academy of Finland, for sponsoring this research.

Furthermore, this study has been financially supported by the Commission of the

European Communities, specific RTD programme “Competitive and Sustainable

Growth”, G1ST-CT-2002-50245, “SIOUX” (Intelligent System for Dynamic Online

Quality Control of Spot Welding Processes for Cross(X)-Sectoral Applications”). It

does not necessarily reflect the views of this programme and in no way anticipates

the Commission’s future policy in this area.

References

[1] P. Chapman, J. Clinton, T. Khabaza, T. Reinartz and R. Wirth, "CRISP-DM 1.0 Step-by-

step data mining guide," August, 2000.

[2] Hotz, E., Grimmer, U. Heuser, W. & Nakhaeizadeh, G. 2001. REVI-MINER, a KDD-

Environment for Deviation Detection and Analysis of Warranty and Goodwill Cost

Statements in Automotive Industry. In Proc. Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD 2001), 432–437.

[3] Liu, J.B. & Han, J. 2002. A Practical Knowledge Discovery Process for

Distributed Data Mining. In Proc. ISCA 11
th

 International Conference on

Intelligent Systems: Emerging Technologies, 11–16.

[4] Silva, E.M., do Prado, H.A. & Ferneda, E. 2002. Text mining: crossing the

chasm between the academy and the industry. In Proc. Third International

Conference on Data Mining, 351–361.

[5] S. Moyle and A. Jorge, "RAMSYS - A methodology for supporting rapid remote

collaborative data mining projects," in ECML/PKDD'01 workshop on Integrating

�(���� �����	
	�� ��� ��
��	
	�� ��� ��������	
	�� ��� ��		
�� ��� �

	�	��� ��� �
��
�

Aspects of Data Mining, Decision Support and Meta-Learning: Internal SolEuNet

Session, 2001, pp. 20-31.

[6] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann Publishers, 1999.

[7] R.J. Brachman and T. Anand, "The Process of Knowledge Discovery in Databases: A

Human-Centered Approach," in Advances in Knowledge Discovery and Data Mining,

U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy Eds. MIT Press, 1996,

pp. 37-58.

[8] TWI World Centre for Materials Joining Technology, information available at their

homepage: http://www.twi.co.uk/j32k/protected/band_3/kssaw001.html, referenced

31.12.2003.

[9] Laurinen, P.; Junno, H.; Tuovinen, L.; Röning, J.; Studying the Quality of Resistance

Spot Welding Joints Using Bayesian Networks, Artificial Intelligence and Applications

(AIA 2004), February 16-18, 2004, Innsbruck, Austria.

[10] Junno, H.; Laurinen, P.; Tuovinen, L.; Röning, J.; Studying the Quality of Resistance

Spot Welding Joints Using Self-Organising Maps, Fourth International ICSC Symposium

on Engineering of Intelligent Systems (EIS 2004), February 29 -March 2, 2004, Madeira,

Portugal.

[11] Harms+Wende GmbH & Co.KG, the world wide web page: http://www.harms-

wende.de/, referenced 13.2.2004.

[12] Technax Industrie, the world wide web page: http://www.technaxindustrie.com/,

referenced 13.2.2004.

[13] Stanzbiegetechnik GesmbH, the world wide web page:

http://www.stanzbiegetechnik.at/Startseite/index.php, referenced 13.2.2004.

[14] Graduate school GETA, the world wide web page: http://wooster.hut.fi/geta/, referenced

13.2.2004.

Association Rule Mining Meets Functional Dependencies:
The AP-FD Algorithm

Jürgen M. Janas

Fakultät für Wirtschafts- und Organisationswissenschaften

Universität der Bundeswehr München

Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany

juergen.janas@unibw-muenchen.de

Abstract. Association rule mining has mainly been studied in terms of

transactional data such as the market basket example; comparatively little

attention has been paid to its generalization to arbitrary relational data.

Although this is justified to some extent because the methods applied to

transaction data may easily be adapted to relational data, there are certain

peculiarities of relational data that cannot be taken advantage of by these

adapted methods. In this paper, we examine the role which functional

dependencies – a concept which has been studied rigorously in the area of

relational database design – may play in mining relational data for association

rules. We will show how the knowledge of functional dependencies may be

used to improve the performance of the A Priori algorithm which is the most

popular algorithm for finding sets of frequently co-occurring attribute values.

Keywords. Data mining, association rules, A Priori algorithm, relational

databases, functional dependencies

1. Introduction

Data mining is the analysis of typically very large sets of data in order to discover

yet unknown relationships among the data and aggregate them in ways which are

novel, useful, and understandable to the users of the data. Data mining is a still

young and due to its different ancestors, namely statistics, databases and artificial

intelligence, heterogeneous discipline. Among its sub-disciplines, association rule

mining is probably the one which is most independent from these ancestors.

Association rule mining (originally introduced in [1]) is usually explained in the

context of the market-basket problem which is the task of identifying sets of items

which frequently occur together in supermarket transaction data. Technically

spoken, the rules to be mined in this scenario are single-dimensional association

rules, i.e. both sides of these rules are sets of values which come from the same

domain, in this case the items that may be purchased in the supermarket. Single-

dimensional association rules may be generalized quite naturally to

multidimensional association rules which are better tailored to data according to the

relational model of data.

Association rule mining is usually done in two phases. During the first phase, one

of the numerous variants of an algorithm which is known as “A Priori” is used to

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()��*� 	�

�'*��� ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

determine sets of attribute values which frequently occur together by making a

number of sequential scans of the data to be mined. During the second phase, the

sets of attribute values found in the first phase are split into the left hand side and the

right hand side of one or more association rules according to some simple statistical

criteria; it is assumed that these rules might be interesting to the user and therefore

they are presented to him for inspection.

In this paper, we will propose an improvement to the first phase of association

rule mining that uses knowledge about the functional dependencies that are

contained in the data to be mined. Functional dependencies are patterns in data

according to the relational model of data that may be observed due to corresponding

regularities among the real world objects which are to be modeled by the data; they

are commonly employed in the process of database design.

We will show that the knowledge of functional dependencies in the data to be

mined allows us to logically infer that certain sets of attribute values occur

frequently together without counting their occurrences. This observation is used in a

new variant of the A Priori algorithm, namely the AP-FD algorithm (which owes its

name to its two main ingredients, i.e. the classical A Priori algorithm and functional

dependencies), which is superior to the original algorithm with respect to both

runtime and space requirements.

The remainder of this paper is organized as follows. Section 2 serves to introduce

the concepts and the notation used within this paper; this comprises concepts both

from relational database theory and from data mining; in particular, an adaptation of

the A Priori algorithm to multidimensional association rules is presented. The

similarities and the differences of functional dependencies on the one hand and

association rules on the other as well as the interactions between these two concepts

will be investigated in section 3; moreover, we will use this section for a brief

discussion of the question to what extent it is reasonable to expect that functional

dependencies will be present in the data to be mined for multidimensional

association rules. The fourth section introduces the AP-FD algorithm and contains a

discussion of its performance. The final section is used to summarize the results of

the paper.

2. Basic concepts and notation

2.1. Relations and functional dependencies

We assume that the reader is familiar with the basic concepts of the relational

model of data (e.g. on the basis of [2]) and restrict ourselves to informally

introducing the concepts we are using in the rest of this paper. When talking about a

relation we distinguish between the relation schema (denoted by R) which describes

the structure of the relation and the relation instance (denoted by r) which contains

the stored data and conforms to the structure given by the relation schema.

A relation schema R comprises the set of attributes (denoted by atts(R)) on

which R is defined and a set of integrity constraints which have to be satisfied by a

relation instance in order to be conforming to R. We will use letters X and Y for sets

of attributes and letters A and B for individual attributes.

��� �
�
/
����
��� ������
����� �������

A relation instance may be thought of as a set of rows each of which consists of

a set of values such that for each of the attributes in atts(R) there is exactly one

corresponding value; individual such values will be referred to as attribute values

and be denoted by A:a where a stands for the value corresponding to the attribute A.

A set of co-occurring attribute values (abbreviated scav) consists of one attribute

value per attribute from some attribute set X Ì atts(R) and will be designated by

X:x. We shall not make a distinction between an attribute value and the scav which

contains only this attribute value.

The notation sX:x(r) stands for the relation instance which is obtained by selecting

those rows from r that contain the scav X:x. Finally, card(r) is used to designate the

number of rows contained in the relation instance r.

As far as the integrity constraints of a relation schema are concerned, we restrict

our considerations to functional dependencies within this paper. A functional
dependency is an expression of the form X ­ A. We say X ­ A is satisfied by a
relation instance r if and only if every two rows from r which agree with respect to

their values for X, also agree with respect to their values for A; moreover, we say

that X ­ A holds in a relation schema R if and only if X ­ A is satisfied by every

relation instance conforming to R.

A functional dependency X ­ A is called a trivial functional dependency if and

only if A Í X. Obviously, all trivial functional dependencies hold in the respective

relation schema.

With regard to the functional dependencies which hold in a relation schema R we

distinguish between the set G of functional dependencies given as part of the relation

schema and the set G+ of all functional dependencies that may be inferred from G. G+

always contains all functional dependencies from G and all trivial functional

dependencies, but it may contain additional functional dependencies which may be

derived from G according to transitivity and other rules (for details see [2]).

A key of a relation schema R is a minimal set X Ì atts(R) such that the functional

dependency X­ A holds in R for each A Í atts(R).

The closure of a set of attributes X with respect to G is the set of all attributes A

such that X ­ A is contained in G+; it will be denoted by XG
+. The closure o a set of

attributes can be comuted in linear time; a corresponding algorithm may may be

found in [3].

2.2. Association rules

If R is a relation schema, X Ì atts(R), and A Í atts(R), then an expression of the

form

(X:x Ý A:a, s, c)

where s and c are real numbers from the interval between 0 and 1 is called a

multidimensional association rule; X:x is called the left hand side and A:a the

right hand side of the rule. If r is a relation instance conforming to R, we say that the

multidimensional association rule (X:x ÝA:a, s, c) is satisfied by r if

card(sA : a(sX : x(r))) / card(r) Ó s

��0��� ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

and

card(sA : a(sX : x(r))) / card(sX : x(r)) Ó c

Both s and c are measures for the interestingness of a multidimensional

association rule; s is called the support threshold and prescribes a lower bound for

the fraction of the rows of r that have to contain both the left hand side and the right

hand side of the rule for the rule to be satisfied by r.

The confidence level c prescribes at least what fraction of the rows of r that

contain the left hand side of the rule have to contain the right hand side as well for

the rule to be satisfied by r.

Multidimensional association rules are particularly appropriate for mining data

according to the relational model of data. For reasons of brevity, multidimensional

association rules will be referred to as association rules throughout the rest of this

paper.

2.3. The classical A Priori algorithm

Mining of association rules is usually done in two phases: During the first phase,

the frequent scavs are determined, i.e., those scavs which occur in at least that

fraction of the rows that is specified by the support threshold. During the second

phase, the frequent scavs are split into a left hand side X:x and a right hand side A:a

according to additional criteria such as a lower bound for the confidence level of the

resulting rule.

The most popular algorithm for the first phase is the so-called A Priori algorithm

which was originally introduced in [4]. The A Priori algorithm is based on the

observation that if a scav appears in a fraction s of the rows of a relation instance,

then any subset of this scav appears in at least fraction s of the rows, or – to put it

the other way round – a scav may appear in a fraction s of the rows only if each of

its subsets does so. This observation is sometimes referred to as the A Priori trick.

In the relevant literature, the A Priori algorithm is usually explained in the

context of the market-basket problem which implies a restriction to single-

dimensional association rules. However, as observed in [5], the algorithm may easily

be adapted to multidimensional association rules. In Fig. 1, the classical A Priori

algorithm is restated on a rather abstract level and in such a way that it applies to

multidimensional association rules; thus we make it directly comparable to the

algorithm which will be proposed in section 4 of this paper and which is applicable

to multidimensional association rules only. The algorithm takes as input a relation

instance r and a support threshold s and outputs the set L of all frequent scavs.

The algorithm proceeds levelwise and requires one pass per level through the

given relation instance. On level k, the set Lk of all frequent scavs of size k is

determined; this is done in two steps: During the first step, a set Ck of candidate

scavs is constructed from Lk-1 by applying the A Priori trick. In the second step, the

occurrences of the candidate scavs in the relation instance are counted and thus the

actually frequent ones are identified. For further details and a discussion of how to

compute the candidate sets Ck efficiently, the reader is referred to [5].

��� �
�
/
����
��� ������
����� �������

begin

 C1 := {{A:a}| r contains an occurrence of A:a};
 L1 := {{A:a}| {A:a} Í C1 Ø card(sA:a(r))Ós};
 L := Å;

 k := 1;

 while Lk Í Å do

 begin

 L := L Ç Lk;
 k := k + 1;

 Ck := {C| C = {A1:a1,...,Ak:ak} Ø AiÍAj for 1Òi<jÒk
 Ø C\{Ai:ai} Í Lk-1 for 1ÒiÒk};
 Lk := {X:x| X:x Í Ck Ø card(sX:x(r))Ós}
 end

end.

Figure 1. The classical A Priori algorithm

3. A common view on association rules and functional
dependencies

3.1. Technical interactions

At first glance, association rules and functional dependencies seem to show a

good deal of similarities: As a matter of fact, both of them are meant to characterize

situations in which the values with respect to one or more attributes of a relation

determine the values with regard to some other attribute of that relation. However,

there are three aspects in which association rules and functional dependencies differ

from each other considerably.

First of all, functional dependencies have a coarser granularity than association

rules. This means, while a functional dependency X ­ A is a statement which refers

to the entirety of the values with regard to X and to the entirety of the values with

regard to A in a relation instance, an association rule (X:x Ý A:a, s, c) is a statement

which relates to the combination of only one particular combination of values with

regard to X and one particular value with regard to A.

Secondly, functional dependencies are more stringent than association rules; that

is, while a functional dependency enforces that all of the rows which contain the

same values with regard to X have to agree with respect to their value for A, an

association rule requires only that a certain percentage (expressed by means of the

confidence level c) of the rows which contain the values with regard to X have the

same value with regard to A.

Finally, functional dependencies relate to the relation schema, whereas

association rules relate to a specific relation instance. This implies that a functional

dependency will be satisfied by every relation instance which conforms to the

respective relation schema; thus the validity of a functional dependency cannot be

affected by changes to the relation instance. An association rule, by way of contrast,

��1��� ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

is a statement about one particular relation instance only and therefore such a

statement may become invalid due to a change to the respective relation instance.

It is an immediate consequence of the latter of these differences between

association rules and functional dependencies that the existence of one or more

association rules will by no means have any effect on the set of functional

dependencies which hold in the respective relation schema.

On the other hand, a functional dependency X ­ A which holds in a relation

schema implies the validity of all association rules (X:x Ý A:a, s, c) for those values

with regard to X and to A which occur in combination in the respective relation

instance; this implication is independent of the respective relation instance and the

confidence level c of each of the implied association rules is equal to 1. Of course,

this kind of relationship is owed to the different granularity of functional

dependencies and association rules and it is of a rather trivial nature.

The following lemma will show, however, that there is another, more useful kind

of interaction between functional dependencies and association rules. As a matter of

fact, this interaction is not expressed in terms of association rules, but rather in terms

of frequent scavs from which the association rules that are satisfied by a particular

relation instance may be derived.

Lemma. Let R be a relation schema, r a relation instance conforming to r, and Y Ì

X Ì atts(R); if X:x is a frequent scav then X:x Ç YG
+:y’ is also a frequent scav with

YG
+:y’ being the (uniquely determined) attribute values which are contained in all

rows of r which contain X: x.

Proof: obvious

3.2. Functional dependencies in the data to be mined

Before we will turn to the implications the above lemma has for finding frequent

scavs, we have to address a much more general question: Functional dependencies

are a concept which is commonly used in the design of relational databases;

therefore, it is legitimate to ask whether we may reasonably expect that functional

dependencies will be present at all in sets of data to be mined for association rules. It

may at first glance seem as if the answer to this question is completely dependant on

the respective data set, however, a closer look reveals that certain answers of a more

general nature can be given.

Functional dependencies are used in relational database design to define certain

normal forms of relation schemes that are considered desirable because they avoid

redundancy in the conforming relation instances. The best normal form which may

be achieved – as long as only functional dependencies are regarded – is the so-called

Boyce/Codd normal form (BCNF); according to the definition of BCNF, if X ­ A

is a non-trivial functional dependency that holds in a relation schema which is in

BCNF then X has to contain a key of that relation schema.

It is easy to see that any such functional dependency X ­ A will be of hardly any

help for mining frequent scavs because any scav which comprises all of the

attributes from X will occur at most once in a conforming relation instance and

therefore will hardly ever be considered frequent. As a consequence, functional

dependencies hardly ever will be useful for mining associations between multiple

��� �
�
/
����
��� ������
����� �������

attribute values which are contained in the same relation, particularly if the relation

schema is in BCNF.

The situation is different, however, as soon as associations between attribute

values from multiple relations are considered. In this case, the relations which

contain the attribute values have to be joined as a prerequisite to counting the co-

occurrences of the attribute values. For reasons of brevity we restrict ourselves to the

case where only two relation schemes R1 and R2 have to be joined.

The attribute(s) on which the join of R1 and R2 is performed must be a key in at

least one of the relation schemes R1 and R2 because otherwise the join would be

“lossy”, i.e., the relation resulting from the join would not comprise the same

information as R1 and R2 (cf. [2] for a thorough discussion of that matter). On the

other hand, if the join attribute(s) constitute a key in R1 it is very unlikely that they

are a key of R2 as well because in that case there would have been no need to

separate the information contained in the two relations during database design. As a

consequence, the left hand side of any functional dependency which holds in R1 will

not contain a key of the joined relation even if it contains a key of R1 and therefore,

a scav with attributes from X Ì atts(R1) may be contained in the joined relation an

arbitrary number of times and, in particular, may be frequent. So all the functional

dependencies that hold in R1 may be useful for mining multidimensional association

rules even if their left hand sides contain a key of R1.

It is obvious that the number of functional dependencies in the data to be mined

increases the number of relations which result from the normalization process and

therefore increases the number of joins that are required to build the relation in

which the scavs may be counted.

Apart from that, we would like to point out that the data to be mined may also

contain functional dependencies for other reasons; we only mention dimension

tables in data warehouses which are deliberately denormalized (cf. [6]).

4. The AP-FD algorithm

In [7], we proposed an enhanced A Priori algorithm which uses the knowledge

about functional dependencies in the data to be mined essentially in the following

way: If there is a frequent scav X:x in Lk-1 and if a functional dependency Y ­ A

with Y Ì X and A Î X holds in R then the set X:x Ç A:a is included in the set Lk

without prior counting its occurrences in r. The main advantage of this algorithm

over the classical A Priori algorithm is the fact that it avoids unnecessary inclusions

of candidates into the sets Ck. Since the size of the candidate sets Ck (particularly

C2) is the bottleneck of the A Priori algorithm (cf. [8]), the enhanced A Priori

algorithm is able to cope with larger data sets than the classical A Priori algorithm.

As far as runtime is concerned the classical A Priori algorithm and the algorithm

proposed in [7] are of equal standard. This is because both algorithms compute the

sets Lk of all frequent scavs of size k strictly one after another and thus require a

complete scan of the data for each k. Therefore, the number of scans of the data is

equal to the size of the largest frequent scav and therefore the same for both the

classical and the enhanced A Priori algorithm.

��'��� ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

As a matter of fact, the lemma stated at the end of section 3.1 may be used to

speed up the computation of all frequent scavs in the presence of functional

dependencies. This is because whenever we know that X:x is a frequent scav we

may conclude without further counting that XG
+:x’ (x' stands for the uniquely

determined values a tuple contains with regart to the attributes from XG
+ if it

contains X:x) is also a frequent scav irrespective of how many attributes are

contained in XG
+\X. Thus it is possible that the largest scavs will be found after a

fewer number of scans of the data.

Like the classical and the enhanced A Priori algorithm, the AP-FD algorithm

alternately computes a set Ck of candidates and a set Lk of frequent scavs. However,

unlike the other two algorithms the scavs contained in Lk may be of different size;

more precisely, a scav contained in Lk is at least of size k and consists of two parts,

namely a “counting-part” and an “fd-part”. The counting-part of a scav in Lk is a

scav of fixed size k and the fd-part of a scav in Lk is the set of attribute values

which are functionally dependent on the attribute values in the counting-part of the

same scav; the fd-part may contain any number of attribute values, particularly zero.

The separation of counting-part and fd-part of a scav is made in order to be able

to apply the classical A Priori algorithm to the counting-parts which are of equal size

within a single set Lk. The fd-parts are used to avoid the generating of candidates for

which one may infer that they are frequent because of the given functional

dependencies. For that reason a scav C will become a candidate only if none of its

attribute values is contained in the fd-parts of a subset of C.

The AP-FD algorithm is given in Fig. 2; it requires – compared to the classical A

Priori algorithm –a set of functional dependencies as an additional input. Note that

the fd-parts of the scavs in Lk are not given explicitly, rather, only their attributes are

mentioned because the actual values are uniquely determined by the counting-part of

the respective scav anyway. Where we need to refer to such unknown values

(namely in the construction of the output set L) in the AP-FD algorithm we do so by

using the symbol “*”.

begin

 C1 := {{A:a}| r contains an occurrence of A:a};
 L1 := {({A:a}, AG

+\{A})| {A:a}ÍC1 Ø card(sA:a(r))Ós};
 L := Å;

 k := 1;

 while Lk Í Å do

 begin

 L := L Ç {(X:x Ç Y:*)| (X:x, Y) Í Lk};
 k := k + 1;

 Ck := {C| C = {A1:a1,...,Ak:ak} Ø AiÍAj for 1Òi<jÒk
 Ø "i Í {1,...,k} $(X:x, Y) Í Lk-1
 (X:x = C\{Ai:ai} Ø Ai Î Y)};
 Lk := {(X:x, XG

+\X)| X:xÍCk Ø card(sX:x(r))Ós}
 end

end.

Figure 2. The AP-FD algorithm

��� �
�
/
����
��� ������
����� �������

It is easy to see from the way Ck is built that there will never be any functional

dependency among the attribute values which are contained in a candidate scav and

as a consequence there will also never be any functional dependency among the

attribute values which are contained in the counting-part of a frequent scav. Thus,

the AP-FD algorithm generates as few candidates as possible when building a

candidate set Ck; in this respect the AP-FD algorithm is equal to the enhanced A

Priori algorithm described in [7].

However, the AP-FD algorithm is superior to both the classical A Priori

algorithm and the enhanced A Priori algorithm with regard to the number of scans of

the data that are required to find a frequent scav of size k. Both the classical A Priori

algorithm and the enhanced A Priori algorithm require exactly k scans under any

circumstances, whereas the number of scans that are required by the AP-FD

algorithm is equal to the number of attributes contained in the counting-part of the

scav. Thus the overall number of scans required by the AP-FD algorithm will be

reduced whenever the largest ones of the frequent scavs have functional

dependencies among their attribute values.

Example. Let R be a relation schema with atts(R) = {A, B, C, D, E} and let

G = {A ­ B, BC ­ D, E ­ C} be the set of functional dependencies which hold in

R. It is easy to verify that the relation instance r given in Fig. 3 is conforming to R.

A B C D E
a1 b1 c1 d1 e1

a1 b1 c2 d2 e2

a2 b1 c1 d1 e3

a3 b2 c2 d1 e2

a3 b2 c2 d1 e2

Figure 3. Example relation instance

We compare the performance of the classical A Priori algorithm and the AP-FD

algorithm by applying both of them to r with s = 0.4 as support threshold. It is easy

to see from looking at the two bottom rows of r that the classical A Priori algorithm

will require five scans of r until it discovers the largest frequent scav, namely {A:a3,

B:b2, C:c2, D:d1, E:e2}.

The AP-FD algorithm, on the other hand, generates the following sets one after

the other:

C1 = { {A:a1}, {A:a2}, {A:a3}, {B:b1}, {B:b2}, {C:c1},

{C:c2}, {D:d1}, {D:d2}, {E:e1}, {E:e2}, {E:e3} }

L1 = { ({A:a1}, {B}), ({A:a3}, {B}), ({B:b1}, Å), ({B:b2}, Å),

({C:c1}, Å), ({C:c2}, Å), ({D:d1}, Å), ({E:e2}, {C}) }

C2 = { {A:a1, C:c1}, {A:a1, C:c2}, {A:a1, D:d1}, {A:a1, E:e2},

{A:a3, C:c1}, {A:a3, C:c2}, {A:a3, D:d1}, {A:a3, E:e2},

{B:b1, C:c1}, {B:b1, C:c2}, {B:b1, D:d1}, {B:b1, E:e2},

{B:b2, C:c1}, {B:b2, C:c2}, {B:b2, D:d1}, {B:b2, E:e2},

{C:c1, D:d1}, {C:c2, D:d1}, {D:d1, E:e2} }

L2 = { ({A:a3, C:c2}, {B, D}), ({A:a3, D:d1}, {B}),

({A:a3, E:e2}, {B, C, D}), ({B:b1, C:c1}, {D}),

������ ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

({B:b1, D:d1}, Å), ({B:b2, C:c2}, {D}),

({B:b2, D:d1}, Å), ({B:b2, E:e2}, {C, D}),

({C:c1, D:d1}, Å), ({C:c2, D:d1}, Å),

({D:d1, E:e2}, Å) }

Note that during the third traversal of the while-loop the largest frequent scav in r,

namely {A:a3, B:b2, C:c2, D:d1, E:e2} is already inserted into the set L; moreover,

it turns out that C3 is the empty set and therefore the AP-FD algorithm terminates.

Thus in this case, our algorithm requires only two full table scans whereas the

classical A Priori algorithm requires five.

A detailed comparison of the size of the sets generated by the two algorithms is

shown in Fig. 4.

 C1 L1 C2 L2 C3 L3 C4 L4 C5 L5

A Priori algorithm 12 8 25 14 11 11 5 5 1 1

AP-FD algorithm 12 8 19 11 – – – – – –

Figure 4. Size of the sets generated by the classical A Priori algorithm and the AP-FD algorithm

As one can see from Fig. 4, the result of the classical A Priori algorithm and the

AP-FD algorithm are not quite the same: The classical A Priori algorithm collects

definitely all frequent scavs in L, whereas the AP-FD algorithm inserts a frequent

scav into L only, if there is no superset of that scav which is already known to be

frequent and therefore can be inserted into L at the same time. It is obvious that this

discrepancy could be overcome easily if required.

Finally, we would like to point out that the potential of the AP-FD algorithm to

reduce the number of candidate sets grows with the number of frequent scavs X:x

which exist for a given X. It is easy to see that in this respect, the above example

will be outperformed by real life relations, particularly, if they contain a large

number of tuples.

5. Conclusion

In this paper, we have investigated the relationship between functional

dependencies and multidimensional association rules. It turns out that the knowledge

of functional dependencies in the data to be mined may be used in the A Priori

algorithm which is commonly used to determine all frequent sets of co-occurring

attribute values. For that purpose, we have proposed a new variant of the A Priori

algorithm called the AP-FD algorithm. This algorithm is superior to its classical

counterpart with respect to both runtime and the number of candidate sets that are

generated. In particular, this latter point is of great importance as the number of

candidate sets generated is the bottleneck for the applicability of the A Priori

algorithm to very large data sets.

There have been numerous proposals in the literature that focus on improving the

efficiency of the classical A Priori algorithm. It seems worth mentioning that the

AP-FD algorithm described in this paper has not to be understood as an alternative

to such proposals, but rather may be combined with many of these proposals thus

��(�
�
/
����
��� ������
����� �������

resulting in a further gain in performance. We only mention the most important ones

of these variations of the classical A Priori algorithm.

Hash-based techniques (such as [9]) use one or more hash tables the entries of

which are counters. While computing Lk from Ck, these algorithms map all scavs of

size k+1 to the buckets of the hash table and increment the corresponding counter; a

scav of size k+1 then has to be inserted into Ck+1 only if the corresponding counter

exceeds the support threshold. It is obvious that this procedure is equally applicable

if the AP-FD algorithm is employed instead of the classical A Priori algorithm.

Transaction reduction methods (as described in [4]) make use of the

observation that a tuple which does not contain a frequent scav of size k cannot

contain a frequent scav of size k+1. Therefore all such tuples are ruled out from the

scan of the data during which Lk+1 is determined by counting. Clearly this may be

done as well if the AP-FD algorithm is used instead of the classical A Priori

algorithm.

The partitioning technique (cf. [10]) applies the classical A Priori algorithm to

partitions of the data to be mined that are sufficiently small in order to fit into main

memory. The union of all scavs which are frequent in at least one partition is then

used in a second scan of the data to find out which ones are frequent with respect to

the entire data set. Clearly the AP-FD algorithm may be used to speed up the first

phase of this procedure.

Sampling techniques (see [11] for an example) mine a subset of the given data

for frequent scavs and then verify those scavs with respect to the entire data set by

means of one or more full scans of the data. Obviously, the classical A Priori

algorithm may be replaced by the AP-FD algorithm when mining the samples.

As a matter of fact, there are other methods for mining frequent scavs that do not

directly build upon A Priori; we only mention DIC (for “dynamic itemset counting”,

described in [12]) and CARMA (for “continuous association rule mining algorithm”,

cf. [13]). Although one cannot incorporate the AP-FD algorithm into these methods,

they may well benefit from the knowledge of functional dependencies. This is

because both DIC and CARMA – as well as most other research on the subject –

“are variations of the ‘bottom-up theme’ proposed by the A Priori algorithm” as it

was called in [14]. “Bottom-up theme” means that the frequent scavs are obtained by

starting with singleton scavs and then incrementally generating larger and larger

scavs. Without looking at the details of such a procedure it is obvious that the

knowledge of functional dependencies will always offer opportunities to overleap

certain steps. How this can be done efficiently in detail, however, requires further

study.

References

[1] Agrawal R., Imielinski T., Swami T. Mining Association Rules between Sets of Items in

Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data, 1993. p. 207 –

216

[2] Garcia-Molina H., Ullman J.D., Widom J. Database Systems: The Complete Book. Upper

Saddle River, NJ. Prentice Hall, 2002

[3] Beeri C., Bernstein P.A: Computational Problems Related to the Design of Normal Form

Relation Schemas. ACM Trans. on Database Systems 1979; 4(1): p. 30 – 59

��*��� ��� �������
��"+%��%"�� �,-�� �%�%�.� ������ �,�+�%"��-� ��

[4] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules. Proc. Int. Conf.

Very Large Data Bases, 1994. p. 487 – 499

[5] Han J., Kamber M. Data Mining: Concepts and Techniques. San Francisco. Morgan

Kaufmann Publishers, 2001

[6] Kimball R. The Data Warehouse Toolkit - Practical Techniques for Building Dimensional

Data Warehouses. New York. Wiley, 1996

[7] Janas J.M. An Enhanced A Priori Algorithm for Mining Multidimensional Association

Rules. Proc. 25th Int. Conf. Information Technology Interfaces, 2003 p. 193 – 198

[8] Ullman J.D. Data Mining Lecture Notes. http://www-db.stanford.edu/~ullman/

mining/mining.html [03/06/2003]

[9] Park J.S., Chen M.S., Yu P.S. An Effective Hash-Based Algorithm for Mining

Association Rules. Proc. ACM SIGMOD Int. Conf. on Management of Data, 1995. p. 175

– 186

[10] Savasere A., Omiecinski E., Navathe S. An Efficient Algorithm for Mining Association

Rules in Large Databases. Proc. Int. Conf. Very Large Data Bases, 1995. p. 432 - 443

[11] Toivonen H. Sampling Large Databases for Association Rules. Proc. Int. Conf. Very

Large Data Bases, 1996. p. 134 – 145

[12] Brin S., Motwani R., Ullman J.D., Tsur S. Dynamic Itemset Counting and Implication

Rules for Market Basket Analysis. Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1997. p. 255 – 264

[13] Hidber C. Online Association Rule Mining. Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999. p.145 – 156

[14] Aggarwal C.C., Yu P.S. Mining Large Itemsets for Association Rules. Bulletin of the

IEEE Computer Society TC on Data Engineering, March 1998. p. 23 – 31

Data Mining Query Scheduling
for Apriori Common Counting∗

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology

Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland

{marek, mzakrz}@cs.put.poznan.pl

Abstract. In this paper we consider concurrent execution of multiple data

mining queries. If such data mining queries operate on similar parts of the

database, then their overall I/O cost can be reduced by integrating their data

retrieval operations. The integration requires that many data mining queries

are present in memory at the same time. If the memory size is not sufficient to

hold all the data mining queries, then the queries must be scheduled into

multiple phases of loading and processing. We discuss the problem of data

mining query scheduling and propose a heuristic algorithm to efficiently

schedule the data mining queries into phases.

Keywords. Data mining, data mining queries

1. Introduction

Data mining is a database research field that aims at the discovery of trends,

patterns and regularities in very large databases. We are currently witnessing the

evolution of data mining environments towards their full integration with DBMS

functionality. In this context, data mining is considered to be an advanced form of

database querying, where users formulate declarative data mining queries, which are

then optimized and executed by one of data mining algorithms built into the DBMS.

One of the most significant issues in data mining query processing is long execution

time, ranging from minutes to hours.

One of the most popular pattern types discovered by data mining queries are

frequent itemsets. Frequent itemsets describe co-occurrences of individual items in

sets of items stored in the database. An example of a frequent itemset can be a

collection of products that customers typically purchase together during their visits

to a supermarket. Such frequent itemset can be discovered in the database of

customer shopping baskets. Frequent itemsets are usually discovered using level-
wise algorithms, which divide the problem into multiple iterations of database

scanning and counting occurrences of candidate itemsets of equal size.

Due to long execution times, data mining queries are often performed in a batch
mode, where users submit sets of data mining queries to be executed during low

∗
 This work was partially supported by the grant no. 4T11C01923 from the State Committee

for Scientific Research (KBN), Poland.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ���'�()� 	�

��)��� �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

database activity time (e.g., night time). It is likely that the batches contain data

mining queries that operate on similar parts of the database. If such queries are

executed separately, the same parts of the database are retrieved multiple times. We

could reduce the overall I/O activity of the batch of data mining queries if we

integrated their data retrieval operations on the same portions of the database.

For a system with unlimited memory, the integration of execution of multiple

data mining queries consists in common counting [13][14] of candidate itemsets for

all the queries so that every portion of the database needs to be read only once per

iteration. However, if the memory is limited, we are not able to keep all candidate

itemsets of all the data mining queries in the memory at the same time. The whole

process must then be split into multiple phases of loading and counting the

candidates, and therefore the data mining queries must be divided into subsets to be

executed in each phase. We refer to the problem of dividing the data mining into

subsets as to the data mining query scheduling.

In this paper we discuss the problem of data mining query scheduling and we

introduce a heuristic algorithm to perform the scheduling for a system with limited

memory. The goal of the algorithm is to schedule the data mining queries in such a

way that the overall I/O cost for the whole batch is minimized.

1.1. Related Work

The problem of mining association rules was first introduced in [1] and an

algorithm called AIS was proposed. In [2], two new algorithms were presented,

called Apriori and AprioriTid that are fundamentally different from the previous

ones. The algorithms achieved significant improvements over AIS and became the

core of many new algorithms for mining association rules. Apriori and its variants

first generate all frequent itemsets (sets of items appearing together in a number of

database records meeting the user-specified support threshold) and then use them to

generate rules. Apriori and its variants rely on the property that an itemset can only

be frequent if all of its subsets are frequent. It leads to a level-wise procedure. First,

all possible 1-itemsets (itemsets containing 1 item) are counted in the database to

determine frequent 1-itemsets. Then, frequent 1-itemsets are combined to form

potentially frequent 2-itemsets, called candidate 2-itemsets. Candidate 2-itemsets are

counted in the database to determine frequent 2-itemsets. The procedure is continued

by combining the frequent 2-itemsets to form candidate 3-itemsets and so forth. A

disadvantage of the algorithm is that it requires K or K+1 passes over the database to

discover all frequent itemsets, where K is the size of the greatest frequent itemset

found.

In [4], an algorithm called FUP (Fast Update Algorithm) was proposed for

finding the frequent itemsets in the expanded database using the old frequent

itemsets. The major idea of FUP algorithm is to reuse the information of the old

frequent itemsets and to integrate the support information of the new frequent

itemsets in order to reduce the pool of candidate itemsets to be re-examined.

Another approach to incremental mining of frequent itemsets was presented in [11].

The algorithm introduced there required only one database pass and was applicable

not only for expanded but also for reduced database. Along with the itemsets, a

negative border [12] was maintained.

��� �
�
0
����
��� ������
����� �������

In [10] the issue of interactive mining of association rules was addressed and the

concept of knowledge cache was introduced. The cache was designed to hold

frequent itemsets that were discovered while processing other queries. Several cache

management schemas were proposed and their integration with the Apriori
algorithm was analyzed. An important contribution was an algorithm that used

itemsets discovered for higher support thresholds in the discovery process for the

same task, but with a lower support threshold.

The notion of data mining queries (or KDD queries) was introduced in [6]. The

need for Knowledge and Data Management Systems (KDDMS) as second-

generation data mining tools was expressed. The ideas of application programming

interfaces and data mining query optimizers were also mentioned. Several data

mining query languages that are extensions of SQL were proposed [3][5][7][8][9].

2. Basic Definitions and Problem Formulation

Definition. Frequent itemsets.
Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items

T be called an itemset. Let D be a set of variable length itemsets, where each itemset

T⊆ L. We say that an itemset T supports an item x∈ L if x is in T. We say that an

itemset T supports an itemset X⊆ L if T supports every item in the set X. The support
of the itemset X is the percentage of T in D that support X. The problem of mining

frequent itemsets in D consists in discovering all itemsets whose support is above a

user-defined support threshold.

Definition. Apriori algorithm.

Apriori is an example of a level-wise algorithm for association discovery. It

makes multiple passes over the input data to determine all frequent itemsets. Let Lk

denote the set of frequent itemsets of size k and let Ck denote the set of candidate

itemsets of size k. Before making the k-th pass, Apriori generates Ck using Lk-1. Its

candidate generation process ensures that all subsets of size k-1 of Ck are all

members of the set Lk-1. In the k-th pass, it then counts the support for all the

itemsets in Ck. At the end of the pass all itemsets in Ck with a support greater than or

equal to the minimum support form the set of frequent itemsets Lk. Figure 1 provides

the pseudocode for the general level-wise algorithm, and its Apriori implementation.

The subset(t, k) function gives all the subsets of size k in the set t.
This method of pruning the Ck set using Lk-1 results in a much more efficient

support counting phase for Apriori when compared to the earlier algorithms. In

addition, the usage of a hash-tree data structure for storing the candidates provides a

very efficient support-counting process.

��1��� �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

C1 = {all 1-itemsets from D};

for (k=1; Ck ≠ ∅ ; k++) do

begin

 count(Ck, D);

 Lk = {c ∈ Ck | c.count ≥ minsup};

 Ck+1 = generate_candidates(Lk);

end;

Answer = UkLk;

L1 = {frequent 1-itemsets};

for (k = 2; Lk-1 ≠ ∅ ; k++) do
begin

 Ck = generate_candidates(Lk-1);

 forall tuples t ∈ D do
 begin

 Ct=Ck ∩ subset(t, k);

 forall candidates c ∈ Ct do
 c.count++;

 end;

 Lk = {c ∈ Ck | c.count ≥ minsup}

end;

Answer = UkLk;

Figure 1. A general level-wise algorithm for association discovery (left) and its Apriori implementation

(right).

Definition. Data mining query.
A data mining query is a tuple (R, a, Σ, Φ, β), where R is a database relation, a is

an attribute of R, Σ is a selection predicate on R, Φ is a selection predicate on

frequent itemsets, β is the minimum support for the frequent itemsets.

Example. Given is the database relation R1(attr1, attr2). The data mining query dmq1
= (R1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering

frequent itemsets in the set-valued attribute attr2 of the relation R1. The frequent

itemsets with support above 3 and length less than 4 are discovered in records

having attr1>5.

Definition. Multiple data mining query optimization.
Given is a set of data mining queries DMQ={dmq1, dmq2, ..., dmqn}, where

dmqi=(R, a, Σi, Φi, βi), Σi is of the form “(li
1min<a<li

1max) ∨ (li
2min<a<li

2max) ∨ ..∨

(li
kmin<a<li

kmax)”, and there are at least two data mining queries dmqi=(Ri, a, Σi, Φi,
βi) and dmqj=(R, a, Σj, Φj, βj) such that σΣiR∩σΣjR ≠∅ . The problem of multiple
data mining query optimization is to generate an algorithm to execute DMQ with the

minimal I/O cost.

Definition. Data sharing graph.
Let S={s1, s2 ,..., sk} be a set of elementary data selection predicates for DMQ,

i.e., selection predicates over the attribute a or the relation R such that for all i,j we

have σsiR∩σsjR =∅ and for each i there exist integers a, b, ..., m such that

σΣiR=σsaR∪ σsbR∪ ..∪ σsmR (example in Fig. 2). A graph DSG=(V,E) is called a data
sharing graph for the set of data mining queries DMQ iff V=DMQ∪ S, E={(dmqi,sj)|
dmqj∈ DMQ, sj∈ S, σΣiR∩σsjR≠∅ }.

��� �
�
0
����
��� ������
����� �������

dmq1

dmq2

l1
1min l1

1max l1
2min l1

2max

l2
1min l2

1max

R

s1

s2

s3

s4

s5

S

Figure 2. Example set of data mining queries and their elementary data selection predicates.

Example. Given is the relation R1=(attr1, attr2) and three data mining queries:

dmq1=(R1, "attr2", "5 < attr1 < 20", ∅ , 3), dmq2=(R1, "attr2", "10 < attr1 < 30", ∅ ,
5), dmq3=(R1, "attr2", "15 < attr1 <40", ∅ , 4). The set of elementary data selection

predicates is then S={s1=”5<attr1<10”, s2=”10<attr1<15”, s3=”15<attr1<20”,
s4=”20<attr1<30”, s5= ”30<attr1<40”}. The data sharing graph for {dmq1, dmq2,
dmq3} is shown in Fig. 3.

dmq1

dmq2

dmq3

5<attr1<10

10<attr1<15 20<attr1<30

30<attr1<40

data selection

predicate node

data mining

query node

15<attr1<20

Figure 3. Example data sharing graph.

Definition. Apriori Common Counting.
A straightforward way to perform multiple data mining query optimization is

Apriori Common Counting algorithm. The algorithm proceeds as follows. In the first

step, Apriori Common Counting constructs separate candidate 1-itemset hash trees

(in memory) for each data mining query. Next, all database partitions corresponding

to the elementary selection predicates are scanned and the candidate itemsets for the

appropriate data mining queries are counted. This process is repeated for each

iteration: for candidate 2-itemsets, candidate 3-itemsets, etc. Notice that if a given

elementary selection predicate is shared by multiple data mining queries, then the

��2��� �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

specific part of the database needs to be read only once (per iteration). This property

helps reduce the overall I/O cost of batched data mining query execution. The idea

of Apriori Common Counting algorithms is depicted in Fig. 4.

for (i=1; i<=n; i++) /* n = number of data mining queries */

 C1
i
 = {all 1-itemsets from σs1∪ s2∪ ..∪ skR, ∀ sj∈ S: (dmqi,sj)∈ E} /* generate 1-candidates */

for (k=1; Ck
1 ∪ Ck

2 ∪ ..∪ Ck
n
 ≠ ∅ ; k++) do begin

 for each sj∈ S do begin

 CC= 8Ck
l: (dmql,sj)∈ E; /* select the candidates to count now */

 if CC≠ ∅ then count(CC, σsjR);

 end;
 for (i=1; i<=n; i++) do begin
 Lk

i
 = {c ∈ Ck

i
 | c.count ≥ minsupi

}; /* identify frequent itemsets */

 Ck+1
i
 = generate_candidates(Lk

i
);

 end;
end;
for (i=1; i<=n; i++) do

 Answeri
 = UkLk

i
; /* generate responses */

Figure 4. Apriori Common Counting.

3. Data Mining Query Scheduling

The basic Apriori Common Counting described in the previous section assumes

unlimited memory for its operation. However, if the memory is limited, then it is not

possible to construct candidate hash trees for all the data mining queries. The whole

algorithm must then be split into multiple phases and every phase must consist in

executing a subset of the data mining queries. The key problem is which data mining

queries should be performed in the same phase and which of them can be performed

in separate phases. The task of dividing the set of data mining queries into subsets is

referred to as data mining query scheduling.

There are several aspects to consider when designing a data mining query

scheduling algorithm. Firstly, it is obvious that system memory size restricts the

number of data mining queries that may be processed in the same phase. Memory

requirements for the data mining queries are based on sizes of their candidate hash

trees, which in turn depend on data characteristics and the specific iteration of the

algorithm (typically, sizes of candidate hash trees systematically reduce for

iterations 3, 4, etc.). Since the candidate hash tree sizes change in each iteration, the

data mining query scheduling algorithm should be used before generating every new

tree, not only at the beginning of the data mining query processing. Another aspect

is that the goal of Apriori Common Counting is to reduce the overall I/O activity.

Therefore, similarities between data mining queries should be taken into account

when putting data mining queries into the same phase. Data mining queries that

operate on separate portions of the database can be processed in separate phases,

while data mining queries that operate on highly overlapping database portions

should be executed in the same phase. To measure the “overlapping” between data

��� �
�
0
����
��� ������
����� �������

mining queries one can rely on a traditional DBMS query optimizer, which

estimates predicate costs based on database statistics.

In order to schedule data mining queries, the sizes of their candidate hash trees

must be known. There are two options to derive the size. The first option is to

calculate the upper bounds on the candidate hash trees and use the upper bounds in

the scheduling algorithm. The upper bounds can be evaluated based on the number

of frequent itemsets discovered in the previous iteration. A disadvantage of this

approach is that the real candidate hash trees are smaller than the estimates, so the

scheduling algorithm is likely to miss the optimal solution. The second option is to

generate the candidate hash trees first, measure their sizes, save them in temporary

files, perform the scheduling and then retrieve the appropriate trees from the files

while performing the phases. The main advantage of this approach is that the

scheduling algorithm operates on the exact sizes of the trees, and therefore it is able

to find the optimal solution. However, the additional I/O cost is introduced because

of the need to temporarily store the candidate hash trees on disk. Nevertheless, when

dealing with very large databases (in case of which candidate tree sizes are by

several orders of magnitude smaller than the database) that extra cost is going to be

compensated by reduction of database reads thanks to Common Counting.

Let us consider an example of data mining query scheduling based on our

previous set of data mining queries from Fig. 3. Let cost(s) be the I/O cost of

retrieving database records that satisfy the data selection predicate s. Let

treesize(dmq,k) be the k-item candidate hash tree size for the data mining query dmq.

Sample costs and tree sizes (e.g., for the third Apriori iteration) are given in the table

below. Let us assume the system memory limit of 10MB, meaning that at most two

of the data mining queries can fit in at a time (i.e., in one phase).

si cost(si)
5<attr1<10 5000

10<attr1<15 7000

15<attr1<20 2000

20<attr1<30 2000

30<attr1<40 1000

dmqi treesize(dmqi,3)
dmq1 4M

dmq2 5M

dmq3 3M

There exist four different schedules that satisfy the given constraints. The

schedules and the total costs of executing the sample set of data mining queries are

given below. The Schedule A represents a sequential execution of all the data mining

queries. One can notice that the optimal solution is the Schedule B, which reduces

the overall cost by 30%. This schedule has been also depicted in Fig. 5.

Schedule A

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq1 4M s1, s2, s3 14,000

2 dmq2 5M s2, s3, s4 11,000

3 dmq3 3M s3, s4, s5 5,000

total cost 30,000

������ �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

Schedule B

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq1, dmq2 9M s1, s2, s3, s4 16,000

2 dmq3 3M s3, s4, s5 5,000

total cost 21,000

Schedule C

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq1, dmq3 7M s1, s2, s3, s4, s5 17,000

2 dmq2 5M s2, s3, s4 11,000

total cost 28,000

Schedule D

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq2, dmq3 8M s2, s3, s4, s5 12,000

2 dmq1 4M s1, s2, s3 14,000

total cost 26,000

dmq1

dmq3

5<attr1<10

10<attr1<15

15<attr1<20

15<attr1<20

20<attr1<30

30<attr1<40

20<attr1<30 dmq2

Figure 5. The optimal schedule for the sample set of data mining queries.

The data mining query scheduling problem can be solved using a combinatorial

approach, in which all possible (allowable) schedules are generated first, and then

their overall costs are calculated. The combinatorial approach can be suitable for a

small number of data mining queries in the set, however, for complex problems,

involving large numbers of data mining queries, the overhead of the approach would

be unacceptable. For a given number of data mining queries, the number of all

possible schedules is determined by Bell number – e.g., for 13 queries the number of

schedules exceeds 4 millions. Therefore we introduce a heuristic algorithm for

finding suboptimal schedules for executing a set of data mining queries.

��(�
�
0
����
��� ������
����� �������

3.1. Heuristic Scheduling Algorithm: CCRecursive

The algorithm iterates over all the elementary selection predicates, sorted in

descending order with respect to their I/O costs. For each elementary selection

predicate we identify all the data mining queries that include the predicate. If none

of the identified queries has been already scheduled, then we create a new phase and

we put all the queries into the new phase. Otherwise, we merge the phases to which

the scheduled queries belonged and we assign the other queries to this new phase. If

the size of the newly created phase exceeds the memory limit, then the phase is split

into smaller ones by recursive execution of the algorithm. At the end of the

algorithm, we perform phase compression, which consists in merging those phases

that do not consume all the available memory. The detailed structure of the

algorithm is given in Fig. 6. The auxiliary function treesize(Q), where Q is a set of

data mining queries, represents total memory size required to hold candidate hash

trees for all the data mining queries in Q.

Phases ← {∅ }
sort S = <si , s2 ,..., sk> in descending order with respect to cost(si)
CCRecursive(S, DMQ, Phases):
begin
 ignore in S those predicates that are used by less than two dmqs;
 for each si in S do begin
 tmpDMQ ← { dmqj | dmqj =(R, a, Σj, Φj, βj), si ⊆Σ j , dmqj ∈ DMQ};
 commonPhases ← {p ∈ Phases | p∩ tmpDMQ ≠ ∅ };
 if commonPhases = ∅ then
 newPhase ← tmpDMQ;
 else
 newPhase ← tmpDMQ ∪ U p| p∈ commonPhases;
 end if;
 if treesize(newPhase) ≤ MEMSIZE then

Phases ← Phases \ commonPhases;
Phases ← Phases ∪ newPhase;

 else
 Phases ← CCRecursive(<si+1, … sk>, newPhase, Phases);
 end if;
 end;
 add phase for each unscheduled query;
 compress Phases containing queries from DMQ;
 return Phases;
end.

Figure 6. Heuristic scheduling algorithm: CCRecursive.

��3��� �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

4. Experimental Evaluation

To evaluate our heuristic algorithm CCRecursive we performed a series of

simulations on a PC with AMD Duron 1200 MHz processor and 256 MB of main

memory. We focused on the isolated problem of scheduling queries into phases

fitting in main memory in a given iteration of Common Counting. We compared the

amount of data read from the database by our heuristic algorithm and the complete

“brute-force” algorithm testing all possible assignments of queries to phases.

We simulated actual batches of frequent set discovery tasks by randomly

generating a collection of queries. For each query, the database selection predicate

and the size of candidate tree was randomly generated. Then the amount of total

main memory was also randomly chosen in such a way that the number of queries

fitting into it ranged from one query to all the queries.

We performed several series of experiments varying the number of queries. Each

of the series consisted of 100 simulations. Figure 7 presents how the accuracy of our

heuristic algorithm changes with the number of queries. To assess the accuracy we

measured the relative amount of data read from the database by schedules generated

by our heuristics compared to the optimal schedules (generated by the complete

brute-force scheduling algorithm). For example, in the case of 11 queries,

CCRecursive generates schedules that read on average about 3.5% more data than

the optimal schedules.

0,98

0,99

1

1,01

1,02

1,03

1,04

3 4 5 6 7 8 9 10 11

number of queries

nu
m

be
r

of
 d

at
a

bl
oc

ks
 r

ea
d

(r
el

at
iv

e)

CCRecursive

Brute-force

Figure 7. Amounts of data read by CCRecursive schedules and optimal schedules.

Figure 8 presents the execution times (times needed to generate schedules) of

CCRecursive and the brute-force algorithm. Although CCRecursive still scales

exponentially with the number of queries, its execution time increases less rapidly

�(� �
�
0
����
��� ������
����� �������

than in case of the brute-force solution. For instance, the brute-force algorithm

consumes more than 1000 s already for 12 queries, while CCRecursive exceeds that

threshold in case of 22 queries (the chart presents the times for up to 15 queries).

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14 15

number of queries

sc
he

du
lin

g
tim

e
[s

]

CCRecursive

Brute-force

Figure 8. Execution times (logarithmic scale) of CCRecursive and the brute-force scheduling algorithm.

The results of conducted experiments show that CCRecursive significantly

outperforms the brute-force solution (with the exception of cases with 3 and 4

queries when execution times of both algorithms are negligible), which makes it

applicable for larger batches of data mining queries. We believe that the accuracy of

our heuristics (shown in Fig. 7) is acceptable. However, it should be noted that the

actual trade-off between extra disk accesses (introduced by the heuristics) and

reduction in the scheduling time cannot be assessed without knowing the database

size and hardware parameters.

5. Concluding Remarks

In this paper we addressed the problem of common counting of candidate itemsets

for multiple data mining queries. We have formally defined the problem of data
mining query scheduling, which consists in splitting the set of data mining queries

into subsets (phases) such that the candidate hash trees can fit in limited memory

and the overall I/O cost is minimized.

Since the number of possible schedules growth rapidly with the number of

queries, we proposed a heuristic scheduling algorithm, called CCRecursive. The

experiments show that our heuristics generates schedules that are close to optimal

and is more efficient than the brute-force solution and thus applicable for much

greater number of queries.

�()��� �����	�
���
��� ��� ��
��	������ ����� �%�%�*� +,�#&� �-.� ,/%�*� ��

References

[1] Agrawal R., Imielinski T., Swami A. Mining Association Rules Between Sets of Items in

Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data, 1993.

[2] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules. Proc. of the 20th

Int’l Conf. on Very Large Data Bases, 1994.

[3] Ceri S., Meo R., Psaila G. A New SQL-like Operator for Mining Association Rules. Proc.

of the 22nd Int’l Conference on Very Large Data Bases, 1996.

[4] Cheung D.W., Han J., Ng V., Wong C.Y. Maintenance of Discovered Association Rules in

Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE, 1996.

[5] Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,

Stefanovic N., Xia B., Zaiane O.R. DBMiner: A System for Mining Knowledge in Large

Relational Databases. Proc. of the 2nd KDD Conference, 1996.

[6] Imielinski T., Mannila H. A Database Perspective on Knowledge Discovery.

Communications of the ACM, Vol. 39, No. 11, 1996.

[7] Imielinski T., Virmani A., Abdulghani A. Datamine: Application programming interface

and query language for data mining. Proc. of the 2nd KDD Conference, 1996.

[8] Morzy T., Wojciechowski M., Zakrzewicz M. Data Mining Support in Database

Management Systems. Proc. of the 2nd DaWaK Conference, 2000.

[9] Morzy T., Zakrzewicz M. SQL-like Language for Database Mining. ADBIS’97

Symposium, 1997.

[10] Nag B., Deshpande P.M., DeWitt D.J. Using a Knowledge Cache for Interactive

Discovery of Association Rules. Proc. of the 5th KDD Conference, 1999.

[11] Thomas S., Bodagala S., Alsabti K., Ranka S. An Efficient Algorithm for the

Incremental Updation of Association Rules in Large Databases. Proc. of the 3rd KDD

Conference, 1997.

[12] Toivonen H. Sampling Large Databases for Association Rules. Proc. of the 22nd Int’l

Conference on Very Large Data Bases, 1996.

[13] Wojciechowski M., Zakrzewicz M. Methods for Batch Processing of Data Mining

Queries. Proc. of the 5th International Baltic Conference on Databases and Information

Systems, 2002.

[14] Wojciechowski M., Zakrzewicz M. Evaluation of Common Counting Method for

Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference, 2003.

OpAC: A New OLAP Operator Based on a
Data Mining Method

Riadh Ben Messaoud *, Sabine Rabaséda **, Omar Boussaid **, Fadila Bentayeb *

Laboratoire ERIC – Université Lumière Lyon 2
5 avenue Pierre Mendès-France

69676 Bron Cedex – France
http://eric.univ.lyon2.fr

*{rbenmessaoud, bentayeb}@eric.univ-lyon2.fr
**{sabine.rabaseda, boussaid}@univ-lyon2.fr

Abstract. For a few years, on-line analysis processing (OLAP) and data
mining have known parallel and independent evolutions. Some recent studies
have shown the interest of the association of these two fields. Currently, we
attend the increase of a more elaborated analysis's need. We think that the idea
of coupling OLAP and data mining will be able to fulfill this need. We
propose to adopt this coupling in order to create a new operator, OpAC
(Operator for Aggregation by Clustering), for multidimensional on-line
analysis. The main idea of OpAC consists in using the agglomerative
hierarchical clustering to achieve a semantic aggregation on the attributes of a
data cube dimension.

Keywords. On-line analysis processing, Data cubes, Data mining,
Agglomerative hierarchical clustering, Semantic aggregation.

1. Introduction

Data warehouses provided several solutions to the management of huge amount
of data [9]. In fact, a data warehouse is an analysis oriented structure that stores a
large collection of subject-oriented, integrated, time variant and non-volatile data.
The warehousing process starts by extracting, transforming and loading data from
heterogeneous sources (ETL). Some particular models, such as the star schema and
the snow-flaked schema, are designed in order to prepare integrated data to analysis
using the on-line analytical processing technology (OLAP). These models support
decision making tasks by exploring multidimensional data views, commonly called
data cubes [1]. So far, a data warehouse becomes a large infrastructure for designing
efficient decision process through visualization and navigation into large data
volumes.

On the other side, data mining uses machine learning methods to discover,
describe and predict non trivial patterns from data. These patterns are usually
expressed in valid and understandable models. However, data mining is a dependent
step in the process of knowledge discovery in databases. In fact, all data mining
methods need to work on integrated, consistent and cleaned data, which often
requires data cleaning as preprocessing steps [5].

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'�(�)�� 	�

�'*��� ��� �����	
���
�� ���������� ��� �	
������� ��� ���������� �+
�,�
� ��-� ��

OLAP and data mining have known parallel and independent evolutions. For
long, they were considered as two different fields. Currently, we think that their
association could allow a more elaborated OLAP task exceeding the simple
exploration of a data cube.

In one hand, OLAP is characterized by its aggregation tools, its navigational
aspect and its power for visualizing data. In the other hand, data mining is known for
the descriptive and predictive power of its results. Moreover, we think that
multidimensional data structure can provide a suitable context for applying data
mining methods. Our purpose is to take advantage as well from OLAP as from data
mining and to integrate them in the same analysis process to provide exploration,
explication and prediction capabilities. We look, particularly, for improving the
traditional OLAP operators by creating a new form of aggregation based on a data
mining method. Taking into account the multidimensional structure of data and the
need to integrate them in a more elaborated analysis process, our idea consists in
developing a new aggregation operator, called OpAC (Operator for Aggregation by
Clustering), and based on the AHC (Agglomerative Hierarchical Clustering) [10].

The remaining of this paper is organized as follows. In section 2, we expose the
related works to the coupling between OLAP and data mining. In section 3, we
present the objectives of our proposed operator. In section 4, we motivate why we
choose the AHC as an aggregation method. We develop, in section 5, a theoretical
formalization for the OpAC operator. In section 6, we propose an implementation of
a prototype and in section 7, we conclude our work and propose some future
research topics.

2. Related work

A few research studies deal with the coupling of OLAP and data mining. This is
due partly to the fact that most of the attention is directed towards separated
improvements of the two areas. Nevertheless, we distinguish three principal groups
of approaches:

The first approach consists in simulating the data mining methods by extending

OLAP operators. Han proposes a system, called DBMiner, which can perform some
data mining functions including association, classification, prediction, clustering,
and sequencing [8]. Chen et al. suggest an approach consisting in mining functional
association rules using the distributed OLAP and data mining infrastructure [3]. The
purpose of this work is to enhance the expressive power of association rules. The
infrastructure mines e-commerce transaction data and generate association rules
expressing customer behavior patterns. Goil and Choudhary propose to mine
knowledge from data cubes by using the OLAP operators [6]. Their approach
consists in discovering association rules from the quantitative summary information
contained in a data cube.

The second approach aims to adapt multidimensional data in order to make them

understandable by data mining methods. Two strategies are proposed.

�'� �
�
.
����
��� ������
����� �������

One consists in taking advantages from multidimensional database management
system (MDBMS) to help the construction of learning models. For instance, Laurent
proposes a cooperation between Oracle Express and a fuzzy decision tree software
(Salammbô) [11]. This cooperation allows transferring learning tasks, storage
constraints and data handling to the MDBMS.

Another strategy transforms the multidimensional data and makes them usable by
the data mining methods. Pinto et al. integrate multidimensional information in data
sequences and apply on them the discovery of frequent patterns [12]. In order to
implement a decision tree on multidimensional data, Goil and Choudhary flatten
data cubes to extract contingency matrix for each dimension at each construction
step of the tree [7]. Chen et al. propose to adopt OLAP as a preprocessing step of the
knowledge discovery process [2]. Transformed data can therefore be exploited by
data mining methods.

The third approach aims to adapt data mining algorithms and employs them

directly in multidimensional data. Sarawagi et al. propose to integrate a statistical
module, based on multidimensional regression, (Discovery-driven) in OLAP server.
This module guides the user to detect relevant areas at various hierarchical levels of
a cube [13]. In [14], Sarawagi proposes a new tool, iDiff, based on dynamic
programming, which detects both relevant areas in a data cube and the reasons of
their presence. Similar works were released in [4] for the generation of natural
language from multidimensional data.

Finally, we note that none of the existing approaches employs the coupling

between data mining and OLAP in order to enhance the functionalities of OLAP
operators. Our approach associates the exploratory tools of OLAP with the
descriptive and predictive aspect of data mining. The current work aims to define a
new generation of analysis operators based on data mining methods. We propose in
this paper a new operator based on a data mining method to fulfill more elaborated
analysis.

3. OpAC operator objectives

The construction of a data cube targets precise analysis goals. The selection of its
dimensions and measures depends on the analysis needs. Usually, a dimension is
organized according several hierarchies expressing various levels of granularity.
Each hierarchy contains a set of modalities, and each modality of a hierarchy
includes modalities from the hierarchy immediately below according to the logical
membership order.

�'/��� ��� �����	
���
�� ���������� ��� �	
������� ��� ���������� �+
�,�
� ��-� ��

 (a) OLAP context (b) Clustering context

Figure 1. Principle of the aggregation operator OpAC.

In fact, the modalities of a dimension are always organized according to the
logical order of membership well known in the natural use of objects and concepts
of the real world. Let's consider the data cube presented in Fig.1(a). The cube is
made up of three dimensions: Location, Time and Product. The Time dimension is
organized according to two hierarchical levels: Months and Quarters. It is natural to
say that the modality “1st Quarter” of the temporal dimension aggregates the
months: “January”, “February” and “March”.

Unlike the traditional OLAP aggregation, exposed above, our approach takes the
cube measures into account in order to provide a semantic aggregation over
dimension modalities. The goal of our operator OpAC is to use a clustering method
in order to highlight aggregates semantically richer than those provided by the
current OLAP operators.

As shown in Fig.1(b), the new operator enables us to note that “January” and
“June” form a more significant aggregate since they represent periods where sales
level of “Perfumes” in the city of “Paris” are slightly similar.

Existing OLAP tools, like the Slicing operator, can also create new modalities'
aggregates in a cube dimension. Therefore, these tools always need handmade user
assistance, whereas our operator is based on a clustering algorithm that provides
automatically relevant aggregates. Furthermore, with classical OLAP tools,
aggregates are created in an intuitive way in order to compare some measure values,
whereas OpAC creates significant aggregates expressing deep relations with the
cube's measures. Thus, the construction of this kind of aggregates is very interesting
to establish a richer on-line analysis context.

4. The choice of the agglomerative hierarchical clustering

According to our OpAC operator objectives, we chose the agglomerative
hierarchical clustering (AHC) as an aggregation method for the OpAC operator. This
choice is motivated by the following points:

�'� �
�
.
����
��� ������
����� �������

• The hierarchical aspect constitutes a relevant analogy between the AHC
results and a hierarchical structure of a dimension. Furthermore, the
objectives and the results representation expected for OpAC match
perfectly with the AHC strategy;

• Unlike the DHC (Divisive Hierarchical Clustering), the AHC adopts an
agglomerative strategy beginning by the finest partition where each
individual is considered like a class. This allows including the finest
modalities of a dimension in the results of OpAC. Moreover, the
ascending strategy is faster than the divisive one;

• The results of the AHC are compatible with exploratory aspect of OLAP
and can be reused by its classical operators. The AHC provides several
hierarchical partitions of individuals. By moving from a partition level to
the higher one, two aggregates are joined together. Conversely, by
moving from a partition level to the lower one, an aggregate is divided
into two new aggregates. These operations are strongly similar to the
classical operators Roll-up and Drill-down.

5. OpAC operator formalization

This formalization defines the individuals and the variables domains for the
clustering problem. Let's Ω be the set of individuals and Σ the set of variables. We
suppose that:

• C is a data cube having d dimensions and m measures;
• di DDD ,,,,1 �� the dimensions of C ;

• mq MMM ,,,,1 �� the dimensions of C ;

• { }di ,,1 �∈∀ the dimension iD contains in hierarchical levels;

• ijh the thj hierarchical level of iD , where { }inj ,,1 �∈ ;

• { }inj ,,1 �∈∀ the hierarchical level ijh contains ijl modalities;

• ijtg the tht modality of ijh , where }{ ijlt ,,1 �∈ ;

•)(ijhG the set of modalities of ijh .

Let's consider the modalities of ijh as the set of individuals. i.e.

{ }
ijijlijtijij ggghG ,,,,)(1 ��==Ω

We adopt now the following notations:

• ∗ a meta-symbol indicating the total aggregate of a dimension;
• { }mq ,,1 �∈∀ we define the measure qM as the function:

ℜ→GM q : ;

• G the set of d-tuples of all the hierarchies modalities of the cube C
including the total aggregates of dimensions;

�'���� ��� �����	
���
�� ���������� ��� �	
������� ��� ���������� �+
�,�
� ��-� ��

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }di

i

nj
dj

nj
ij

nj
j

d

i nj
ij

hGhGhG

hGG

,,1,,1,,1
1

1 ,,1

))(())(())((

))((

1 ���

�

��

∈∈∈

= ∈

∗∪××∗∪××∗∪=

∗∪= ∏

Reconsider again the cube of Fig.1(a), with the dimensions: 1D (Time), 2D

(Location), 3D (Product) and the measure 1M (Sales level). For instance,

1M (February 1999, Lyon, ∗) indicates the sales level of all products in February
1999 for the city of Lyon.

We adopt the cube measures as quantitative variables describing the
population)(ijhG=Ω . Nevertheless, in order to insure their statistical and logical

validity, it is necessary to respect two fundamental constraints in the choice of these
variables.

• First constraint: Hierarchical levels belonging to the dimension iD ,

retained for the individuals, can not generate variables. In fact,
describing an individual by a property which contains it has no logical
sense. Conversely, a variable which specifies a property of an individual
can only serve for the description of this particular individual;

• Second constraint: In order to insure the independence of variables, by
dimension, only one hierarchical level can be chosen to generate them.
In fact, the value taken by a modality can be obtained by linear
combination of modalities belonging to the lower hierarchy.

Therefore, all possible extracted variables belong to the following set:

}{

{ } { }
�

{ }
�

}{ { }�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

∈∈≠

∗∗∗∗∗∗=

∈∀

⊂Σ
∈∈∈

mqlvsris

ggMgX

ltX

sr

nr

srv

nj

ijtq

nj

ijt

ij

sjj

,,1and,,1,eachforuniqueis,with

),,,,,,,,,,()(

,,1/

,,1,,1,,1

��

���

���

�

���

To enhance the understanding of this formalization, we reconsider the cube of

Fig.1(a). Let's suppose that an expert wishes to classify months according to their
sales levels by location and/or by product. For this, we retain the modalities of the
Months level of the dimension 1D as the set of individuals, i.e.

Ω ={January, February, Mars, April, May, June}. Thus, we can choose one
hierarchical level of 2D and/or 3D as generator of variables. For instance, if we

choose Cities level of 2D , we operate total aggregations (Roll-up) on the rest of the

cube's dimensions except 1D , the dimension retained for individuals, i.e. we roll-up

totally 3D . We obtain a contingency table expressing sales levels by cities at each

�'' �
�
.
����
��� ������
����� �������

month. In the same way, we can generate variables from 3D by operating a total

aggregation on 2D .

6. Implementation

To illustrate our method, we propose a prototype1 for the OpAC operator. Its
implementation was realized with Visual Basic under Windows XP Professional.
The setup of MS SQL Server and MSOLAP driver is necessary for the running of the
prototype. Three principal components constitute our prototype:

• A parameter setting interface to assist user in the selection of

individuals and variables from a data cube with respect to the above
defined constraints. It allows, also, the selection of the clustering's
parameters;

Figure 2. The OpAC prototype.

• A data loading module that ensures the connection to a data cube via
the OLAP server; imports information about the cube's structure (labels
of dimensions, hierarchies and measures); and loads data to be analyzed;

1 http://bdd.univ-lyon2.fr/download/opac.zip

�')��� ��� �����	
���
�� ���������� ��� �	
������� ��� ���������� �+
�,�
� ��-� ��

• A clustering module to construct the AHC model and plots its results
via a dendrogram. The graphic representation of the dendrogram
includes a summary of the AHC's parameters and the analyzed data.

As shown in Fig.2, we have provided our prototype with an interactive interface

and several visual tools. These tools allow navigation into the dendrogram and a
better interpretation of analyzed data.

7. Conclusion

The objective of our study is to satisfy the need of more elaborated on-line
analysis. For this, we have created a new aggregation operator which integrates the
AHC method into the multidimensional data structure. First, we identified the
objectives we plan to OpAC. Then, we motivated the choice of AHC as a suited
aggregation method. A theoretical formalization was proposed to define the
individuals and variables of the clustering problem. We have validated our approach
by implementing a prototype.

The OpAC operator distinguishes from classical OLAP operators by its ability to
aggregate dimension modalities with respect to their semantic bounds. Its aggregates
reflect real facts contained in a data cube. Our operator represents a possible way to
realize elaborated on-line analysis. Moreover, our choice of the AHC does not
exclude the use of other clustering methods. More generally, we think that the use of
data mining methods would be suitable to establish new models of on-line learning
on multidimensional data.

Finally, the OpAC operator can be enhanced in several possible ways. We plan to
provide it with an evaluation tool to measure the quality of generated aggregates and
to extend it in order to treat as well numerical as complex data cubes.

References

[1] Chaudhuri, S., Dayal, U. (1997) An Overview of Data Warehousing and OLAP
Technology. SIGMOD Record. 26(1), 65 – 74.

[2] Chen, M., Zhu, Q.U., Chen, Z.X. (2001) An integrated interactive environment for
knowledge discovery from heterogeneous data resources. Information and Software
Technology. July 2001, 43(8), 487 – 496.

[3] Chen, Q., Dayal, U., Hsu, M. (2000) An OLAP-based Scalable Web Access Analysis
Engine. In: 2nd International Conference on Data Warehousing and Knowledge Discovery
(DAWAK'2000). September 2000, London, UK.

[4] Favero, E.L., Robin, J. (2001) Using OLAP and Data Mining for Content Planning in
Natural Language Generation. Lecture Notes in Computer Science. 1959, 164 – 175.

[5] Fayyad, U.M., Shapiro, G.P., Smyth, P. et al. (1996) Advances in Knowledge Discovery
and Data Mining. AAAI/MIT Press.

[6] Goil, S., Choudhary, A. (1998) High Performance Multidimensional Analysis and Data
Mining. In: High Performance Networking and Computing Conference (SC'98).
November 1998, Orlando, USA.

�)� �
�
.
����
��� ������
����� �������

[7] Goil, S., Choudhary, A. (2001) PARSIMONY: An Infrastructure for parallel
Multidimensional Analysis and Data Mining. Journal of parallel and distributed
computing. 61(3), 285 – 321.

[8] Han, J. (1998) Toward On-line Analytical Mining in Large Databases. In: SIGMOD
Record. 27(1), 97 – 107.

[9] Kimball, R. (1996) The Data Warehouse toolkit, John Wiley & Sons.
[10] Lance, G.N. and Williams, W.T. (1967) A general theory of clustering sorting strategies:

Clustering systems. The Computer Journal. 10, 271 – 277.
[11] Laurent, A. (2001) De l'OLAP Mining au F-OLAP Mining. Revue Extraction des

connaissances et apprentissage (ECA). Hermès (ed.), 1(1-2), 189 – 200.
[12] Pinto, H., Han, J., Dayal, U. et al. (2001) Multi-dimensional Sequential Pattern Mining.

In: On Information and Knowledge Management (CIKM'01). November 2001, Atlanta,
USA.

[13] Sarawgi, S., Agrawal, R., Megiddo, N. (1998) Discovery-driven Exploration of OLAP
Data Cubes. In: Proceeding of the 6th Int'l Conference on Extending Database Technology
(EDBT). Mars 1998, Valencia, Spain.

[14] Sarawagi, S. (2001) iDiff: Informative summarization of differences in multidimensional
aggregates. Data Mining And Knowledge Discovery. 5(4), 213 – 246.

Controlling access to Data Warehouse data within the
database

Laila Niedrite, Liga Grundmane

University of Latvia,Department of Computer Science

19 Raina boulevard, Riga, Latvia

lnied@lanet.lv, sd00099@lanet.lv

Abstract. There are some alternative approaches as to how to control user

access to restricted information. The goal of this paper is to provide two

models of data access control specific for data warehouses implemented in

RDBMS. The models “Role Based Security Model” and “Dynamically
Adapting Views Based Data Access Control Model” are based on the idea of

revoking all information, restricting tasks from the application layer, which is

important for data warehouses where different user tools may be provided.

Our proposed two solutions also support the possibility for deriving data

access rights from data sources.

Keywords. Data Warehouse, Data Access, Restriction

1. Introduction

The data warehouse is storage of data that is extracted and integrated from

different data sources. A data warehouse often contains sensitive data and certain

user/s are either prevented or permitted as the case may be from accessing

unauthorized data as defined and set out in accordance to the various criteria’s

within either the ”Role Based Security Model” or “Dynamically Adapting Views
Based Data Access Control Model”. Both these models will be discussed later in

this paper, however, as with any system or theoretical model/s, they must all be set

up to serve their respective clients needs and over-all corporate objectives while

maintaining system data integrity and security of certain types of data while

maximizing the throughput time (such as query time) of the system itself. Both

models offer inherent advantages and disadvantages and they must be considered if

proper overall data base operation is a necessity, particularly in a setting where there

are or could be literally thousands of users on line at one time. One of theses

concerns is of particular importance and that relates to certain overlaps of users,

which may through employment or other be required to perform multi functions

which directly results in their ability to cross over access of certain data bases. The

data access security system must be set up to recognize and distinguish and assign

the proper access rights in such cases.

In particular how can consistent and simultaneous data access rights be

accomplished and secured knowing that one person (as mentioned in the previous

paragraph) may be a data source systems user with different data access rights to

similar content data sets, e.g. PERSONS in one data source and EMPLOYEES of

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()*�+� 	�

�'� �
�
,
����
��� ������
����� �������

one particular department in the other data source? If certain data access rights can

be derived from data sources, can it be done automatically and do specific data

warehouse features create additional needs for data access control?

 One of the existing approaches uses data sources users’ access rights to derive

the data warehouse users’ access rights directly [5], [4]. In this approach the data

warehouse is treated as a view over data sources, where every data warehouse user

has a view over only authorized data from data sources.

Another approach [7] is based on analyzing the user’s analytical business

functions and the information necessary to fulfill these functions. The former data

source data access rights are not taken into account, because of the new nature of the

business functions. Data warehouse data can also be treated as new information,

which is created in the process of integration of data source data. Some data

warehouse specific functionality provided by client side tools e.g. OLAP operations

drill-down, roll-up can add new restrictions to the accessibility of data, for example,

the user having access to detailed data on one particular department level, can have

full access to aggregated data on company level.

Another consideration, which is discussed in this paper, is at what level the data

access rights ought to be implemented on, the application or the data base level?

The main criteria which solution is most appropriate in any given or particular

case are further discussed in [6]. The most important issues, which need to be

considered, are the number of potential users and the number of planned client side

tools when developing access rights to a Data Warehouse.

In section 2 we describe some data warehouses specific characteristics and

considerations about data access restrictions in data warehouses. Some definitions

are given in this section and an example of data warehouse star schema is

introduced.

In section 3 we present basic structure of our first solution called “Role Based
Security Model” control model in data warehouses. Our second solution

“Dynamically Adapting Views Based Data Access Control Model” to data access

control problem is presented in section 4.

In section 5 some tests on Query response time are presented and results are

briefly discussed. Finally section 6 concludes the paper and sketches the path of our

future research work.

2. Data warehouse specific characteristics and restricted data
access

If we compare data warehouses to on-line transaction processing systems, we can

point out some distinguishing characteristics, which can result in specific

requirements for data access control. The following issues for building data access

control architecture in a data warehouse were taken into account [2], [3].

¶ The data warehouse integrates data from different data sources with

different data access control mechanisms, if we consider the implementation

side, and with different data sensitivity level and with different scope of

allowable data for each user on the information side.

�'*��� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

¶ The typical data access rights for users in the data warehouses are read

operations.

¶ The purpose of data usage in a data warehouse can be data analysis,

knowledge discovery, and data mining. These purposes can define sets of users

different from data source users. In this case the users are managers and data

analysts and they are not always the users of data sources. If the reporting

purpose is specified too, the users and their data access rights can be similar to

data source users.

¶ There are no limitations on the number and type of client side tools used.

The client side applications can vary from reporting and OLAP tools to data

mining applications. These tools don’t only provide predefined reports and

queries, but also the capability to query the database directly. In this case also,

the users should have limited access to data. The data from different data

sources are consolidated in the same physical data structures in the database. It

is possible that the users of one data source operational system can have limited

access to other data source data.

¶ In the on-line transaction systems, which serve as data sources for the data

warehouse, the limitations can be implemented on the application side and the

server side jointly. For the data warehouse, implementation of the server side

limitations leads to a more secure and consistent solution with easier

administration.

A question arises however, how a consistent user access rights control system,

which would derive access permissions from data sources and minimize the

administration can be implemented, if data warehouse specific additional restrictions

have to be defined. One possible solution is shown on Figure 1.

Access
rights1

Data
Source1

Access
rights3

Data
Source3

Access
rights2

Data
Source2

A
c
c
e
ss

 r
ig

h
ts

 a
re

 i
m

p
le

m
e
n
te

d
 i

n
 D

B
M

S
 l

e
v

e
l

A
c
c
e
ss

 r
ig

h
ts

 a
re

 c
o

n
so

li
d

a
te

d
 i

n
to

 D
W

 a
c
c
e
ss

 c
o

n
tr

o
l

Application1

Application
layer access
control1

Application3

Application2

Application
layer access
control2

A
c
c
e
ss

 r
ig

h
ts

 a
re

 i
m

p
le

m
e
n
te

d
 i

n

a
p
p

li
c
a
ti

o
n
 l

e
v
e
l

DW

A
c
c
e
ss

 a
ll

o
w

e
d

 t
o

 d
a
ta

 w
it

h
o

u
t

a
p

p
li

c
a
ti

o
n

 c
o

n
tr

o
l

Reports

Add-hoc
queries

Data
mining

User1

User2
User1

User3

User1

User2

User1

User2

User5

User4

User3

User2

User3

User3

Application
layer access
control3

Access
control

DW specific data
access restrictions

Figure 1. DW data access control architecture with derived access rights.

We have to specify some key concepts to describe two alternative models of the

data access control architecture implementation.

Two possible ways of controlling data access, further referred to as horizontal

restrictions and vertical restrictions:

�'� �
�
,
����
��� ������
����� �������

¶ The horizontal restriction on the database table is a set of rows of the

table accessible to the user.

¶ The vertical restriction is a set of columns accessible to the user.

With data access right we denote the ability to read data in data warehouse

tables according to the horizontal and vertical restriction.

If the user has only access to a subset of all rows of the table, they should believe

that the data warehouse table contains only these rows. There are some existing

techniques for implementation of horizontal restrictions, e.g. views, dynamic views

and virtual private database in database systems [1].

There may be a case, when a user can only access particular columns of the

database table, whether the table implements a dimension or a fact table of the star

schema. One possible solution for the problem is implementing the restrictions on

columns in the user tools, if they have corresponding features. But this solution

doesn’t satisfy the direct querying needs and in case of many user tools leads to

difficult or even impossible data access rights administration. Another solution is the

implementation of vertical restrictions with database views or dynamic views.

We will provide a simple example of a data warehouse star schema to illustrate

our solutions and show the necessity for these restrictions in Figure 2. The star

schema consists of three dimension tables DEPARTMENT, TIME and PERSON

and a fact table FACT_TABLE with two fact measures FACT1 and FACT2. For

‘User1’ the following data access rights are defined – he can see the data in all rows

in all tables by departments ‘Dept2’, ‘Dept3’ and ‘Dept4’, he can also access all

columns except the columns MARITAL_STATUS and FACT1. Data accessible to

‘User1’ in Figure 2 are marked dark grey. The light grey colour shows the data

accessible only in one direction – vertical or horizontal.

ID Name Surname Age Marital Status
1 Agita Vetra 25 Married
2 Juris Vaits 18 Married
3 Inese Ose 23 Single
4 Martin Zile 28 Devorced

Person

ID_Time ID_Person ID_dept Fact1 Fact2
1 3 5 10 5
4 1 2 15 4
2 3 5 12 1
1 2 2 21 3
5 1 2 18 5
3 4 3 12 2
2 3 1 16 3
5 2 2 25 4
3 4 1 26 1

Fact_table

ID Name Code
1 Dept 1 D1
2 Dept 2 D2
3 Dept 3 D3
4 Dept 4 D4
5 Dept 5 D5

Department

ID Date Season Year
1 2001.02.10 Winter 2001
2 2003.07.21 Summer 2003
3 2000.09.05 Autumn 2000
4 1998.04.28 Spring 1998
5 2002.12.30 Winter 2002

Time

Allowed data vertically and horizontally Allowed in one direction Restricted data

Figure 2. The example star schema.

�'+��� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

3. Role based data access control model design

Assigning roles is one of the ways that makes implementing data warehouse data

access control design possible. The role can be considered as a set of unique data

access rights. These rights grant a user access to data in the data warehouse.

If we assume that the data warehouse is a set of all its data, stored in rows and

columns of the database table, we can look at the data warehouse as two different

data subsets – rows and columns. A role can be defined as a data set

ROLE={z|xÍH&yÍV&z=xÆy} where H is used to denote horizontal restriction and

V is used for vertical restriction. If roles are defined in this way, all users having

access to the same set of rows and columns get the same role. We control user data

access rights with roles, because the number of roles is usually smaller than that of

data warehouse users.

We will use well-known way for implementing data access restriction. Our model

is based on views, where horizontal and vertical restriction is accomplished, and

database object privileges, in the way, that makes possible automatic data access

control model implementation, administration and maintenance. By using further

described approach, it is possible to use derived data access rights from data sources.

Each role needs its own set of views. All data access rights are built in these

views. The role’s physical implementation can be the traditional database views and

materialized views. In the latter case, it is necessary to refresh all role based views

after the data warehouse refreshment to keep data access management

implementation consistent with the roles’ specifications.

Not all tables, especially dimensions, need to hide data from users. For example,

no restrictions exist for the time dimension. Other similar dimensions could also be

found in data warehouses. Not only horizontal restrictions have exceptions. Some of

the columns can be always seen for all users. These are, for example, all primary

keys columns. Since primary keys for dimensions are usually automatically

generated numbers and a fact table has composite primary key that consists of

foreign keys to dimensions, it isn’t necessary to hide them from the user. Before

defining each restriction, it is important to evaluate the necessity of this restriction.

Needless restrictions prolong query runtime and increase the database.

3.1. Implementation with one restricted dimension

One simple example of data access rights restriction is the case when the data

warehouse star schema is restricted by only one dimension, as it is shown in

Figure2.

The restricted dimension is a star schemas dimension table with one restricted
column which values determine the horizontal restriction.

The accessibility of star schemas fact table depends on foreign keys values, which

corresponds to restricted dimension primary keys of horizontal restriction. The

accessibility of other dimension tables depends on corresponding foreign keys

values of the set of allowed records in the fact table.

The dimension that horizontally restricts all data available in the star schema in

Figure 2 is the DEPARTMENT dimension. The restricting column in this example

is the CODE column. This means that users from one department cannot see the data

�'� �
�
,
����
��� ������
����� �������

from other departments. Because companies have quite a complicated hierarchical

organizational structure, horizontal restriction cannot be simple either.

Information about roles und users ought to be saved in the data warehouse. One

possible solution is shown in Figure 3, which represents two tables: one for users

and one for roles. The ROLES table maintains records for all roles and their data

access rights on certain rows in the DEPARTMENT dimension and all accessible

columns in all dimensions and fact tables.

Column ROWS in ROLES table contains the allowed values of restricted

dimension’s restricted column. Column COLS contains the allowed tables and

columns in the star schema, and it serves as a basis for vertical restriction.

ID Name Rows Cols

1 Role1 D% Time,Department,Person,Fact_table

2 Role2 D2 Time,Department,Fact_table

3 Role3 D2,D3,D4

Time,Department,Fact_table(Fact2),

Person(Name,Surname,Age)

Roles

ID Username Role

1 User1 2

2 User2 3

3 User3 1

4 User4 3

Users

Figure 3. Access restriction information.

The ROLES table in Figure 3 has three different roles: ‘Role1’ users can see all

data without any exceptions. ‘Role2’ users can see data from ‘Dept2’, but dimension

PERSON is hidden from them. ‘Role3’ is earlier demonstrated in Figure 2. Here we

have to denote that we make no vertical restrictions on primary key columns.

Except for data structures, where information about users and roles is stored, it is

necessary to implement the views depending on roles.

General notation for the view that corresponds to the horizontally restricted

dimension is represented in the code (1). General notation for unrestricted

dimensions is as follows in (2). The third and last type of data warehouse tables that

needs views are fact tables. Its views generally look as in (3).

Create view <restricted_dimension>_<role> as select <col1>, <col2>,…,<coln>
from <restricted_dimension> where <col_restricted> like <rows_code1> or
<col_restricted> like <rows_code2> or … or <col_restricted> like <rows_coden>
 (1)

Create view <base_dimension>_<role> as select <col1>, <col2>,…,<coln> from
<base_dimension> where <primary_key> in (select <foreign_key_base_dimension>
from <facts_table>_<role>) (2)

Create view <facts_table>_<role> as select <col1>, <col2>,…,<coln> from
<facts_table> where <foreign_key_restricted_dimension> in (select
<primary key> from <restricted dimension> <role>) (3)

For example, for the situation shown in Figure 2 where data access restriction for

‘Role3’ is given, four views have to be made in the data warehouse. Create

statements according to the previously defined notation are in (4).

�'���� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

Create view department_role3 as select id, name, code from department where
code like ‘d2’ or code like ‘d3’ or code like ‘d4’
Create view fact_table_role3 as select id_time, id_person, id_dept, fact2
from fact_table, where id_dept in (select id from department_role3)
Create view person_role3 as select name, surname, age from person where id in
(select id_person from fact_table_role3)
Create view time_role3 as select id, date, season, year from time where id in
(select id_time from fact_table_role3) (4)

To automate these operations certain procedures need to be followed. After the

data warehouse refreshment they can accomplish all of the above mentioned

statements (1),(2),(3) and a little bit more. Let’s look at the basic steps that need to

be fulfilled in the following procedure.

If role_inserted then insert into TMP_TABLE values (role,’I’,’’);
If role_deleted then insert into TMP_TABLE values (role,’D’,’’);
If role_updated then insert into TMP_TABLE values (role,’U’,’’);
If user_role_add then insert into TMP_TABLe values (User,’I’,role);
If user_role_delete then insert into TMP_TABLE values (User,’D’,role);
If user_role_change then begin
 Insert into TMP_TABLE values (User,’D’,role_old);
 Insert into TMP_TABLE values (User,’I’,role_new);
end;
For all_role_changed(TMP_TABLE) do
 If view_op in (‘D’,’U’) then drop_view(role);
 If view_op in (‘I’,’U’) then
 create_view (role,is_true_rows(role),is_true_cols(role));
End; (5)

In our solution we propose to make a table TMP_TABLE (<role> or <user>,

<operation>, null or <role>) for saving some temporary information. Our pseudo

code (5) uses some functions, e.g. function role_inserted returns true if a new

role is inserted into the ROLES table. Function user_role_add returns true if a

role is added to user’s record.

After the ROLES table refreshment we need to make corrections in our views

based data access control system. Some other functions are needed, e.g. function

all_role_changed gathers all records from TMP_TABLE that describe

changes in the ROLES table.

Unfortunately, not all work is done by refreshing views. We have to grant

SELECT rights to some users and revoke SELECT rights from other users

depending on changes made in the tables ROLES and USERS. It can be

accomplished by making the following basic steps:

For all_user_role_changed and all_role_changed in tmp_table do
 If User_op=’D’ then revoke_select_on (role,User);
 If User_op=’I’ then grant_select_on (role,User);
 If view_op=’U’ then grant_select_on (View_role,all_view_users(role));
End; (6)

All changes in view based data access control structure can be made

automatically, but the specific features of user side data access tools can sometimes

add manual tasks.

�'3 �
�
,
����
��� ������
����� �������

3.2. Model with more than one restricted dimension

As data warehouse usually contains data from more than one data source,

restrictions can be defined on more than one dimension. In previous section all

horizontal restrictions were made corresponding to one dimension e.g.

DEPARTMENTS dimension. We can also add horizontal restrictions, for example,

on TIME dimension, which will show how old the data that the user is able to see

are. For implementing the model with restriction on year, it is possible to modify the

ROLES dimension a little. An example is shown in Figure 4 below:

ID Name Rows_dept Rows_time Cols
1 Role1 D% 19% Time, Department, Person, Fact_tabe

2 Role2 D2 2001,2003 Time, Department, Fact_tabe

3 Role3 D2,D3,D4 2%
Time, Department, Person(Name,Surname,Age),
Fact_table(Fact2)

Roles

Figure 4. Roles with two restricted dimensions.

In such way it is possible to add as many dimensions as necessary. If in situation

with one restricted dimension accessible rows were found starting with the restricted

dimension, then in this case the restriction process starts from the fact table. So in

general the fact table’s view structure is:

Create view <facts_table>_<role> as select <col1>,…,<coln> from <facts_table>
where <foreign_key_restricted_dimension1> in (select <primary_key> from
<restricted_dimension1> where <code_rd1> like <rows_code1_rd1> or...or
<code_rd1> like <rows_coden_rd1>)
Intersection
select <col1>,…,<coln> from <facts_table> where
<foreign_key_restricted_dimension2> in (select <primary_key> from
<restricted_dimension2> where <code_rd2> like <rows_code1_rd2> or...or
code_rd2> like <rows_coden_rd2>) (7)

All dimensions are defined in the same way as previously we defined dimensions

without horizontal restriction (see section 3.1). Pseudo code (5) and (6) describing

basic steps for refreshing views remain unchanged as in the previous section.

3.3. Model with data access rights derived from more than one data source

The most complicated solution is necessary when data access rights are derived

from more than one data source. We propose that all these data access rights are

saved in one table. Our example in Figure 5 is an illustration of this solution.

�''��� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

ID Name
1 Data source1
2 Data source2
3 Data source3

Data_sources

ID Name
1 Role1
2 Role2

Roles
ID Username Role
1 User1 2
2 User2 1
3 User3 2

Users

ID ID_Role ID_data_source Hor_rights Vert_rights
1 1 1 D5 Person(Surname,Age), Fact_table(Fact2), Time, Department

2 1 2 D2
Person(Name, Surname, Marital_status), Fact_table, Time,
Department

3 2 1 D1 Person,Time,Department
4 2 2 D3 Fact_table,Time,Department

Rights

Figure 5. Data access restriction from more than one data source.

Horizontal restriction remains simple and is almost the same as in the model with

more than one restricted dimension. Only this time, instead of intersection we have

to use union. Vertical restriction is a more complex issue. Some columns need a

function that returns either the cell value, if it is accessible, or an empty cell. Such

function is part of dynamically changing views and will be discussed in the section

4.3.

3.4. What are the decision points?

The Role based data access control design is easy to use, if there are

comparatively few roles and each role is associated with many users. If there are

many roles, administration of such structure isn’t an easy task. If there are changes

in the role’s rights, corresponding changes have to be made in view definitions. This

problem could be solved automatically as described earlier in this paper in the

example of the pseudo code (5) and (6), but the complexity of the process can lead

to security threats. When the user’s role is changed, some manual changes can be

done in client side data access tools, for example changing accessible predefined

reports.

We have to admit that changing role’s rights isn’t a good idea as it often means

more users will be added. It can lead to an erroneous situation when new rights are

suitable for none of the same role users, but one user can see something prohibited

and data access control in the data warehouse is breached.

Role based data access control is not an appropriate solution in situations when

there are many roles or almost each user has their own role. Consequently, you will

build a cumbersome view structure in your data warehouse. In the case when

number of users is close to the number of roles, it is better to use usernames as roles.

That removes from list the tasks concerning changes in relationship user-role.

Role based data access control is a way to implement a lot of requirements for

data warehouse data security by leaving query response time in previous limits, if it

is possible to use materialized views for query optimization, but it can take a lot of

additional administration work depending on used client side tools as mentioned in

section 3.1.

*�� �
�
,
����
��� ������
����� �������

4. Dynamically adapting views based data access control model

In the previous section the implementation of the described method has some

administration difficulties in the case of many warehouse users and roles. We have

developed another method, where there is no need for administration and huge view

structures. Each base table has one view and this view contains available data

depending on each user’s rights.

By dynamically adapting views we are denoting views fulfilled with only those

data, which are accessible in the base table to a corresponding user.

If the user has no access to any data in the base table, the defined corresponding

view is blank. The view can be blank in two situations:

- The user has no access to any rows in the base table;

- The user has no access to any columns in the base table.

For security reasons the blank views have to be hidden from the user. It can be

easily made on the database level by removing SELECT rights from a particular

user. More problems can arise connected with client side data access tools, when it

is possible that blank objects are visible. Nevertheless, there are tools where this

problem is solved.

By defining data access control plan for dynamically adapting views, we always

have to keep in mind that every restriction affects query performance.

4.1. Dynamically adapting views with one restricted dimension

To describe this implementation model, we would like to return to the data

warehouse example schema in Figure 2 and to added security tables in Figure 3.

Only this time, we remove column ROWS from the ROLE table and add it to

USERS table. This change has the following goals:

- To separate the horizontal restriction from the vertical restriction. In this

approach roles are used only for defining the vertical restriction. We tried to

avoid using the vertical restriction where possible, as it impacts on the query

performance and makes indexes and materialized views impossible to use.

- In this way the number of roles is much smaller so it is possible to make a

materialized view for each role, where the vertical restriction is necessary. It

decreases query execution time as no vertical calculation is needed during query

execution time.

In the implementation of dynamically adapting views we followed three steps.

1.step. One of them is creating a function for the horizontal restriction. This

function is included in the horizontally restricted dimension view definition in such

way that this views returns only user’s accessible records. If there is no additional

vertical restriction on the horizontally restricted dimension the general form of the

corresponding view is (8). In our example in Figure 2 such view definition is only

for the DEPARTMENT dimension. It looks as follows in (9).

*�(��� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

Create view <restricted_dimension>_view as select * from
<restricted_dimension> where F1(<restricted_col_val>,<user>,
<rows_col_name>)=1 (8)

Create view DEPARTMENT_VIEW as select * from DEPARTMENT where
F1(CODE,user,ROWS)=1; (9)

The main structure of Function F1 is quite simple. The Function has three input

parameters, a restricted column value, username and the name of the column in

USERS table where accessible rows are stored.

Select rows_col_name from USERS where username=user;
If restricted_col_val=substr(rows_col_name) then return 1 else return 0; (10)

2.step. The next step is creating the vertical restriction. This part is more

complicated and consists of many similar functions. The purpose of these functions

is either to return columns cell value or a blank cell, if the column isn’t accessible.

These functions can be divided into two groups:

a) Universal functions that are used in the dimension views’ definitions. As an

input parameter they get a username, a column name, a dimension name and records

primary key, which in our solution is an automatically generated number in the ID

column. Because data types for returned value could be NUMBER, DATE and

CHAR, it is impossible to implement them with only one function.

b) Fact table functions. Each fact table needs its own functions. Their number

depends on data types used in the fact table. Almost all fact tables have different

primary keys that depend on the related dimension number. For this reason fact table

functions as input parameters don’t get a table name, but receive the whole

composite primary key instead.

The main structure of the vertical restriction on columns can be made in three

steps.

If functions for the horizontal and vertical restriction are created, general structure

of the fact table’s view is as in (12). Dimensions’ views are defined as follows in

(13).

1. Select col into cell_value from base_table where
primary_key=primary_key_columns;

2. Select COLS into access_cols from ROLES, USERS where username=user and
roles.id=users.role;

3. If col=substr(access_cols) then return cell_value else return null; (11)

Create view <fatct_table>_view as select <primary_key_columns>,
<func(<user>,<col1>,<primary_key_columns>)>,...,<func(<user>,<coln>,
<primary_key_columns>)> from <fact_table> where
<foreign_key_restricted_dimension> in (select <primary_key> from
<restricted_dimension>_view) (12)

Create view <base_dimension>_view as select <primary_key>,
<func(<Username>,<PK>,<col1>,<base_dimension>)>,...,<func(<Username>,<PK>,
<coln>,<base_dimension>)> from <base_dimension> where <primary_key> in (select
<foreign_key_base_dimension> from <facts_table>_view) (13)

*�� �
�
,
����
��� ������
����� �������

In our example from Figure 2 the views for fact tables and persons are as follows,

by assuming that the DEPARTMENT dimension has no vertical restriction but the

time dimension is open for all:

Create view FACT_TABLE_VIEW as select ID_TIME, ID_PERSON, ID_DEPT,
col_fact_numb(user,'fact1',ID_TIME,ID_PERSON,ID_DEPT) as FACT1,
col_fact_numb(user,'fact2',ID_TIME,ID_PERSON,ID_DEPT) as FACT2, from
FACT_TABLE where ID_DEPT in (select ID from DEPARTMENT_VIEW);

Create view PERSON_VIEW as SELECTID, col_dim_varch(user,ID,'name','person') as
NAME, col_dim_varch(user, ID,'surname','person') as SURNAME,
col_dim_varch(user,ID,'age','person') as AGE,
col_dim_varch(user,ID,'marital_status','person') as MARITAL_STATUS from PERSON
where ID in (select ID PERSON from FACT TABLE VIEW). (14)

3.step. When dynamically adapting views are made, a procedure for grants is also

necessary. This procedure controls the existence of blank views for any user. If there

are any, the procedure revokes SELECT rights from the corresponding user on the

corresponding view. The general steps of this procedure are:

For all_users except owner do revoke select on tablename_view from user;
For all_users except owner do
 If has_data(tablename_view,user) then

grant select on tablename view to user (15)

If the data access control model is implemented in this way, there is no need for

additional administration. We have to add new users and roles but all further steps

are done automatically.

4.2. Dynamically adapting views with more than one restricted dimension

The idea behind this solution has already been described by and large in section

3.2. However, some changes will have to be added. Columns with restriction on

rows are moved from the ROLES table to the USERS table. The rationale for doing

this was described in the previous section. The system of defining views also

remains the same. Some changes are made in the fact table view general definition.

Create view <facts_table>_view as select <primary_key_columns>,
<func(<username>,<col1>,<primary_key_columns>)>,...,<func(<username>, <coln>,
<primary_key_columns>)>from <facts_table> where
<foreign_key_restricted_dimension1> in (select <primary_key> from
<restricted_dimension1> where
F1 d_col_val>,<user>,<rows_col_name1>)=1) (<restricte
Intersection
Select <primary_key_columns>,
<func(<username>,<col1>,<primary_key_columns>)>,...,<func(<username>,
<coln>,<primary_key_columns>)>from <facts_table> where
<foreign_key_restricted_dimension2> in (select <primary_key> from
<restricted_dimension2> where
F1(<restricted_col_val>,<user>,<rows_col_name2>)=1) (16)

All dimensions are defined in the same way as horizontal restriction free

dimensions were defined previously (see section 4.1).

���� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

4.3. Dynamically adapting views with more than one data source

The system of saving rights form multiple data sources is perfectly illustrated by

the model in Figure 5. To allow ‘User2’ view the information shown in Figure 6 we

made some changes in our functions that are responsible for the vertical restriction.

First, we define the fact table with a structure as in the previous section. Only this

time instead of intersection we use union. Dimensions are also defined as in the

previous section. Functions responsible for the vertical restriction return cell value,

if this cell is contained in any pair <hor_rights, vert_rights> for this role, if not these

functions return blank cell.

Basic steps for the function implementing the vertical restriction in this case are

as follows:

1. Select col into cell_value from base_table where
primary_key=primary_key_columns;
2. Corsor C1 is select * from rights, roles, users where
rights.id_role=roles.id and roles.id=users.role and username=user
3. For each_cursor_record do
If contains(col,primary_key_columns,hor_rights,vert_rights) then return
cell_value else return null; (17)

I D Nam e Surname Age Marital_status
1 Agita Verta - - - - - - - - - - - - Marr ied
2 Juris Vait s - - - - - - - - - - - - Marr ied
3 - - - - - - - - - Ose 23 -- - - - - - - - - - -

Person

I D Date Season Year
1 2001.02.10 Winter 2001
2 2003.07.21 Sum mer 2003
3 2000.09.05 Autum n 2000
4 1998.04.28 Spring 1998
5 2002.12.30 Winter 2002

Tim e

I D Nam e Code
2 Dept2 D2
5 Dept5 D5

Departm ent

I D_t ime I D_person I D_dept Fact1 Fact2
1 3 5 -- - - - - - - - - - - 5
4 1 2 15 4
2 3 5 -- - - - - - - - - - - 1
1 2 2 21 3
5 1 2 18 5
5 2 2 25 4
3 3 5 -- - - - - - - - - - - 1

Fact_table

Figure 6. Access restriction from multiple data sources.

5. Models performance testing

After development of our proposed models, we made some tests on query

response time. We run them on our data warehouse data mart that consists of eight

dimensions. The largest of them are persons with 75000 records, orders with 60000,

education with 11000 and addresses with 17000 records. Fact table consists of 450

thousands of rows. We took two queries from typically used user reports. We didn’t

use any aggregate tables, materialized views or indexes for improving query

response time. Queries were run on views, described in previous sections. We run

these queries from two different users DISC1 and DISC2 simultaneously. These

*�� �
�
,
����
��� ������
����� �������

users were made as users from different departments with different data access

rights.

The results are included in Figure 7.

Disc1 role

based DAC

Disc2 role

based DAC

Disc1 adapting

views

Disc2 adapting

views

Full base

tables

Query1 0.93 0.78 76.46 64.34 1.20

Query2 0.13 0.18 6.43 5.67 0.18

Figure 7. Models performance testing.

Tests were completed on Oracle 9.0 by using Oracle Trace utility. Each query is

presented with CPU time used. Query1 consisted from three tables, aggregation on

one column and the results were grouped by one field. Query2 was more

complicated. It used data from five tables, had additional conditions, sorting,

grouping, and aggregation on three columns and contained union operation.

As it is seen from Figure 7 and is mentioned in this paper, role based data access

control mechanism uses less CPU time than dynamically adapting views. Future

query testing using appropriate indexes and materialized views is concerned.

6. Conclusions

In this paper we introduced two solutions for implementing data warehouse

security policies. The Role based security model is easy to understand and can be

made in such a way that query response time isn’t seriously impacted. From the

other side this technique can lead to a huge database and a complicated views

structure that needs a lot of administration work. The other solution is dynamically

adapting views that have opposite characteristic features from the Role based

security model. This solution needs almost no administration, but as the views are

made dynamically, query response time can increase dramatically, if no additional

work is done.

We suggest using the role based security system, if the data warehouse doesn’t

have a lot of roles and there are resources for administrating all objects that need to

be created by using this model. Dynamically adapting views are more appropriate if

the data warehouse has many users with different access rights and there are no

resources for security administration.

A lot of restriction methods are already built in DBMS and data access tools. For

this reason it is possible to use the implemented methods. It is a good decision, if the

security policy requirements are not complicated, for example, only horizontal

restriction on one or more dimensions is required. But if in the security policy

vertical restriction is necessary, there will be problems of finding use for the built-in

security mechanism.

Our future work will have to deal with making improvements to our methods.

The basic guideline is making queries to return data faster. This can be done in

several ways:

- by adding rights indicator to each record in each table;

*�+��� ������	�
� ��� ���
���
��� �"��#"--%�.� �//���� �"� ����� 0�#�1"2��� ���� ��

- by using built-in access restriction functions like virtual private database for

separating the horizontal restriction from the vertical one;

- by using materialized views.

References

[1] K.B.Edwards, and G.Lumpkin. Security and the Data warehouse. Oracle Corporation,

http://otn.oracle.com/ow2003/ow_security.html , 2003.

[2] W.H.Inmon. Building the Data Warehouse, John Wiley, 1996.

[3] R.Kimball, and M.Ross. The Data Warehouse Toolkit, John Wiley & Sons, 2
nd

 edition,

2002.

[4] A. Rosenthal, and E. Sciore. View Security as the Basis for Data Warehouse Security.

Proceedings of the Intemational Workshop on Design and Management of Data

Warehouse DMDW'2000, Sweden, June 2000.

[5] A. Rosenthal, and E. Sciore. How Can Data Sources Specify Their Security Needs to a

Data Warehouse? IEEE Workshop on Security in Distributed Data Warehousing,

October 2001.

[6] C. Silbernagel. Data security: Protecting the warehouse from within. DM Direct, June

1999.

[7] E. Weippl, O. Mangisengi, W. Essmayr, F. Lichtenberger, and W. Winiwarter. An

Authorization Model for Data Warehouses and OLAP. Proc. of the Workshop on

Security in Distributed Data Warehousing. New Orleans, Louisiana, October 2001.

*�� �
�
,
����
��� ������
����� �������

�����������	
�

Use of Knowledge Engineering Techniques for Creation

and Analysis of Aggregate Specifications

Henrikas Pranevicius, Germanas Budnikas

Business Informatics Department, Kaunas University of Technology

StudentȎ 56-301, LT-3031 Kaunas, Lithuania

e-mail: hepran@if.ktu.lt

Abstract. The paper presents a technique that applies knowledge engineering

techniques for creation of Aggregate specifications. Application knowledge

base (KB) is created using the knowledge acquisition technique joined with a

piece-linear aggregate model. The production rules of the application KB are

transformed to single hit decision tables, and the static properties of the KB

are checked in Prologa system. Further, the application KB is combined with

the defined KB of validated properties and validation method, and application

KB dynamic properties are checked in the expert system in CLIPS. A vali-

dated application KB is used defining a framework of Aggregate specification

using Praxis editor and supplementing Praxis generated framework with the

application functional description. The technique is illustrated with an exam-

ple of a single channel queuing system.

Keywords. Aggregate specification, knowledge base, single hit decision ta-

ble, expert system, and validation of static and dynamic properties, CLIPS,

PROLOGA.

1. Introduction

Formal methods and specification languages are widely used for design of dis-

tributed systems. The most popular formal specification languages being used for

description of distributed systems are SDL, Lotos, Estelle.

Specification language Estelle/Ag is based on Aggregate method [10]. There are

some differences between Estelle/Ag and Estelle—the piece-linear aggregate model

is used in Estelle/Ag. The use of such a model instead of a finite-state automaton,

which is the formal background of standard Estelle, enables to create validation and

simulation models based on a single specification. This is possible due to the special

structure of the piece-linear aggregate. Further in the paper we use notion of Aggre-

gate specification as the one written in Estelle/Ag language.

A construction of specifications in this language is performed in two phases.

Specification editor Praxis helps to define the specification framework that describes

an interaction of specified system aggregates, their states and conditions of state

change. Next, the framework is heuristically supplemented with the knowledge from

a conceptual model about behaviour of an analysed system.

There are a lot of works where knowledge-based systems are used for creation of

(formal) specifications. A key feature of techniques used in such a works is the

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()'��� 	�

'*� �
�
+
����
��� ������
����� �������

analysis of correctness that is performed both during the construction of the initial

knowledge description and while a target model or KB has been created.

This paper presents an approach that utilises techniques of knowledge representa-

tion as well as knowledge engineering for building up a knowledge base (KB) aimed

at transformation to Aggregate specification and validation* of the KB static and

dynamic properties. A transformation phase to the specification is described too.

The static properties are characteristics of a KBS that can be evaluated without its

execution. Such an evaluation is often referred to as static verification. During static

verification, a KB is checked for anomalies. Preece and Shinghal [12] present a clas-

sification of the anomalies that may be present in rule-based systems. It is necessary

to note the difference between an anomaly and error. The anomaly indicates the ex-

istence of a possible error. The dynamic properties are those characteristics of a rule-

based system that can be evaluated only by examining how the system operates at a

run time.

Knowledge base and Aggregate specification are used for description of the same

problem. Many authors (e.g. Bruynooghe et al. [2]) believe that the declarative style

of description that is used in KBs is more understandable and acceptable than the

procedural style (the latter is used in Aggregate specifications). This is because a

problem is described at the knowledge level at which the knowledge engineer speci-

fies expertise during knowledge acquisition. Therefore, the knowledge description is

presented not using strict mathematic notation but concepts of an application domain

that is natural. Due to this reason, we suppose that the creation of Aggregate specifi-

cations using KB is more attractive in that sense.

Until now, knowledge-based techniques were not used for the creation of Aggre-

gate specifications except Praxis system. However, this system generates structure

of the specification only and does not define the behaviour of an application. Our

approach does it by using KB.

Our technique is similar to the one proposed by Fuchs and Schwitter [4] in such a

way that they also offer transformation of problem domain description to representa-

tion structures and then to an executable language. However, our technique checks

general properties during validation and verification while Fuchs and Schwitter [4]

technique checks specific invariant properties. Our approach is similar to that of [15]

since they both offer the use of declarative languages for a description of the user

needs. We use aggregate model concepts for representation of the object structure,

while Specht [15] use “object as theory” model. In our approach, in contrast to the

compared one, we emphasise validation of the created declarative description. A

transformation to target representation is used in both approaches. Our approach is

similar to Arentze et al. [1] by the use of decision tables (DT) for representation of

state-based systems. Our approach as well as many others, example of which is [3],

exploit advantages of tabular representation in order to perform verification by

transforming certain representation to DTs. However, our approach is specific in the

sense that verification is performed on knowledge base that is oriented at creation of

Aggregate specifications. In [9], already created Aggregate specifications are vali-

dated using first order predicate logic and Prolog. While in our work we use knowl-

edge techniques for analysis of the specifications to be created using knowledge

* In the paper, for the sake of briefness, sometimes we refer to validation having in mind both validation

and verification because "validation subsumes verification" [11].

'**��� �����	
�
�
�� ��� ����
��
�� ���� "!� ,�"-.� /�� ��/%���#%�/� ��01�%23��� ��

base. Sellini et al. [14] and we use intra- and inter- validation for analysis of the ac-

quired knowledge. They also use an intermediate formalised description (application

KB in our case) for construction of a knowledge model (specification in our case).

While performing static verification of an application KB, we use results of Van-

thienen et al. [18], whereas when analysing the dynamic properties we use the

reachable state method that is similar to the functional validation method suggested

by Preece et al. [11] in a view of analysis of execution paths.

An applicability of our technique is defined by the applicability of the PLA

method and Aggregate specifications. The technique is oriented for creation of Ag-

gregate specifications which primary domain of usage is communication protocols

and business systems. Our technique was successfully applied for the creation of

Aggregate specifications of the single channel queuing system, alternating bit proto-

col and a network of queuing systems. The scalability of the proposed technique is

limited by software tools that are used in creating the specification.

The paper is structured as follows. The main stages of the proposed scheme of

Aggregate specification creation are presented in section 2. Section 3 describes con-

struction of the application KB and analysis of its static and dynamic properties.

Section 4 describes procedures for generation of specification structure with Praxis

and addition of functional description of the application from the KB to the gener-

ated structure. Section 5 presents an example of the proposed technique. Conclu-

sions sum up the proposed approach.

2. The main stages of the proposed scheme

The developed approach is depicted in Fig.1. The application KB is created using

the knowledge acquisition technique that was adapted for the creation of the specific

KB, which is referred to as KBAg too and intended for mapping to Aggregate speci-

fication. Knowledge about the problem domain is represented in the KBAg in the

context of the PLA model.

Production rules of the KBAg are transformed to single hit decision tables in

Prologa, and static verification is performed in this system. The Prologa system is an

interactive design tool for computer-supported construction and manipulation of

decision tables. The system offers design techniques and additional features to en-

hance the construction and validation of decision tables [16]. The verification in

Prologa is implemented using the tabular verification method [18] that belongs to a

group of static verification methods. The transformation to Prologa DTs is specific

with respect to PLA model and employs some of its concepts—aggregates, internal

and external events, input and output signals, discrete state component coordinate,

etc. Production rules are transformed to the DTs of certain groups thus enabling to

fully exploit advantages of tabular representation to perform static verification.

Functional validation is performed using the expert system (ES) in CLIPS. CLIPS

(C Language Integrated Production System) is a tool for productive development

and delivery of expert systems [5]. The ES is constructed by combining the KBAg

with the KB of validated properties and validation method (KB VPVM). The func-

tional validation is implemented using the reachable state validation method that can

be classified as being a member of the group of formal proof methods. Further,

'*� �
�
+
����
��� ������
����� �������

Figure 1. Scheme of the proposed approach for creation of Aggregate specifications.

using validated and verified KBAg one defines Aggregate specification framework

during the session with specification editor Praxis. The generated framework is sup-

plemented with knowledge about system behaviour extracted from the KBAg using

defined mappings.

A distinctive feature of our approach is the fact that validation and verification

task is performed at the initial stage of Aggregate specification creation. Validated

knowledge is used both for creation of the specification framework and for supple-

mentation to the framework. In addition, our approach defines the creation of Ag-

gregate specifications.

3. Creation and analysis of KB aimed at transformation to

Aggregate specifications

Creation of spe-

cification frame-

work with Praxis

Creation of KBAg

Piece Linear Aggregate

model

KB VPVM

in CLIPS

Combining of

KBAg produc-

tions with ge-

nerated Aggre-

gate specifica-

tion framework

Validation

using ES in

CLIPS

Adaptation of

KB VPVM &

combining with

KBAg in CLIPS

Functional validationStatic verification

Verification

using Prologa

Transformation

to single hit

decision tables

Conceptual

Model

Created

Aggregate

specification

KBAg represents problem domain knowledge using production rules. This repre-

sentation is chosen due to its similarity to Aggregate specification language con-

structions describing conditions for state change: when condition begin ... end.

Since most of the common verification and validation problems in rule-based sys-

tems can be solved using DTs [16] and the tabular verification method is computer-

ised in Prologa system, in our approach static verification will be performed using

this method. Thus, in order to perform the static verification of the KBAg, its produc-

tion rules have to be transformed to Prologa DTs. Moreover, as stated in [16], a DT

is equivalent to a set of production rules, and their transformation to the tables can

be performed without too much effort.

Because the KBAg will be used for the creation of Aggregate specifications, it has

to contain knowledge about the PLA model. To acquire this knowledge, we applied

'*'��� �����	
�
�
�� ��� ����
��
�� ���� "!� ,�"-.� /�� ��/%���#%�/� ��01�%23��� ��

the knowledge acquisition technique [13] that was adapted for our needs. The fol-

lowing knowledge about the PLA model is used.

¶ Succeeding concepts: (a) Aggregates; (b) Input and output signals and their com-

ponents, coordinates of discrete and continuous state components.

¶ Relations: (a) Interconnection scheme of aggregates; (b) Changes of state and

signal outputs.

In our approach, the predicates and production rules are used for description of

the above-mentioned concepts and relations. Applying our approach for specifica-

tion of an application one has to use the defined predicates and production rules for

problem representation. Thus, the KBAg is created by filling in the knowledge about

the application as predicates and production rules of the defined form. Next, we pre-

sent examples of predicates and productions of KBAg.

(ArrivalOfInputSignal
i
icc

jj
j

i
j

ii xxxiipan 21),

where ani – symbolic name of the ith aggregate; j
iiip – interaction point,

j
icc

jj xx ,,1 2 – components of signal j
ix .

(State
i
dc

i
cc c

ii
c
iii ddwwan 22 11),

where
i
ccc

ii ww ,...,1 and
i
dcc

ii dd ,...,1 are the coordinates of continuous and discrete state

components.

The production rule that describes state change and signal output after occurrence

of an external event has the following general form:

IF (ArrivalOfInputSignal
i
icc

jj
j

i
j

ii xxxiipan 21)

 AND (State
i
dc

i
cc c

ii
c
iii ddwwan 22 11)

 AND (Aux
i
dc

i
cc c

ii
c
iii ddwwan 22 11)

THEN (State **** 11
i
dc

i
cc c

ii
c
iii ddwwan 22)

 AND (OutputSignal
j

occ
jj

j
i

j
ii xxxoipan 21))

where (Aux
i
dc

i
cc c

ii
c
iii ddwwan 22 11) describes auxiliary conditions

mpLCLC ,,1 2

that check values of coordinates of state components:

(Aux
i
dc

i
cc c

ii
c
iii ddwwan 22 11) ¹ LC1 AND|OR…AND|OR

mpLC , where mpni ,,1= –

the number of additional logical conditions for the m-th production rule that de-

scribes state alteration.

3.1. Static verification of the KBAg

Most of the validation problems in rule-based systems like redundant, ambiva-

lent, categorised, cyclic or missing rules, redundant conditions, unused action parts

may be resolved using DTs [16].

Our technique uses DT representation for static verification of KBAg since DTs

clearly demonstrate incompleteness and in-consistency of knowledge [3] and soft-

'*� �
�
+
����
��� ������
����� �������

ware tool Prologa that assists verification process. Anomalies in DTs have direct

correspondence to anomalies in production rules, which make the KBAg.

Static anomalies in rule bases and decision tables

The decision table DT is defined [18]:

DT: CS1 ³ CS2 ³ … ³ CSm ­ AV1 ³ AV2 ³ … ³ AVn ,
where CSi is a set of condition states, AVj is a set of action values.

The most important criterion when distinguishing tables is the question whether

all columns are mutually exclusive (single hit versus multiply hit). In a single hit

table, in contrast to multiply hit table, each possible combination of condition can be

found in exactly one and only one column.

The following anomalies are distinguished: intra-tabular, which occur in a single

DT, and inter-tabular anomalies, that originate from interactions between several

DTs [6]. A relation between intra-tabular anomalies and anomalies in rule bases is

depicted in Fig.2. A classification of inter-tabular anomalies can be found in [17].

 Anomalies

in decision tables [17] in rule bases [12]
 Redundancy

Redundant column
 Subsumed column pair Subsumed rule
 Duplicate column pair Duplicate rule
 Unsatisfiable column Unfirable rule
 Unsatisfiable condition value Unsatisfiable condition
Redundant row

 Irrelevant condition row
 Unreferenced action row Unused consequent

 Ambivalence

Ambivalent column pair Contradictory rules
Ambivalent action rows
 Circularity

Circular dependency Circularity

 Deficiency

Missing column Unused input
 Unused condition value Missing rule

Figure 2. Relation between intra-tabular anomalies in DTs and anomalies in rule bases.

Transformation of KBAg productions to single hit decision tables

In our technique, static verification of KBAg is performed in Prologa system. The

system uses single hit DT representation. Next, we present an outline of suggested

steps of transformation of KBAg productions to single hit DTs.

1. Productions that describe certain types of events are transformed to corresponding

event tables;

'*4��� �����	
�
�
�� ��� ����
��
�� ���� "!� ,�"-.� /�� ��/%���#%�/� ��01�%23��� ��

2. Predicates of antecedent (consequent) part of a rule are written in a form of condi-

tion (action) subjects in a DT;

3. Decrease of a coordinate of discrete state component by a constant value is

marked with not (1+= j
i

j
i dd). This notation is used while ambivalence property is

being checked.

Technique for detection of intra-, inter- tabular anomalies in KBAg

This technique is mostly based on works of [16, 18] and operating in Prologa sys-

tem. Below we present a portion of this technique.

A subsumed column pair (a case of intra-tabular redundancy), which definition

is as presented below [6]:
A DT contains a subsumed column pair, if and only if it includes a pair of columns (CSj; ASj),

(CSk; ASk) (1 ¢ j, k ¢ t), j ¸ k for which: CSj Ì CSk and ASj É ASk,

in a single hit DT is represented by single column that corresponds to several KBAg

productions. Thus, the anomaly of the subsumed column pair is detected if several

KBAg productions correspond to the same DT column.

Full description of the technique for anomaly checking in KBAg as well as trans-

formation steps of KBAg productions to single hit DTs can be found in [8].

3.2. Functional validation of the KBAg

Functional validation of the application KB is carried out using the expert system

in CLIPS. It is built by combining already verified application KB with a KB of

validated properties and validation method.

KB of validated properties and validation method and its join with KBAg

In our approach, we define the KB of validated properties and validation method

that is implemented in CLIPS. It may be used for various kinds of applications with

minor adaptations. The instances of dynamic properties whose validation is imple-

mented in the KB VPVM are the absence of static deadlocks, final state reachability,

boundedness, and completeness. The reachable state validation method is realised in

the KB VPVM. In a view of analysis of the execution paths, this method is similar to

functional validation method suggested by Preece et al. [11] that analyses the se-

quences of rules that must fire to achieve a goal.

When performing the join of KBAg with KB VPVM, the needed adaptation

changes are minor—they are an adaptation of description of validated properties for

a specific application. For instance, in order to check the absence of the static dead-

lock property, the adaptation includes definition of specific continuous state coordi-

nates; in order to check boundedness property, individual bounds on discrete state

component coordinates have to be defined. Having combined the KB VPVM with

the KBAg, the ES in CLIPS is built.

Validation of the KBAg using the expert system in CLIPS

The expert system in CLIPS consists of the combined KB VPVM and the KBAg,

and CLIPS inference engine that is based on the forward chaining strategy [7]. In

order to perform the functional validation using the ES, the initial and the final states

'*� �
�
+
����
��� ������
����� �������

of an analysed application are defined. An application model operates according to

the reachable states method. If the validated properties are violated, the expert sys-

tem generates a corresponding report and a designer corrects the KB accordingly.

4. Forming the specification

In the first step, specification framework is constructed during a session with the

specification editor Praxis [10] using the knowledge extracted from the validated

and verified application KB.

In the second step, the generated specification framework is extended by adding

with the behavioural description taken from the application KB. The supplementa-

tion process consists of the following phases:

¶ Finding the rules in the KB that correspond to Aggregate specification construc-

tions. These constructions describe either initial state of an aggregate, or condi-

tion of state change due to an event. Mapping between the rules in the KBAg and

Aggregate specification constructions is presented in Table 1;

¶ Transformation of antecedents and consequents of the found rules to Aggregate

specification operators. The corresponding mapping has been defined too. A part

of it is given in Table 2;

¶ Supplementation of specification constructions with the operators resulted from

the previous phase.

Table 1. Mapping between productions in KBAg and Aggregate specification constructions.

Predicates in antecedent part of KBAg productions Specification constructions

(Initialize)
Initialize

 begin … end;

(EndOfOperation ani operation)
when eop.operation

begin … end;

(ArrivalOfInputSignal
i
icc

jj
j

i
j

ii xxxiipan 21)
when j

i
j

i xiip .

begin … end;

Table 2. Fragment of mapping between predicates in consequent part of productions in KBAg and Aggre-

gate specification operators.

Predicates in production rule consequent Specification operators

(OutputSignal
j

occ
jj

j
i

j
ii xxxoipan 21) Output),,,(1

j
occ

jj

j

i

j

i xxxoip 2 ;

j
iw = on Start

j
iw ;

j
iw = off Cancel

j
iw ;

'*���� �����	
�
�
�� ��� ����
��
�� ���� "!� ,�"-.� /�� ��/%���#%�/� ��01�%23��� ��

5. Example

We illustrate creation of inconsistent and redundant fragment of a KBAg of the

single channel queuing system (QS) with priorities. Conceptual description for the

described fragment states that two types of requests may arrive to a queuing system:

with high or low priority. The system has queue counters for the corresponding re-

quests. The arrived request to the empty system is started to serve. If service opera-

tion is active in the system, the arrived request is placed to the corresponding queue.

Inconsistencies and redundancies are detected during the static verification. A por-

tion of a formed Aggregate specification from queuing system KBAg is presented

too.

The fragment of the KBAg of QS

r1 “system is idle, low piority request has arrived”
IF (ArrivalOfInputSignal ip2 ReqLP)
 AND (State service serv_req_pr hpqc lpqc)
 AND service = off
 AND hpqc = 0
 AND lpqc = 0
THEN service = on
 AND serv_req_pr = 0
 AND (State service serv_req_pr hpqc lpqc)

where service stands for service operation, serv_req_pr - a priority of served request,

hpqc and lpqc - high and low priority queue counters, respectively.

r2 “request is being served, low priority request has arrived”
IF (ArrivalOfInputSignal ip2 ReqLP)
 AND (State service serv_req_pr hpqc lpqc)
 AND service = on
THEN lpqc =lpqc + 1
 AND (State service serv_req_pr hpqc lpqc)

r2a “low priority request is being served, and low priority request has arrived”
The rule is identical to r2, except an antecedent part that is supplemented with the

condition serv_req_pr = 0.

r2b “high priority request is being served, and high priority request has arrived”
The rule is identical to r2, except an antecedent part that is supplemented with

serv_req_pr = 1 condition.

r2c “high priority request is being served, and low priority request has arrived”
The rule is identical to r2b, except a consequent part where lpqc = lpqc + 1 is

changed with lpqc = lpqc – 1.

Static verification of KBAg of QS

While illustrating a detection of intra-tabular anomalies, only a group of some

productions were transformed to a single table. This was done in order to show a

fewer number of anomalies in a DT at the same time.

Redundancy - subsumed column pair. Productions r1, r2, r2a and r2b are used for

illustration of this kind of anomaly. r12ab single hit DT is presented in Fig.3.

'*5 �
�
+
����
��� ������
����� �������

r12ab

1. ^(State service serv_req_pr hpqc lpqc) True False

2. ^(ArrivalOfInputSignal ip2 ReqLP) True False -

3. service on off - -

4. hpqc - =0 >0 - -

5. lpqc - =0 >0 - - -

6. serv_req_pr - - - - - -

1. service = on . x

2. serv_req_pr = 0 . x

3. lpqc = lpqc + 1 x

4. (State service serv_req_pr hpqc lpqc) x x

 1 2 3 4 5 6

Figure 3. r12ab single hit DT.

In this table, production r1 is described by the 2nd column, productions r2, r2a and

r2b are described by the 1st column. Regardless of the possible states (0 or 1) of the

6th condition subject, a set of corresponding actions is the same. Due to this reason

the condition subject state is marked with “–“ (irrelevant) symbol.

Productions r2, r2a and r2b are represented by the same 1st column and the pro-

duction r2 has the least number of condition subjects. This means, the production r2
subsumes r2a and r2b, and thus these two rules are redundant.

Irrelevant condition row anomaly is illustrated by the r12ab DT that is presented

in Fig.3. The 6th condition subject of this DT is irrelevant and redundant. It means

the condition of r2a and r2b productions that checks serv_req_pr value is redundant.

r12bc

1. ^(State service serv_req_pr hpqc lpqc) True False

2. ^(ArrivalOfInputSignal ip2 ReqLP) True False -

3. service on off - -

4. hpqc - =0 >0 - -

5. lpqc - =0 >0 - - -

6. serv_req_pr 0 1 - - - - -

1. service = on . . x

2. serv_req_pr = 0 . . x

3. lpqc = lpqc + 1 . ?

4. (State service serv_req_pr hpqc lpqc) . x x

 1 2 3 4 5 6 7

Figure 4. r12bc single hit DT.

Ambivalence - ambivalent column pair anomaly. Productions r1, r2b and r2c are

used for anomaly illustration. r12bc single hit DT is presented in Fig.4. The 2nd col-

umn of this table corresponds to productions r2b and r2c. A cross of the 3rd row of

an action subject and the 2nd column of the table is marked by “?” symbol. It means

that these two productions define ambivalent actions, namely lpqc = lpqc + 1 and not
(lpqc = lpqc + 1), while their conditions are overlapping. This anomaly indicates an

'*(��� �����	
�
�
�� ��� ����
��
�� ���� "!� ,�"-.� /�� ��/%���#%�/� ��01�%23��� ��

occurrence of a typing error when defining the action—instead of “+” sign “–“ sign

was specified. After fixing this error, the duplicate column pair anomaly is indi-

cated—productions r2b and r2c, which correspond to the 2nd column of DT in Fig.4,

are identical.

A portion of a formed Aggregate specification

A fragment of the created Aggregate specification of the QS example using our

technique is presented below. The description of the QS behaviour in case of arrival

of a low priority request is included in the productions r1 and r2. These rules have

been used to supplement when ip2.ReqLP construction of Aggregate specification

framework. The Praxis generated code is written in typewriter font, the added

code—in italic.
Trans

 when ip2.ReqLP

 begin

 if ((service = off) and (hpqc = 0) and (lpqc = 0)) then

 begin

 serv_req_prior = 0;

 Start service;

 end;

 if (service = on) then

 begin

 lpqc = lpqc + 1;

 end;
 end;

6. Conclusions

Summarising the paper we would like to emphasise the following:

¶ This paper has showed a possibility to perform static verification of Aggregate

specification that is expressed in a knowledge base;

¶ The use of KB defines the creation of Aggregate specifications. The production

rules representation technique combined with PLA model is used for description

of application structure and behaviour. The description at the knowledge level

permits to operate not using strict mathematic notation but the concepts of the ap-

plication domain;

¶ KB validation and verification permits to perform analysis of the specification

under creation at its initial construction stage.

7. References

[1] Arentze, T.A., A.W.J. Borgers, H.J.F. Timmermans. The integration of expert knowledge

in decision support systems for facility location planning, Computers Environment and

Urban Systems, 19(4), 1995: 227-247.

[2] Bruynooghe, M., N. Pelov, M. Denecker. Towards a more declarative language for solv-

ing finite domain problems. In Proc. of the ERCIM/ COMPULOG Workshop on Con-

straints. 1999: 1-14.

'�� �
�
+
����
��� ������
����� �������

[3] Degelder J; M. Steenhuis. A knowledge-based system approach for code-checking of

steel structures according to Eurocode 3. Computers-and-Structures. 67(5), 1998: 347-

355.

[4] Fuchs, N.E., R. Schwitter. Attempto Controlled English. In Proc. of the CLAW 96, The

First International Workshop on Controlled Language Applications, Katholieke Univer-

sitet Leuven, 1996.

[5] Giarratano, J.C. CLIPS Reference Manual. Basic Programming Guide, CLIPS Version

6.0. Software Technology Branch, Lyndon B. Johnson Space Center, JSC-25012, 1993:

388 pp.

[6] Mues C. On the Use of Decision Tables and Diagrams in Knowledge Modeling and Veri-

fication, PhD dissertation, Katholieke Universitet Leuven, 2002: 223 p.

[7] Pranevicius, H., G. Budnikas. Creation of Estelle/Ag Specifications Using Knowledge

Bases. Informatica, Vol.14, No.1, 2003: 63-74.

[8] Pranevicius, H., G. Budnikas. Static Verification of Aggregate Specifications. Informa-

tion technology and control, No.4(29), 2003, 39-44.

[9] Pranevicius, H., R. Miseviciene, V.Miliute. Use of Aggregate Specification and Logic

Programming for Knowledge Base Validation and Verification. In Proc. of Interna-

tional Conference “Modelling and Simulation of Business Systems”. Technologija, 2003:

203-208.

[10] Pranevicius, H., V. Pilkauskas, A. Chmieliauskas. Aggregate Approach for Specification

and Analysis of Computer Network Protocols. Technologija, Kaunas. 1994: 254 p.

[11] Preece, A., C. Grossner, T. Radhakrishnan. Validating Dynamic Properties of Rule-

Based Systems. International Journal of Human-Computer Studies, 44, 1996: 145-169.

[12] Preece, A., R. Shinghal. Foundation and Application of Knowledge Base Verification.

International Journal of Intelligent Systems, 9, 1994: 683-702.

[13] Russel, S., P. Norvig. Artificial Intelligence—a Modern Approach. Prentice Hall, 1995.

[14] Sellini, F., C. Vargas, P.-A. Yvars. Considerations about validation of knowledge models

in KBE systems. In Proc. 4th European Symposium on the Validation and Verification of

Knowledge Based Systems. Katholieke Universiteit Leuven, 1997: 83-93.

[15] Specht, G. O!-LOLA - Extending the Deductive Database System LOLA by Object-

Oriented Logic Programming. Informatica, Vol.9, No.1, 1998: 107-118.

[16] Vanthienen, J. Prologa v.5 User’s manual, Katholieke Universiteit Leuven, 2000: 121

pp.

[17] Vanthienen, J., C. Mues, A. Aerts. An illustration of verification and validation in the

modelling phase of KBS development. Data & Knowledge Engineering 27, 1998: 337-

352.

[18] Vanthienen, J., C. Mues, G. Wets. Inter-tabular Verification in an Interactive Environ-

ment. In Proc. 4th European Symposium on the Validation and Verification of Knowl-

edge Based Systems. Katholieke Universiteit Leuven, 1997: 155-165.

A Taxonomy of Characteristics to evaluate specification

languages

Albertas Caplinskas, Jelena Gasperovic

Institute of Mathematics and Informatics, IMCS

Akademijos 4, 2600 Vilnius, Lithuania

alcapl@ktl.mii.lt, j.gasperovic@algoritmusistemos.lt

Abstract. This paper presents a quality framework for evaluation of

specification languages. It reviews some related works and discusses in detail

the components of the proposed framework: quality model, evaluation

procedure, and taxonomy of quality characteristics. The main contribution of

the paper is the taxonomy and definitions of quality characteristics.

Keywords. IS specification languages, quality models, quality characteristics,

quality evaluation

1.Introduction

The influence of specification language on the quality of IS specification is

obvious. This problem has been investigated by a number of researchers [9], [10],

[12], [13], [18], [20], [21], [22], [23]. However, theoretically well-grounded criteria

for specification language evaluation still do not exist. Usually users of a particular

language appreciate this language subjectively and express different opinions about

its advantages. So the selection of the most appropriate language for the particular

project still is a problem. Those are the main reasons why it is very important to

propose well-grounded specification language quality evaluation criteria and

methodology.

In this paper specification language is understood as a high abstract level

language with syntax and semantics appropriate enough to define both the

functionality of a system under consideration and its non-functional properties. In

general case, the system under consideration can be some real-word business

system, information system, software system, hardware system or any other system.

We consider only languages that are intended to specify systems, which are relevant

to the field of information systems engineering, namely, real-world systems,

information systems and software systems. The specifications may be external

(requirements specification) or internal (design specification). A specification

language that supports the specification process throughout many phases of a life-

cycle model is called a wide-spectrum language and a language that supports only

one or two phases of a life-cycle model is known as a narrow-spectrum language.

We use the term “specification language” in the broad sense that covers both wide-

spectrum and narrow-spectrum languages and suppose that wide-spectrum should

support business modelling as well as requirement specification and design.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�()''�� 	�

'�� �
�
*
����
��� ������
����� �������

The main objective of this paper is to propose a framework to evaluate IS

specification language taking into account high-level quality requirements of a

particular project. The paper demonstrates reasonability to describe

interdependencies between requirements using special graphs proposed in [3]. It

discusses the main ideas beyond the proposed framework and describes in detail its

components: quality model, evaluation procedure, and taxonomy of quality

characteristics. The paper elaborates ideas proposed in [3]. Its main contribution is

the taxonomy and definitions of quality characteristics.

The rest of the paper is organised as follows. Section 2 surveys related works.

Section 3 describes the main features of quality model. Section 4 contains

description of quality evaluation procedure. Sections 5, 6 and 7 describe the main

components of quality model: quality goals, quality assessment function, and quality

characteristics tree. Finally, Section 8 concludes the paper.

2. Related works

Firsts attempts to evaluate the quality of specification languages, mostly

diagrammatical languages, have been made already in early days of computing era

[15]. From nowadays perspective these attempts look rather naïve, however,

historically they were very important because initiated entirely new research field.

First serious research in this field has been done by Wand and Weber [20], [21],

[22], [23]. Roughly speaking, the main idea of this research was to evaluate IS

specification languages on the basis of collection of models, known as BWW

models, based on an ontology defined by the philosopher Mario Bunge. Quality of

specification language is evaluated comparing constructs of this language to some

collection of “standard” constructs. This methodology allows evaluating ontological

completeness and ontological clarity of a language where ontological completeness

is understood as the ability of this language to represent all phenomena of interest in

the domain of discourse and ontological clarity is understood as the correspondence

between the constructs of a language and the constructs defined by the BWW

models. The methodology has been improved by Opdahl [13], who proposed how to

evaluate what semantic categories language is able to express and how convenient is

it to do.

To the same research direction belongs the works of Milton, Kazmierczak and

Keen [11] and of Mylopoulos [12]. The former proposed instead of Bunge ontology

to use Chisholm ontology and argued that the quality of a language should be

evaluated not from the viewpoint of its constructs but from the point of its ability to

specify a variety of situations. The latter argued to evaluate quality in terms of three

orthogonal dimensions – ontologies, abstraction mechanisms, and tools – and

proposed some qualitative metrics and quality evaluation criteria.

Two other research directions are represented by works of Jackson [7], and

Sølvberg and his co-authors [9], [10], [17], [18]. The main idea of Jackson is to use

attestation techniques or, in other words, he suggests using a library of characteristic

situations that should be specified to evaluate specification language quality.

Sølvberg and co-authors proposed to use evaluation framework that addresses

quality of specification as well as the quality of specifying process. This framework

'�'��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

includes a language quality model represented in a form of quality characteristics

tree. The framework provides a systematic structure for evaluating specification

languages. Most important ideas beyond this methodology are separation of

conceptual and representation issues, quality evaluation from domain, audience and

technology points of view, and the use of set-theoretical approach to explain the

meaning of the quality characteristics. It is very advanced approach, but it focuses

rather on the quality of specification itself than on the quality of specification

languages and investigates the language quality model only occasionally. The

proposed language quality model is only sketched. It is not exhaustive and not

homogeneous.

There are also a number of works that do not address the quality of specification

languages directly, but has a strong impact on the research in this field. First of all,

ISO/IEC 9126 standard [6] should be mentioned among them. Although this

standard addresses the quality of software its conceptual basis is significantly wider

and can be applied to many other fields. For example, the ISO/IEC 9126 standard

has been taken as a baseline for QStudio®1 [16] which specifies quality concepts for

Java®2 language. This approach defines so-called Quality Attribute Tree, which

indeed is ISO/IEC 9126 quality model extended by additional sub-characteristics.

The Quality Attribute Tree is not a proper tree because many of quality sub-

characteristics at once refine several characteristics. The "many to many"

relationship introduces no difficulties in using the “tree” for quality assessment,

because the quality is assessed top down by evaluating the characteristics first and

then the sub-characteristics and metrics. So, using stepwise refinement techniques,

the notion of code quality is expressed in terms of quality sub-characteristics and

mapped further onto programming constructs. In this way quality metrics are

attached to the sub-characteristics. The advantage of such approach is the possibility

to assess by measurement the quality on multiple levels of detail. Another example

is EAGLES/ISO methodology [8] that aims to evaluate the quality of natural

language processing systems. It supposes that evaluation expresses what some

object is worth to somebody. Quality model is constructed according to two

different perspectives. The first perspective (object-based perspective) is who likes

it. The second perspective (user-based perspective) is what they like. EAGLES

augments the ISO/IEC 9126 approach in the sense that it deals with the formulation

of stated or implied needs, which are the primary input to the quality requirement

definition. The project aims at producing an evaluation package from which

different elements can be taken and combined in different ways to reflect the needs

of any particular user. In EAGLES, quality requirements definition is based on the

union of the implied needs of classes of users, appropriate metrics are selected and

measurements are carried out, but any user is left to construct his own rating level

definition and assessment criteria definition [8]. ISO/IEC 9126 also has been used as

a basis to develop quality characteristics trees for software components [19] and for

ERP systems [2].

One more important approach, called the fuzzy model for software quality

evaluation (FMSQE), has been proposed by Belchior and developed further by his

colleagues [1]. They proposed a hierarchical quality model based on four main

1 QStudio is a registered trademark of QA Systems BV, The Netherlands .

2 Java is a registered trademark of Sun Microsystems.

'�� �
�
*
����
��� ������
����� �������

concepts: goals, factors, criteria and evaluation processes. Goals represent the

general properties that a product should possess. Goals are decomposed in factors;

factors can be further decomposed in sub-factors. Factors and sub-factors define

different users' perspectives about the quality. Factors (sub-factors) should be

decomposed in measurable quality characteristics called criteria. For each criterion

one or more alternative evaluation processes, describing a measurement

methodology, should be established. In order to obtain the values of factors, both

numerical and qualitative measurement results must be aggregated. Measures and

aggregate measures are related by quantitative relations. Obtained measures are

interpreted using a set of fuzzy functions. Fuzzy functions support the aggregation

of measures expressed in different units and are used as a suitable interpretation

mechanism able to deal, at the same time, with qualitative measures and numerical

data. The proposed approach provides: a membership function mapping the desired

quality criterion; a method to calculate the membership function for the aggregate

quality; and a final membership function for the whole product.

3. Quality model

There exists no comprehensive definition of quality. Quality ever depends on

context. Quality of IS specification language is also relative. It depends on the

requirements of a particular project. Following the ISO 8402 [5] definition of

quality, the quality of an IS specification language can be defined as the totality of

features and characteristics of this language that bear on its ability to satisfy stated or

implied project’s needs. The language that is excellent for one project may be only

acceptable or even unacceptable for some other projects because each project has its

specific priorities. Usually the definition of the term “quality” is formalised by a

quality model. Quality models are used in many areas, however, often these models

are defined imprecisely, only in the form of a quality characteristics tree and, may

be, associated metrics. Although some approaches (e.g., ISO/IEC 9126 [6]) address

quality in use, quality requirements usually are not seen as a part of quality model.

They should be defined separately in terms of quality characteristics tree. It is

embarrassing for users because such requirements are low-level requirements even

in the case when they are formulated using abstraction levels provided by quality

characteristics tree. In [3], we proposed the main idea how to define context-oriented

quality model that includes quality requirements and allows formulating those

requirements in the form of high-level quality goals. In this paper we elaborate this

idea further. We define context-oriented quality model as the following seven-tuple:

Q=< ũ, Ɋ, Ū, ȹ, M, µ, �> (1), where

ũ=<V, A, G, f> - a weighted AND/OR digraph describing quality goal

interdependencies, termed as “goal graph”:

V={vi�1�i�N} – a nonempty set of graph vertices;

A� VxV – a nonempty set of ordered pairs of vertices (graph’s arrows);

G={gk�1�k�N1} – a nonempty set of weights;

f: A�G – weighting function that maps graph’s arrows to weights;

l: A�{AND, OR} – labelling function that marks vertices with the labels “AND”

or “OR”;

'�1��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

Ɋ- a quality characteristics tree3 with the set of leaf nodes Ɋ1;

ȹ = {�i�1�i� N2}- a nonempty set of rating levels;

Ū - quality assessment function used to evaluate quality goals that is defined as









=Θ

≤≤

=

∑
OR""label

AND""label

thehas

thehas

if

if

),g*(max

,g*
)(

i
1

i

1

3

3

v

v
v

i
Ni

N

i

i

δ

δ
(2), where

v�V, �i – evaluation values that sign vertices adjacent to the vertex v, gi�G –

weights that sign incoming arrows for the vertex v; N3 – number of incoming arrows

for the vertex v (goals of the lowest levels are evaluated on the basis of rating levels

of appropriate quality characteristics);

M={mi�1�i� N4}- a nonempty set of quality metrics;

µ: Ɋ1�M - one-to-many mapping that relates quality metrics to quality

characteristics;

�: Ɋ2 �ȹ - rating function that maps the set of measured values (scores) Ɋ2 =

{m(�)�m�M, �� Ɋ1, µ(�)=m} to rating levels.

A quality model for the particular project is designed in the following way. First

of all quality goals and their weights should be defined and goals interdependence

graph should be developed. Further rating levels should be selected. In the next step,

quality characteristics that impact quality goals should be selected and the most

appropriate metrics for measuring these characteristics should be chosen. Finally,

quality assessment criteria should be developed. Note that quality characteristics tree

Ɋ defines internal quality of the language or, in other words, it does not depend on

the particular project and, consequently, is the same for any quality model.

However, not all quality characteristics might be important from the viewpoint of

the particular project and in the particular quality model some characteristics might

be missed.

Let us consider the example of a simple quality model Q1 designed for project P1

in order to choose the most appropriate IS specification language.

v3 v4

v2v1

v0

v5 v6

+0,4 +0,6

+1,3 -0,3 +0,2 +0,8

Figure 1. The weighted digraph describing interdependencies between quality goals

Example 1.

1. Goal interdependencies graph ũ is presented in Fig.1.

3 Following tradition, we use the term “quality characteristics tree”, although, it

is a hierarchical classification of quality characteristics, represented by tree.

'�� �
�
*
����
��� ������
����� �������

Weights set is defined as G={-0.3, +0.2, +0.4, +0.6, +0.8, +1.3}.

Weighting function f is defined as follows:

f(v3,v1)=+1.3; f(v4,v1)=-0.3; f(v1,v0)=+0.4;

f(v5,v2)=+0.2; f(v6,v2)=+0.8; f(v2,v0)=+0.6;

2. Quality characteristics tree Ɋ is presented in Fig. 2.

a1 a2

a3Gr1

Ψ

Figure 2. Quality characteristics tree

The set of tree leaf nodes is defined as Ɋ1= {a1, a2, a3}.

3. The set of rating levels is defined as ȹ = {1 (unacceptable), 2 (acceptable), 3

(good)};

4. Quality assessment function Ū is defined as follows:

Ū(v1)= 1.3 Ū(v3)-0.3 Ū(v4);

Ū(v2)= 0.2 Ū(v5)+0.8 Ū(v6);

Ū(v0)= 0.4 Ū(v1)+0.6 Ū(v2);

Ū(v3)= 1.5 �(a1) – 0.5 �(a2);

Ū(v4)= 0.2 �(a2) + 0.8 �(a3);

Ū(v5)= 0.3 �(a1) + 0.8 �(a2) – 0.1 �(a3);

Ū(v6)= 0.8 �(a1) + 0.2 �(a3);

5. The set of quality metrics is defined as µ ={m1, m2}. Metrics are related to

quality characteristics in the following way:

µ={(m1,a1), (m2,a2), (m2,a3)}

6. The rating function � is defined as follows:









≤

<≤

<≤

=

m1(a1)5 if 3,

5,a1)(1m1 if 2,

1,a1)(1m 0 if 1,

))1(1(amξ









≤

<≤

<

=

m2(a2)20 if 3,

20,m2(a2)15 if 2,

15,m2(a2) 1,

))2(2(amξ









≤

<≤

<

=

m2(a3)30 if 3,

30,m2(a3)25 if 2,

25,m2(a3) if 1,

))3(2(amξ

'����� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

4. Evaluation procedure

The proposed user-oriented quality model suggests appropriate quality evaluation

procedure. This procedure includes four steps:

1. The value of every quality characteristic from tree Ɋ is measured using metrics

mi from the set M.

2. Rating level of every measured quality characteristic value is determined by

the values of rating function � arguments.

3. The rating levels of terminal quality goals are defined using quality assessment

function Ū.

4. The rating levels are propagated through the goal interdependencies graph ũ

using quality assessment function Ū.

Example 2.

The evaluation of IS specification language L1 according to quality evaluation

procedure provided by the quality model Q1 presented in Example 1 gives the

following results:

1. m1(a1)=3; m2(a2)=15; m2(a3)=25;

2. �(3) = 2; �(15) = 2; �(25) = 2;

3. Ū(v3)= 1; Ū(v4)= 1; Ū(v5)= 2; Ū(v6)= 2;

4. Ū(v1)= 2; Ū(v2)= 2; Ū(v0)= 2.

Thus, the quality of evaluated specification language L1 for the project P1 is

acceptable (rating level 2).

5. Quality goals

In the proposed approach, high-level quality requirements are formulated in the

form of quality goals. The user’s treatment of quality goals and interdependencies

between goals are described using goal interdependency graph (GIG) ũ. The idea of

GIG is borrowed from [1], where similar graphs, namely, softgoal interdependency

graphs (SIG), are used to define non-functional software requirements. The

advantage of GIG, comparing to quality characteristics tree, is that user can start

from business goals, formulate high-level quality requirements and derive further

detailed quality requirements, formulated in the terms of low-level quality

characteristics. For example, top management may aim to spend money on staff

training, minimise the amount of efforts needed to produce specifications, and

produce specifications readable by domain experts. In other words, management is

looking for an IS specification language that would be simple enough to learn in

short terms by not skilled staff, would be efficient and would have high degree of

audience appropriateness. GIG allows defining goal interdependences and priorities,

helps to expose implicit interdependencies and to refine requirements up to low-

level quality characteristics. By refinement, for each goal a set of subgoals to satisfy

this goal is introduced. Parent goal may be satisfied by all of its subgoals or by any

of them. In addition, some subgoals can contribute positively towards a particular

goal and negatively towards another goals.

'�2 �
�
*
����
��� ������
����� �������

Although GIGs are very similar to SIGs, they are used for different purposes and

in different way. The main problem investigated in [4] is software design problem.

SIGs are used in top-down manner with the aim to refine non-functional

requirements, including quality requirements, to choose design decisions, which

accomplish those requirements in the possibly best way, and to evaluate the impact

of chosen decisions in bottom-up way. Our task is to choose such IS specification

language, which satisfies quality requirements in the best way. So we need to choose

not the design decisions but the most appropriate metrics and measurement

procedures and, further, to propagate evaluation results through the GIG in the

bottom-up manner.

6. Quality assessment function

Each quality goal is evaluated using quality assessment function Ū. This function

is used to propagate rating levels of quality characteristics through the GIG from

bottom towards the top of the graph. Measured values are mapped to rating levels

because, in a general case, they are incomparable, expressed in different dimensions.

Quality assessment function of the lowest GIG levels is calculated using measured

values of quality characteristics from tree 	. These values are used as intermediate

to calculate quality assessment function of the highest GIG level. Quality assessment

function depends on goals priorities and, consequently, is designed in such way that

to evaluate the impact of quality characteristics of the chosen language on the

quality goals. Because the arrows are signed by negative and positive priorities, the

calculated value may be not exactly integer. It means that we propagate towards top

of the graph not the rating levels itself but some values that belong to intervals [v1,

v2], where v1 and v2 are adjacent rating levels.

For “AND” vertices the value of quality assessment function is calculated taking

into account the weights of all incoming arcs. In this case, positive as well as

negative weights are allowed, and it is required that the sum of weights should be

equal to 1. For “OR” vertices the value of the Ū is the maximal one from the

propagated values. In this case, only positive weights are allowed, and it is required

that any weight do not exceed 1.

7. Quality characteristics

A number of publications on IS specification problems [9], [10], [13], [17], [18],

[20], [21], [22], [23] mention different quality characteristics that specification

language should have. Some quality characteristics discussed in publications on the

quality of programming languages and cognitive dimensions of information artefacts

(see, for example, [14]) also are closely related to the quality of specification

languages. However, exhaustive set of quality characteristics up to date still has not

been proposed. Extensive library research [3] has brought to light that some

important quality characteristics even have no names and some important groups of

quality characteristics are not thought as a coherent groups. Also in the field of

programming languages, where research has already a long history, different

'�3��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

researchers evaluate quality of programming languages using slightly different

quality characteristics and classify these characteristics in different ways. For

example, some researchers argue that reliability of a language is influenced by both

readability and writability, others – that it is influenced only by readability. In

addition, the characteristics of the internal quality and characteristics of the quality

in use often are not entirely separated. On the basis of the results of conceptual

analysis of wide spectrum of specification languages, including UML, Z, VDL,

Troll, and Alloy, we decided to organise quality characteristics of specification

language in a way proposed by ISO/IEC 9126 standard [6]. From six groups of

software quality characteristics (functionality, reliability, usability, efficiency,

maintainability, and portability) provided by this standard we have left only four

because maintainability and portability are relevant rather to software tools

supporting production of specifications than to specification language itself. The

current version of the quality characteristics tree is presented in Appendix 1. Let us

comment this tree shortly.

Following the idea, proposed by Krogstie and Sølvberg [9] and elaborated in [3],

we describe quality characteristics in terms of linguistic system, defining a formal

structure beyond the language, and in terms of representation system, defining forms

of representation of its constructs. Further, we treat the concepts of functionality,

reliability, usability, and efficiency in a different way than ISO/IEC 9126 standard

and, consequently, refine these characteristics using other lower level sub-

characteristics. Functionality of a specification language is understood as the

existence of means, required to specify functional and non-functional properties of

the system under consideration. Functionality has two dimensions: suitability and

flexibility. The first one characterises the kind of systems that can be described

using a given language, the second one – the spectrum of describable systems (real-

world systems, IS, software systems, etc.). We suppose that the specification of the

system can be seen as a collection of statements about the properties of this system.

Statements can be explicit, or implicit, derivable from other statements. The

possibility to produce such specification first of all depends on the completeness of

the language or, in other words, on the ability to express all necessary kinds of

knowledge at all representation levels: epistemological, ontological, and conceptual

[3]. We present only first two levels of the completeness characteristics. This is far

not enough to operationalise completeness. At least three or four additional levels

should be added for this aim.

It should also be noted that we define two unusual characteristics: paradigm and

ontology. Although these characteristics describe important properties of a language,

they are not related directly to the internal quality of this language. However,

evaluation of the quality in use often requires considering formalism beyond

specification language and assessing of ontological aspects of this language.

Besides, these characteristics are not entirely descriptive and sometimes should be

operationalised, for example, a metric should be developed to measure the degree of

procedureness of the language.

''� �
�
*
����
��� ������
����� �������

8. Conclusions and further research

Despite the quality of specification languages has strong impact on the quality of

specifications research in this field is still in beginning. Although specification

languages in many aspects are similar to programming languages, quality models of

the latter cannot be applied directly to the former. Additionally, quality models of

programming languages mostly also are only sketched. No commonly accepted

agreement exists about the collection of quality characteristics, their names and their

taxonomy, internal quality is not separated from quality in use.

This paper continues research on the evaluation of the quality of specification

languages, which has begun in [3]. It should be considered as a first attempt to

develop exhaustive quality characteristics tree to evaluate internal quality and

procedure to evaluate quality in use. Further research provides elaboration and

operationalisation of the quality characteristics tree, development of the quality

characteristics tree for the quality in use and, maybe, improvement of the evaluation

procedure.

References

[1] Belchior, A. D., Xexéo, G., da Rocha, A. R. C. Evaluating Software Quality Requirements

using Fuzzy Theory. In: Proceedings of ISAS 96, Orlando, July, 1996,

http://www.cos.ufrj.br/~xexeo/artigos/isas96/isas96.htm

[2] Botella, P., Burgués, X., Carvallo, J.P., Franch, X., Pastor, J.A., Quer, C. Towards a

Quality Model for the Selection of ERP Systems. In Cechich, A., Piattini, M., Vallecillo,

A. (eds.). Component-Based Software Quality: Methods and Techniques. LNCS 2693,

Springer, 1998, 225-245.

[3] Caplinskas, A., Lupeikiene, A., Vasilecas, O. A Framework to Analyse and Evaluate

Information Systems Specification Languages. In Manolopoulos, Y., Navrat, P. (eds.).

Advances in Databases and Information Systems. 6th East European Conference, ADBIS

2002, Bratislava, Slovakia, September 2002, Proceedings. LNCS 2435, Springer, 2002, pp.

248-262.

[4] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J. Non-functional Requirements in Software

Engineering. Kluwer Academic Publishers, 2000.

[5] ISO 8402. Quality management and quality assurance vocabulary. Second edition. (1994-

04-01).

[6] ISO/IEC 9126. Information Technology – Software Product Evaluation – Quality

Characteristics and Guidelines for their Use. First edition, 1991-12-15, reference number

ISO/IEC 9126: 1991(E).

[7] Jackson, D. A Comparison of Object Modelling Notations: Alloy, UML and Z.

Unpublished manuscript. MIT Lab for Computer Science, August 1999, retrieved January

10, 2004 from http://geyer.lcs.mit.edu/~dnj/pubs/alloy~comparison.pdf

 [8] King, M., Maegaard, B. Issues in Natural Language Systems Evaluation. In: Proceedings

of the First Conference on Language Resources and Evaluation, Granada 1998, 225-230,

retrieved January 10, 2004 from http://citeseer.nj.nec.com/514907.html.

[9] Krogstie, J., Sølvberg, A. Information Systems Engineering: Conceptual Modeling in a

Quality Perspective. The Norwegian University of Science and Technology, Andersen

Consulting (January 2, 2000). The draft of the book.

[10] Lindland, O.I., Sindre, G., Sølvberg, A. Understanding Quality in Conceptual modelling.

IEEE Software (March 1994) 42-49.

''(��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

[11] Milton, S., Kazmierczak, E., Keen, C. Comparing Data Modelling Frameworks Using

Chisholm's Ontology, In Proceedings of the 4th European Conference on Information

Systems, ECIS'98, Aix-en-Provence, June 1998, 1998.

[12] Mylopoulos, J. Characterizing Information Modeling Techniques. Bernus, P., Mertins,

K., Schmidt, G. (eds.). Handbook on Architectures of Information Systems. Springer,

Berlin, 1998, pp. 17-57.

[13] Opdahl, A. L. Applying Semantic Quality Criteria to Multi-Perspective Problem

Analysis Methods. In Dubois, E., Opdahl, A. L., Pohl, K. (eds.). Proceedings of "The

Third International Workshop on Requirements Engineering: Foundations of Software

Quality — REFSQ'97", Barcelona/Spain, June 1997, 1997.

[14] Pane, J.F., Myers, B. A. Usability Issues in the Design of Novice Programming Systems.

Technical Report CMU-CS-96-132, School of Computer Science, Carnegie Mellon

University, Pittsburgh, 1996, retrieved January 10, 2004 from http://www-

2.cs.cmu.edu/~pane/cmu-cs-96-132.html.

[15] Peters, L.J., Trip, L.L.: Comparing Software Design Methodologies. Datamation, 23(11),

(1977) 89-94.

[16] QStudio® for Java. The Software Health Tool for Java. QA Systems BV, The

Netherlands, 2003, retrieved January 10, 2004 from http://www.qa-

systems.com/welcome.html.

[17] Seltveit, A.H.: Complexity Reduction in Information Systems Modelling. PhD thesis,

IDT, NTH, Trondheim, Norway (1994).

[18] Sindre, G. HICONS: A General Diagrammatic Framework for Hierarchical Modelling.

PhD thesis, IDT, NTH, Trondheim, Norway (1990).

[19] Simão R. P.S., Belchior A.D. Quality Characteristics for Software Components:

Hierarchy and Quality Guides. In Cechich, A., Piattini, M., Vallecillo, A. (eds.).

Component-Based Software Quality: Methods and Techniques. LNCS 2693, Springer,

1998, 184-206.

[20] Wand, Y., Weber, R. An ontological analysis of systems analysis and design methods. In

Falkenberg, E., Lindgreen, P. (eds.). Information Systems Concepts 95— An In-Depth

Analysis, North-Holland, 1989, 79–107.

[21] Wand, Y., Weber, R. An Ontological Evaluation of Systems Analysis and Design

Methods. In: Falkenberg, E.D., Lindgreen, P. (eds.): Information Systems Concepts: An

In-depth Analysis. North-Holland, Amsterdam (1989) 79-107.

[22] Wand, Y., Weber, R. On the Ontological Expressiveness of Information Systems

Analysis and Design Grammars. Journal of Information Systems 3(4) (1993) 217-237.

[23] Wand, Y., Weber, R. On the Deep Structure of Information Systems. Information

Systems Journal, 1995, 5, 203-223.

''� �
�
*
����
��� ������
����� �������

Appendix 1. – Specification language quality characteristics

definitions

1 Functionality Characteristics of a linguistic system

that bear on the existence of means

required specifying a given

phenomenon.

1.1 Suitability Characteristics of a linguistic system

that bear on its conceptual

appropriateness.

1.1.1 Completeness Characteristic of a linguistic system

that bears on its ability to express

statements about a given

phenomenon.

1.1.1.1 Semantic adequacy Characteristics of a linguistic system

that bear on its ability to express

semantic primitives.

1.1.1.1.1 Epistemological adequacy Characteristic of a linguistic system

that bears on its ability to express

epistemological primitives.

1.1.1.1.2 Ontological adequacy Characteristic of a linguistic system

that bears on its ability to express its

ontological commitments.

1.1.1.1.3 Conceptual adequacy Characteristic of a linguistic system

that bears on its ability to express

cognitive primitives.

1.1.1.2 Composability Characteristic of a linguistic system

that bears on its ability to express

compositions of semantic primitives.

1.1.1.3 Expressibility Characteristic of a linguistic system

that bears on its ability to express

statements about properties of

semantic primitives and their

compositions.

1.1.1.4 Reasoning power Characteristic of a linguistic system

that bears on its ability to derive new

statements about properties of

semantic primitives and their

compositions.

1.1.2 Expressive adequacy Characteristics of a linguistic system

that bears on its ability to express

semantic primitives with the needed

degree of precision.

1.1.2.1 Selective power Characteristic of a linguistic system

that bears on its ability to distinguish

'''��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

details with the needed degree of

precision.

1.1.2.2 Generalitive power Characteristic of a linguistic system

that bears on its ability to support

abstractions and to hide details.

1.1.3 Paradigm Characteristic of a linguistic system

that describes mathematical theory

beyond the language.

1.2 Flexibility Characteristics of a linguistic system

that bears on the spectrum of its

applicability (real-world system, IS,

software system, etc.).

1.2.1 Adaptability Characteristic of a linguistic system

that bears on its ability to specialise

its constructs.

1.2.2 Universality Characteristic of a linguistic system

that bears on its ability to apply its

constructs to a wide spectrum of

phenomena.

1.2.3 Extensionability Characteristic of a language (both

linguistic system and representation

system) that bears on its ability to

define new constructs.

2 Reliability Characteristics of a linguistic system

that bear on its ability to ensure

correctness of specifications.

2.1 Error robustness Characteristic of a language (both

linguistic system and representation

system) that bears on the number of

errors in the specification.

2.1.1 Precision of semantics Characteristic of a linguistic system

that bears on unambiguity of the

concepts of language.

2.1.2 Precision of notation Characteristic of a representation

system that bears on unambiguity of

the structure of language constructs.

2.1.3 Distinguishibility Characteristic of a representation

system that bears on absence of

subtle distinctions in syntax, which

might be overlooked or confused.

2.1.4 Simplicity Characteristic of a language (both

linguistic system and representation

system) that bears on the

comprehensibility of language

2.1.4.1 Conceptual simplicity Characteristic of a linguistic system

that bears on the comprehensibility

(including conceptual cleanliness) of

the concepts defined by language.

''� �
�
*
����
��� ������
����� �������

2.1.4.2 Functional simplicity Characteristic of a linguistic system

that bears on a number of features of

language.

2.1.4.3 Representational simplicity Characteristic of a representation

system that bears on the

comprehensibility (including

syntactical transparency) of the

constructions of language.

2.1.5 Semantic power Characteristic of a linguistic system

(level of language) that bears on the

semantic power of the concepts

defined by this system.

2.1.6 Orthogonality Characteristic of a linguistic system

that bears on the degree in which the

concepts of the language interfere

with each other.

2.1.7 Uniformity Characteristic of a language (both

linguistic system and representation

system) that bears on the degree of

internal standardisation of the syntax

(syntactical uniformity) and the

semantic (semantic uniformity) of

the construction of the language.

2.2 Verifiability Characteristic of a linguistic system

that bears on the ability (including

executability) to check correctness of

produced specifications.

3 Efficiency Characteristics of a linguistic system

and a representation system that bear

on the amount of efforts needed to

produce specification.

3.1 Expressive efficiency Characteristic of a linguistic system

that bears on the efforts necessary to

express the statements about the

phenomena.

3.2 Representational efficiency Characteristic of a representation

system that bears on efforts

necessary to represent the statements

about the phenomena.

3.3 Semantic power Characteristic of a linguistic system

(level of language) that bears on the

semantic power of the concepts

defined by this system.

3.4 Orthogonality Characteristic of a linguistic system

that bears on the degree in which the

concepts of the language interfere

with each other.

3.5 Permissiveness Characteristic of a language (both

''1��� �����	
��
��
�� ��
���������
� ��+"�"$&� "!� �,�#�-��#%��%-�� �"� �.�/0���� ��

linguistic system and representation

system) that bears on its ability to

express and represent things in

several different ways.

3.6 Viscosity Characteristic of a language (both

linguistic system and representation

system) that bears on the possibility

to narrow the change impact on the

produced specification.

3.7 Technological efficiency Characteristics of a language (both

linguistic system and representation

system) that bear on the

technological appropriateness of a

language.

3.7.1 Manageability Characteristics of a language (both

linguistic system and representation

system) that bear on appropriateness

of the language to deal with large

and complex specifications.

3.7.1.1 Decomposability Characteristic of a language (both

linguistic system and representation

system) that bears on the possibility

to divide the produced specification

into relatively autonomous and

independent subparts.

3.7.1.2 Genericity Characteristic of a linguistic system

that bears on the possibility to use

generic types.

3.7.2 Processability Characteristic of a language (both

linguistic system and representation

system) that bear on appropriateness

of the language to manipulate

specifications by software.

4 Usability Characteristics of a linguistic system

and a representation system that bear

on the audiences’ effort to

understand and to learn a language.

4.1 Understandability Characteristics of a linguistic system

that bear on the audiences’ effort to

understand its conceptualisation.

4.1.1 Ontology Characteristic of a linguistic system

that describes language ontology.

4.1.2 Naturalness Characteristic of a linguistic system

that bears on the correspondence

between the language ontology and

the common sense.

4.1.3 Precision of semantics See 2.1.1

4.1.4 Precision of notation See 2.1.2

''� �
�
*
����
��� ������
����� �������

4.1.5 Distinguishibility See 2.1.3

4.1.6 Uniformity See 2.1.7

4.2 Learnability Characteristics of a linguistic system

and a representation system that bear

on the audiences’ effort for learning

of language application.

4.2.1 Simplicity See 2.1.4

4.2.2 Semantic power See 3.3

4.2.3 Naturalness See 4.1.2

4.2.4 Uniformity See 2.1.7

4.2.5 Commonality Characteristic of a language (both

linguistic system and representation

system) that make the language

adhere to wide-accepted standards or

conventions.

�����

���	
��������	

Model Transformation Language MOLA: Extended

Patterns

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS

29 Raina boulevard, Riga, Latvia

{Audris.Kalnins, Edgars.Celms}@mii.lu.lv

Abstract. The paper describes a new graphical transformation language

MOLA for MDA-related model transformations. Transformations in MOLA

are described by combining traditional control structures, especially loops,

with pattern-based transformation rules. Besides an overview of the basic

MOLA, the paper describes an extension of MOLA – powerful patterns,

which may include transitive closure. The paper shows how the usage of these

patterns simplifies control structures for typical MDA tasks.

Keywords. Model transformations, MDA, patterns

1. Introduction

The increased use of modeling techniques nowadays requires effective support

for model transformations. Perhaps, one of the most actual areas in software

engineering today is the Model Driven Architecture (MDA) [1]. MDA is a software

development approach in which models are the primary artifacts. According to the

MDA, the different types of models are defined (most usually in UML [2,3]

notation), mapping between models and towards different targets is formalized, and

guidelines are automated, in order to improve efficiency and guarantee that the

process of the transformation between models is properly followed. Model-to-model

transformation is therefore a key technology for MDA. While the current Object

Management Group (OMG) standards such as the Meta Object Facility (MOF) [4]

and the UML provide a well-established foundation for defining different types of

models, no such well-established foundation exists for transformations between

them. The need for standardization in this area led to the MOF 2.0

Query/Views/Transformations (QVT) request for Proposals (RFP)[5] from OMG.

To a great degree the success of the MDA initiative and of QVT in particular will

depend on the availability of a concrete syntax for model-to-model transformations

that is able to express non-trivial transformations in a clear and compact format that

would be useful for industrial production of business software [6].

The submissions by several consortiums have been already made, e.g. [7, 8, 9],

and it is somewhat surprisingly, that only a few of them use a natural graphical

representation of their language. Currently none of them has reached the status of a

complete model transformation language. Several proposals for transformation

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ''()'*�� 	�

'�� �
�
+
����
��� ������
����� �������

languages have been provided outside the OMG activities. The most interesting and

complete of them seem to be UMLX [10] and GReAT [11].

According to our view, and many others [6], model transformations should be

defined graphically, but combining the graphical form with text where appropriate.

Graphical forms of transformations have the advantage of being able to represent

mappings between patterns in source and target models in a direct way. This is the

motivation behind visual languages such as UMLX, GReAT and the others proposed

in the QVT submissions. Unfortunately, the currently proposed visual notations do

not provide easy readable descriptions of model transformations.

The common setting for all transformation languages is such that the model to be

transformed – the source model is supplied as set of class and association instances

conforming to the source metamodel. The result of transformation is the set of

instances conforming to the target metamodel – the target model. Therefore the

transformation has to operate with instance sets specified by a class diagram

(actually, the subset of class notation, which is supported by MOF).

Approaches that use graphical notation of model transformations draw on the

theoretical work on graph transformations. Hence it follows that most of these

transformation languages define transformations as sets of related rules. Each rule

consists of a pattern and action part, where the pattern has to been found (matched)

in the existing instance set and the actions specify the modifications related to the

matched subset of instances. This schema is used in all of abovementioned graphical

transformation languages. Languages really differ in the strength of pattern

definition mechanisms and control structures governing the execution order of rules.

The most detailed pattern definition is in the GReAT language. There it is

possible to match a set of instances to one element of the pattern (variable

cardinality patterns). However, the patterns are still limited in depth but this is

compensated by a very elaborated rule control structure specified graphically by

dataflow-like diagrams. UMLX has a similar but slightly weaker pattern mechanism.

The control structure is completely based on recursive invocations of rules. In the

proposal by QvT-Partners [7] graphical patterns are combined with extensive use of

textual constraints. The control structure is based on recursive invocation of rules. In

the DSTC/IBM/CBOP proposal [12] (now merged with [7]) patterns are specified in

a textual (Prolog-like) form, the most interesting feature of this language is the

possibility to include a transitive closure in patterns.

This paper proposes a new graphical transformation language MOLA (Model

Transformation Language). The main design goal for MOLA has been to make the

transformation definitions natural and easy readable, by relying on simple iterative

(non-recursive) control structures, based on traditional structured programming. In

addition, as far as it improves readability, the intention was to make each rule more

powerful. In particular, this requires the strengthening of pattern mechanism. The

MOLA project actually consists of two parts – the basic and extended MOLA. The

basic MOLA uses simple patterns and more relies on control structures – it has a

more procedural style. The main element there is a graphical loop concept, which

can easily be combined with a transformation rule. The main new feature of the

extended MOLA is the possibility to define looping patterns of “unlimited depth” (in

addition to variable cardinality), thus incorporating the mechanism of transitive

closure in patterns. In the result, very simple control structure – a sequence of simple

loops then is sufficient for many transformation jobs. Certainly, such a pattern

'�,��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

definition requires an adequate definition of the matching procedure, which is also

described in the paper. High execution efficiency for the procedure is guaranteed in

the typical case when the pattern cardinalities are adapted to the metamodel

multiplicities, to which the instance set conforms (the “uniqueness principle” is

observed). Patterns in MOLA are defined as directed graphs, to enable the required

control over the matching procedure – also a new feature for pattern definition. As a

consequence of larger and more powerful patterns, a typical step of a transformation

frequently can be described by one rule. This natural non-recursive style of

transformation definitions in MOLA has been tested on several real MDA jobs, at

the same time using the features of MOLA to keep each rule not too complicated

(namely the right balance there ensures the human readability of transformations).

As far as we know, the extended MOLA is the only graphical transformation

language, which supports transitive closure in patterns. The ideas for pattern

definition in MOLA have been partially inspired by the authors’ previous experience

in defining mappings for generic modeling tools based on metamodels [13].

 This paper describes the basic elements of MOLA. The main emphasis is on the

extended pattern concept. Language description is based on a typical MDA example

(used also in [7, 8, 10, 14]) – transformation of a simplified class diagram into a

database definition. Section 2 describes the general structure of MOLA, section 3 -

the example. Section 4 describes the basic MOLA – rules with simple patterns and

the new concept of loop. The complete pattern mechanism in extended MOLA,

including cardinality constraints, looping patterns and the corresponding matching

procedure is described in section 5.

2. Overview of language elements in MOLA.

The MOLA language is a natural combination of pattern-based model

transformation rules with control structures from traditional structured

programming, both specified in a graphical form.

MOLA is meant for transforming models built according to one metamodel – the

source metamodel (SMM) to models conforming to another metamodel – the

target metamodel (TMM). In a special case, SMM and TMM may coincide. Both

the source and target models actually are treated as instance sets of the

corresponding metamodel classes and associations.

A transformation definition in MOLA consists of the both metamodels and the

transformation program. A transformation program in MOLA is a sequence of

statements. A statement is a graphical area, delimited by a rectangle – in most

cases, a gray rounded rectangle. The statement sequence is shown by dashed arrows.

The program starts with the UML start symbol and ends with an end symbol.

 The simplest kind of statement is a rule, which performs an elementary

transformation of instances. A rule contains a pattern – a set of elements

representing class and association instances, built in accordance with the source

metamodel. Pattern elements can have attribute constraints (OCL expressions).

The pattern specifies what kind of instance group must be found in the source

model, to which the rule must be applied. A rule has also an action specification –

new class instances to be built, instances to be deleted, association instances (links)

'�� �
�
+
����
��� ������
����� �������

to be built or deleted and the modified attribute values (as assignments). Both for the

pattern and action part the UML object (instance specification) notation is used.

The most important statement type in MOLA is the loop. Graphically a loop is a

rectangular frame, containing a sequence of statements. This sequence starts with a

special loop head statement. The loop head is also a pattern, but with one element –

the loop variable highlighted (by a bold frame). Informally a loop variable

represents an arbitrary instance of the given class, which satisfies the conditions

specified by the pattern. Actually there are two types of loops in MOLA, differing in

semantics details. The first type (denoted by a simple frame) is executed once for

each valid loop variable instance, therefore it is called FOREACH loop. Mainly this

type of loop will be used in the paper. The second type (denoted by a 3-d frame) is

executed while there is at least one loop variable instance satisfying the pattern

conditions – it is called the WHILE loop. Loops can be nested to any depth. A loop

head can contain actions – it is also a rule. Such a combined statement will be

widely used in the examples of this paper.

Other control structures in MOLA are the branch construct – several frames

started by pattern statements as conditions and the subprogram concept together

with the subprogram call, where the parameters can contain references to instances

used in the calling program. However, these control structures actually will not be

used in the paper – the aim of this paper is to demonstrate how extended patterns in

MOLA allow to use a very simple control structure – a sequence of simple loops.

Section 4 discusses in detail the syntax and semantics of basic MOLA on an

example. Then the extended patterns are introduced – the section 5 describes the

extended MOLA.

 The general execution schema in MOLA is simple – when a source model is

supplied, statements are applied to it in the specified order. A statement is always

applied to the whole instance set which is being gradually transformed by the rule

actions. The potential execution efficiency is ensured by the corresponding features

of the pattern language, where it is easy to specify that only “useful” pattern matches

occur.

During the transformation process one more optional metamodel – the

intermediate metamodel (IMM) may be used. IMM contains both SMM and TMM

as a subsets, and additional elements – classes, attributes and associations necessary

for performing the transformation. There is a special kind of additional associations

– mapping associations which in fact are present in every transformation. These

associations physically implement the mapping from the elements of source model

to target elements, therefore they link classes from SMM to the corresponding

classes in TMM. See more on the role of mapping associations in 4.2. Namely due

to a large set of mapping associations it is recommended to use IMM for non-trivial

transformations (it is also permitted in MOLA to define mapping associations “on

the fly” – directly in rules, if IMM is not used). Another important elements of IMM

are computed attributes – “temporary” attributes added to classes of IMM for

storing intermediate values. There may be several kinds of computed attributes, the

most used here are the rule-local ones. Names of rule-local attributes start with “?”

in the IMM, see more on them in 5.2. Non-local temporary attributes (with the scope

of several statements) can be also defined/created and destroyed by special

statements.

'�'��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

3 Example - the class model to relational model transformation

The paper will be based on a typical MDA example, considered also in [7, 8, 10,

14] – the transformation of a simplified class diagram into a semantically equivalent

relational database definition. For all the different versions of the example the one in

[7] is used here. This version permits to demonstrate the easy definition of transitive

closure in extended MOLA. The SMM for this task is shown in Fig.1.

CL-MM

AssociationAttribute

PrimitiveDataType

Class

Classifier

ModelElement

name:string

kind:string

reverse

destination

*

1

forward

source

*

1

owner

attribute

0..1

*

typed

type*

1

Figure 1. Source metamodel for simplified class diagram.

All elements can have a name. The metaattribute kind is applicable to metaclasses

Class and Attribute, only a Class where its value is “persistent” must be transformed

into a database Table, the value of kind equal to “primary” determines that an

Attribute actually is a part of a primary key (all other values of kind are irrelevant).

The type of an Attribute can be either a PrimitiveDataType, or another Class. Fig.2

shows the TMM - a simplified relational database definition metamodel.

DB-MMModelElement

name:string

kind:string

Table Key

Column
type:string

ForeignKey

owner

key1

0..1

ownercolumn 1

*

belongsTo

column

0..1

*

foreignKey

column

*

*

owner

foreignKey

1

* referedBy

refersTo

*

1

Figure 2. Target metamodel for database definition.

'�� �
�
+
����
��� ������
����� �������

A Table consists of Columns, and it can have a (primary) Key, which contains

some of the Columns. The ForeignKey for a Table always refers to a Key of another

Table.

The informal transformation algorithm is quite straightforward. For each

persistent class a table and its key must be built. The primitive-typed attributes of

this class become columns of the table (with the same name and type name). The

columns which correspond to primitive-typed attributes of primary kind become

parts of the key. In addition, for class-typed attributes, the primitive attributes of the

target class are also transformed to columns of the table for the original class (as

“indirect attributes”), and this process of finding indirect attributes is continued

down until no more indirect attributes can be found (so-called class flattening – a

transitive closure-like process). A column for an indirect attribute has a compound

name – the concatenation of all attribute names down to the primitive one. An

association is converted into a foreign key for the source class (table), and this

foreign key refers to the key for the destination class. In addition, new columns are

added to the source table (and to the foreign key) – one (equally named and typed)

for each column of the corresponding key. The problem of ordering the columns in

keys is ignored in the example. Association multiplicities also are not used in this

simplified example – only the association direction matters. It should be noted that

the processing of indirect attributes and associations is independent – it may be done

in any order.

IMM

Attribute
?prefix :String

Classifier

ForeignKey

ModelElement

name:String

kind:String

Association

Column

PrimitiveDataType

Key

Class
?prefix :String

Table

typed

type *

 1

owner

 attribute

 0..1

 *

#colForAttribute

 1

 0..1

owner foreignKey 1

 *

forward

source

 *

 1

#forKeyForAssoc

 1

 0..1 column

owner

 *

 1
refersTo

referredBy 1

 *

reverse

destination

 *

 1

owner

 key 1

 0..1
#tableForClass

 1

 0..1
#keyForClass

 1

 0..1

 column

 foreignKey

 *

 *

 column

belongsTo

 *

 0..1

#fcolForKcol
 1 *

Figure 3. Intermediate metamodel for the transformation.

The one remaining element to be described is the IMM – see Fig.3. In addition to

a copy of SMM and a copy of TMM (the classes of TMM are in a darker color), it

contains mapping associations from source to target elements, e.g., from Class to

Table. These mapping associations will be used in rules in sections 4 and 5, they

have the # character prefixed to role names and are in red color in Fig.3. IMM

contains also a computed attribute prefix of rule-local kind (names of rule-local

attributes start with “?” in MOLA), it will be used in section 5.2.

'�*��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

4. Structure of simple loops and rules

As it was stated, both loops and rules rely on patterns in MOLA. In this section

the structure of simplest patterns will be described in detail. These patterns, for

which only a fixed-size match is possible, have a very simple matching algorithm.

The patterns in this section actually are weaker than those described in [10, 11], the

goal of this section is just to demonstrate the general principles of MOLA in a very

simple case. Non-trivial patterns of MOLA will be described in section 5.

4.1. Basic patterns

A pattern in MOLA specifies the instance set which can be matched to it. From a

syntax point of view, it is similar to UML 2.0 collaborations or structured classifiers.

The main element of a pattern is a source metamodel class, specified in UML

instance notation. Each element has an optional instance name and the class

name, the same class may be used several times in a pattern. In totality, they must

be unique within a pattern. Each element matches to an appropriate instance of that

class. Since a typical use of pattern in MOLA is in a loop head, we start with this

case. There one pattern element – the loop head (a bold one) has a special meaning.

All other elements of the pattern are used to specify, namely which instances of this

class in the source model can be used as loop variable instances. The other pattern

elements (which may correspond also to target metamodel classes) also must match

to an appropriate instance – they specify the context of a loop variable.

In addition to elements, a pattern contains pattern associations – selected

metamodel associations between the used classes and attribute constraints – OCL

constraints specified within elements (in braces). The specified association instances

must exist between the matched model instances and the attribute constraints must

evaluate to true. Pattern associations can have also a {NOT} constraint – this means

that no specified instance can be linked to the “main match” by the given link.

Thus a pattern in a loop head specifies which instances of the given class in the

source model qualify as valid instances for the loop variable. The other pattern

elements have the “exists” semantics – there must be (or must not be) an appropriate

instance in the selected match, but there is no need to find all possible matches for

them.

The loop variable in a pattern in fact plays the role of its root – the match is

started from it.

Fig.4 shows the simplest pattern consisting just of the loop variable. This pattern

says that an instance of Class in the source model (i.e., the instance set

corresponding to the class diagram to be transformed into a database definition)

matches to this pattern, if its kind has the value “persistent” (kind – a string-typed

attribute of Class).

cl:Class

{kind = "persistent"}

Figure 4. Simplest pattern example.

'�� �
�
+
����
��� ������
����� �������

Fig. 5 shows a more non-trivial pattern, involving several elements and

associations. In this pattern only these instances of Attribute qualify as a loop

variable instances, which have an owner link to a Class instance, which in turn has a

#tableForClass link to a Table instance, and also have a type link to a

PrimitiveDataType instance. The Table class is from the target metamodel, and the

#tableForClass is a mapping association – this means that these instances have to be

already built by previous statements. Pattern associations typically specify only one

of the role names – that leading away from the root.

cl:Class

a:Attribute

tb:Table

t:PrimitiveDataType

#tableForClass

owner

type

Figure 5. Associations in a pattern.

The simple patterns described so far do not require a more formal match

definition. However, for extended patterns in section 5 such a definition will be

used.

Here one principle of a good programming style in MOLA should be given. To

achieve a high execution efficiency, pattern associations leading away from the loop

variable (the pattern root) should have the 0..1 multiplicity at this end in the

corresponding metamodel. This means that we test the existence of one possible

instance. In addition, in the case of existence, the match is unique then and we can

reference this instance for various purposes, e.g., to use its attribute values in a

deterministic way. Actually, all examples in the paper use this principle. For other

multiplicities the extended patterns in section 5 serve well.

Patterns can use also the reference notation – an element whose name is prefixed

by the @ character – this means that an already selected instance (by a previous

statement, typically a loop head) must be used. This way patterns can be structured –

similarly as, e.g., in [11]. See an example in Fig. 8.

4.2. Actions of the rule, complete rule examples

Pattern matching is only one part of the rule application. Another one is to

perform the actions specified in the rule (on the basis of the current match). These

actions modify the current instance set – typically, the target model. The following

actions can be specified in a rule:

- building new class instances

- building new association instances (connecting new as well as existing

instances)

- changing the attribute values – both for new and existing class instances

- deleting instances

The action specification (the “RHS part”) of a statement has a structure similar

to the pattern. It also consists of elements to build (in the instance notation) and

'����� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

associations linking the new elements between themselves or to the pattern

elements. Syntactically the action part is distinguishable by dotted lines and the line

color – it is in red. Actions can also specify the deletion of an existing element

(matched by the pattern) – this is shown by dashed lines.

The most typical action is the building of a new class instance. Building of class

instance in MOLA is always accompanied by building of one special association –

the mapping association, which in the rule must be linked to a pattern element (e.g.,

an association with the role name #tableForClass is linked to cl:Class in Fig.6). The

role name of this association is specified in the intermediate metamodel (here –

Fig.3) if that exists, but anyway its name must be prefixed by the # character. At the

instance level it means that one instance of the new class is built and linked by the

mapping association to the existing instance of the corresponding pattern element.

One goal of the mapping association is to serve for matching in the patterns of

next rules. It is very typical in MDA model transformations that the transformation

of a “higher level” element – package, class etc. determines how its subordinates –

classes, attributes etc. must be transformed. The mapping association is namely the

element linking such subordinate rules and ensuring their consistency. In addition,

the mapping association reifies physically the mapping between the source and

target model (and serves for tracing), hence such a name is used for this concept in

MOLA. In our simple patterns, the cardinality of the mapping association is 1 – 1,

but in more advanced patterns of MOLA it may have cardinality 1 – 1..* (and serve

for determining the instance set of the new class which must be built).

The remaining action element is the assignment of attribute values (done by

Pascal-like assignment statements). For an attribute to be set the new value is

defined by an OCL style expression, which can contain one extension – attributes

from pattern elements may be referenced, just by prefixing them with the instance

name. The semantics is straightforward – take the attribute value from the existing

instance matched to the element. The attribute assignments can be done for the

“new” instances, but attributes of existing instances (in the pattern elements) can

also be modified this way.

Fig.6 shows a complete example of a statement in MOLA. This is the first

statement in the program for building the database definition from a class diagram.

tb:Table

name := cl.name

k :Key

name := "k"+cl.name

cl:Class

{kind = "persistent"}
#tableForClass

#keyForClass

owner

 key

Figure 6. Simple statement in MOLA.

This statement is a FOREACH loop consisting of its loop head only, this loop

head is also a rule which builds new instances. It does the first job in the

transformation process – builds instances of both Table and Key for any Class

'�0 �
�
+
����
��� ������
����� �������

instance whose kind has the value persistent. The name attribute in each of the new

instances is set to the specified value – to the name value in the matched Class

instance. In addition, the two mapping associations are built, as well as an

association instance with the roles key – owner between the new instances.

Fig. 7 shows the next two statements of the transformation program – both

FOREACH loops too. The first one builds columns corresponding to primitive-

typed attributes of persistent classes from the source model. Its pattern (discussed in

section 4.1) selects the appropriate table in the target model (built by the previous

statement) and the rule associates the new column to it.

col:Column

name := "c-"+a.name

type := t.name

col:Column

k :Key

cl:Class tb:Table

a:Attribute

a:Attribute

{kind = "primary"}

cl:Class tb:Table

t:PrimitiveDataType

owner

owner

 key

owner

 column

belongsTo

 column

#colForAttribute

#tableForClass

owner

type

#colForAttribute

#tableForClass

Figure 7. Statements transforming primitive attributes to columns and associating key columns.

The other statement in Fig.7 has the intention to attach the belongsTo association

to each Column which corresponds to an Attribute with kind = primary (the other

end of the association must be the Key for the relevant Table).

One more task to be done is to process associations in the source model. Fig.8

shows the corresponding program statement – a nested FOREACH loop. The top

level loop builds the foreign key for each association in source model and associates

it to the relevant primary key (built by the first statement). The nested loop builds a

new column (in the table corresponding to the source class) corresponding to each

column in the referred primary key. The pattern of this loop uses three references to

instances selected in the top loop – all prefixed by the @ character. We remind that

this means that namely these referenced instances must be used in any match for the

subordinate pattern. Thus there is no need to repeat the corresponding selection

conditions in the nested loop – its pattern becomes simple.

Certainly, the building of columns for a foreign key could be done by a separate

independent loop, but then its pattern would be more complicated. In general, a

certain “breadth first programming style” – each action a separate top level loop –

'�(��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

is in most cases usable for typical MDA jobs. But sometimes nested loops help to

structure complicated patterns.

@fk:ForeignKey

fcol:Column

name := kcol.name

type := kcol.type

fk:ForeignKey

name := "f-"+as.name

@dstc:Key

src:Class srct:Table

dstk:Keydst:Class

@srct:Table

as:Association

kcol:Column

#tableForClass

#fcolForKcol

#forKeyForAssoc

destination

referedBy

refersTo

#keyForClass

 column

owner

 column

 foreignKey

owner

 foreignKey

source

 key

Fig. 8 Statement processing source model associations.

The remaining task – flattening class-typed attributes can also be implemented in

the basic MOLA described so far. However, since the flattening is a true transitive

closure task, and in its most complicated form – find all possible paths in the source

model from a class to its indirect primitively-typed attributes and compute a name

along each of the paths, it requires creating copies of attribute instances, building

temporary associations and attributes and using depth three loops. In other words,

the standard algorithm for building all paths in a graph has to be implemented. An

alternative more readable solution is to use extended patterns to be considered in the

next section.

5. Extended patterns

The patterns considered so far have one limiting property – only one instance can

be matched to an element. Since this is too restrictive for some tasks in real

transformations, especially those related to transitive closure, various ways to extend

the pattern notation will be considered in this section. First, patterns with cardinality

constraints will be considered – they may have unlimited number of instances

associated with one pattern element, but the matching depth is still limited. An

efficient match building procedure for this case is defined in a completely different

way – as a stepwise algorithm on a graph. The efficiency of this procedure is

'*� �
�
+
����
��� ������
����� �������

guaranteed if uniqueness principle is observed – pattern cardinalities match to the

metamodel multiplicities. Finally, the looping patterns with unlimited matching

depth are introduced – namely these patterns are more powerful than those in [10,

11] and permit to perform nontrivial actions, including transitive closure, in one

rule.

5.1. Cardinality constraints for navigation associations

In section 4 the simplest case was considered where each pattern element was

matched to a single instance and each association to a single association instance

linking the matched class instances. In order to have larger fragments of the instance

set mapped to the pattern, with several instances associated to one pattern element

(what is really required by transformation rules), the extended MOLA uses

cardinality constraints attached to pattern associations (actually something similar

is used also in [10, 11]). In addition, the associations with cardinality constraints are

treated as directed graph edges – using the UML navigability notation.

One of the constraints - ALL. It is used when the association has * or 1..*

multiplicity at the appropriate end in the metamodel. It corresponds to * in UML –

take all what you can, but nothing bad, if none. Another constraint is OPT. It is used

with associations having 0..1 multiplicity at the appropriate end and means – take

the instance if it exists, but the pattern does not fail if none exists. Actually OPT is a

decorative version of ALL for the 0..1 case – to improve the readability. And we

remind that empty cardinality constraint actually means just one. NOT also can be

used as a cardinality constraint – there is none. In fact, there are constraints in

MOLA which correspond to all possible UML multiplicities, but currently we don’t

need the other.

Now, more precisely, what is a valid extended MOLA pattern. Here we consider

only the case when the pattern is used as a loop head. Then there is a loop variable,

which serves as a pattern root. The pattern consists of two parts, having the loop

variable as the sole common node. The first part, which uses undirected

associations (and no additional cardinality constraints), is the same as before. It

expresses (as before) the conditions for selecting valid instances for the loop

variable. The other – the extension part uses directed associations and cardinality

constraints and is used for matching to a set of instances. It must be a directed

acyclic graph (DAG) starting from the loop variable as a root (a more complicated

case with loops is considered in the next section). This part can be built by taking

classes from the metamodel (in fact, IMM), converting them to pattern elements

(adding instance names) and adding metamodel associations as directed edges. The

extension part must be distinguishable by associations – if several edges with the

same role name leave a node, they must lead to different classes (this requirement is

essential for having an efficient match procedure, a weaker version of this restriction

will be given in 5.2). The next step is to add appropriate cardinality constraints to

the navigable ends of associations – ALL if the multiplicity in the metamodel is *

or 1..* and OPT or nothing (one) if multiplicity is 0..1 or 1. When cardinality

constraints are set this way, we say that the “uniqueness principle” is observed (the

pattern fits to the metamodel). The pattern in Fig. 9 obviously satisfies the

uniqueness principle – ALL is at the attribute end of the association from Class

'*,��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

(where the multiplicity in IMM is *), all other multiplicities are 0..1. To emphasize

the fact that we expect many instances of Attribute to be matched, a decorative

element in the pattern – the multiobject notation (from UML collaborations) can be

used for the Attribute element.

We make here also one assumption – the extension part edges leaving the root

node have the constraint ALL or OPT (the extension part should express an

unlimited, but optional at the same time part of the match).

Let us consider an example for the usage of ALL constraint in an extended

pattern – the first statement from Fig.7 but defined in an alternative way – in Fig.9.

tb:Table

t:PrimitiveDataType

a:Attribute col:Column

name := "c-"+a.name

type := t.name

cl:Class

owner
 column

#tableForClass

#colForAttribute 1

 1

 attribute ALL

type

Figure 9. Rule with cardinality constraint.

The loop variable accepts as valid those instances of Class, for which a Table has

been built. Now, when the loop is executed for a valid instance of the loop variable,

the following new action is performed. For the extension part of the pattern

(containing the elements a:Attribute and t:PrimitiveDataType) a temporary instance

DAG is built containing all matches for the given root instance. For the given

example this DAG is very simple – all those Attribute instances for the given Class

instance (root), which are linked to a PrimitiveDataType instance, together with the

corresponding association instances (attribute and type). The result is indeed a

DAG, but not a tree, because a PrimitiveDataType instance can be used for several

Attribute instances. Here the original instances from the source model are used as

nodes for the DAG (we can assume that the nodes and edges of the DAG are

highlighted, e.g., by “coloring” them green), but in some cases node copies are built

– see section 5.2.

When the instance DAG is built, the rule actions are performed. Here a Column

instance is built for each Attribute instance in the DAG (i.e., an instance associated

to the element a:Attribute). This is specified by the mapping association

(#colForAttribute) which now has an explicit multiplicity 1-1. Then the DAG is

discarded (the highlighting is removed).

Now we will define the match building for an arbitrary pattern. The most natural

way is to use a procedural match definition. We treat the pattern (its extension

part) as a DAG from the root and build the instance DAG starting from its root – the

current loop variable instance. Valid instance nodes are added to it layer by layer, in

strict accordance with the pattern – so that each instance node can be assigned to a

pattern node at that layer and the edges also match. Here the number of layers is

fixed (determined by the pattern). Cardinality constraints must be taken into account

– if the constraint is ALL, it doesn’t matter how many edges exit a node in the

'*� �
�
+
����
��� ������
����� �������

current layer, but for the default constraint (just one) there must be the

corresponding edge to a node in the next layer. If that edge is not found, the node

must be removed from the current layer as invalid. The pattern edges with ALL

constraint actually generate fan-out cases in the instance DAG.

The formal definition of the matching procedure (generating a complete valid

match – the instance DAG) is the following:

1. mark the current instance of the loop variable as the only instance in the

layer one of the instance DAG and associate it to the pattern root.

2. take a node in the current layer of the instance DAG. For each directed

association leaving the pattern node, to which the instance node is

associated, find all association instances from the current node and select

those where the target instance satisfies the corresponding attribute

constraint; add this “filtered neighborhood” to the next layer. Repeat this

for all nodes in the layer. If a node in the next layer has been reached twice,

mark it only once (the path history is not important in this mode).

3. assign instances in the next layer to the corresponding elements in the

pattern (it can be done uniquely due to the required distinguishability by

associations).

4. check cardinalities – for each node in the current layer and for each

navigation association (which has the default cardinality constraint - i.e.,

“just 1”) from the associated pattern node check whether there is an

instance of this association. If there is none, remove the instance node from

the current layer, and recheck the previous layers (for layer one it cannot

occur due to our assumption). ALL and OPT constraints require no check.

5. repeat steps 2, 3, 4 for each layer of the pattern

The semantics of ALL guarantees that always the maximal match is selected – no

subset of a match can be a valid match. Even more, for a given root the procedure

result is deterministic – it is due to the “uniqueness principle” for the pattern, that

from several possible instances all are selected, and one instance must be selected

from possible one. Namely this would permit also an efficient match implementation

in MOLA.

5.2. Looping patterns

In this section we introduce the final elements of extended patterns in MOLA.

First, we permit patterns to have directed loops in the extension part when a pattern

is built on the basis of a metamodel fragment. This extension is essential for

defining a transitive closure in a pattern. Features will also be provided for

defining a closure involving all possible paths.

The requirement introduced in 5.1 that the extension part must be

distinguishable by associations is still in place. This requirement is sufficient for

the example in Fig. 10 and many similar ones. A weaker restriction – the K-

distinguishability – sufficient for any reasonable MDA task will be considered at the

end of section (however, it makes the matching procedure more complicated).

Certainly, the uniqueness principle from 5.1 must be observed when assigning

cardinality constraints to pattern edges – violating this principle would lead to a

much more complicated and inefficient matching procedure.

'*'��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

Though a pattern now may have loops, the instance graph for it will be required

to be a DAG anyway. From the theoretical point of view, we may be interested in

finding instance-level loops via patterns, but no MDA related job was found where it

makes sense. Therefore loops at the instance level will be simply forbidden by the

matching procedure.

One more remark refers to nodes of the instance DAG. In 5.1 a simple case was

considered where the original model nodes were used (just highlighted). But this

implies that the path history cannot be stored in the instance DAG – if a node is

reachable via two or more paths, data from the path cannot be stored in the node.

The only way for storing this data is to make copies of the original instances and

store them in the DAG. In an extended MOLA statement it can be specified which

pattern nodes must be copied (such a node is marked by a square icon) during the

building of the DAG (it makes sense only for the looping nodes). The temporary

copies in the DAG are related to their originals and “inherit” all attributes and

association instances from them. When the statement completes, the temporary

copies are discarded. Copying selected pattern nodes is the easiest way to implement

transitive closures where all paths from a node must be traversed – as the one in Fig.

10.

The same matching procedure from the previous section is usable, but with the

following extensions:

- step 2. New instance which is already present in the DAG on the path (from

the root to the current instance) is not added to the next layer – a safeguard

against infinite loops. If the target instance corresponds to a pattern element

in the “copy list”, make a copy of the instance and of the relevant

associations, relate the copy to the original.

- step 5. Repeat steps 2, 3, 4 until no instances are placed in the next layer

(the repetition is no longer limited by the number of layers in the pattern

due to possible loops)

A typical use of a looping pattern is for performing a transitive closure along a

metamodel association. Transitive closure is directly supported in the textual

languages [12, 14], but no other graphical pattern languages [7, 10, 11] support it.

Fig.10 shows an example of a looping pattern. It is the last statement in the class

to database transformation program and performs a recursive “flattening” of the

class diagram – adding indirect attributes (columns) to a class (table), whose direct

attributes have another class as a type. In this example actually a transitive closure

on the attribute association is performed. The only loop in the pattern is formed by

the type association from a2. The type edge can lead either to t or to c2, the situation

is distinguishable because they are of different classes. Both of the edges have the

OPT cardinality constraint. During the pattern match, just one of these possible

continuations will occur (because an Attribute always must have a type). If no type

leads back to a c2, then looping along this path is finished. If all the looping is

finished, a large instance tree (it is indeed a tree due to instance copying, except the

“terminal” instances of t) with the root Class as a root and certain number of

Attribute instances as leaves is built as the result of the match. The tree represents all

possible paths via indirect attributes from the given class instance - due to the

copying of c2 and a2 two paths never join. The leaves have a primitive type – they

will be used for columns. However, it should be noted that both leave and non-leave

'*� �
�
+
����
��� ������
����� �������

Attribute instances are assigned to a2 – they must be sorted out to find leaves only.

This tree represents graphically the transitive closure of the attribute association.

a2.type.oclIsTypeOf(

PrimitiveDataType)

a:Attribute

?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

col:Column

name := a2.?prefix

type :=t.name

tb:Tablecl:Class

?prefix :="c-"

a2:Attribute

?prefix :=c2.?prefix+name

c2:Class

?prefix := PRED.?prefix
type

{OPT}

type {OPT}

 attribute {ALL}

type

 attribute {ALL}

 table

 column

#tableForClass

#colForAttribute

 1

 1

Figure 10. Rule with looping pattern.

Looping patterns typically involve complicated assignments to computed

attributes of metamodel classes.

There are several kinds of computed attributes in MOLA, differing in their scope.

Here the most used attributes are statement-local attributes, their scope being

actions within one statement execution (here – one iteration of the loop, during

which the extended match is built). Their values are discarded after the loop iteration

is complete. Their main use is for finding various qualified or compound names,

typically appearing in MDA tasks.

If the intermediate metamodel is used (here – Fig. 3), rule-local attributes are

defined in it for all relevant classes, their names start with “?”. Their computation

is performed immediately after the pattern match – when the instance DAG is

complete. Rule-local attributes are computed in the same order as the match itself

was built – starting from the root and moving away from it. If the instance DAG

contains copies, these attributes are located in copies – not in the original instances.

The assignment statement for a computable attribute in its expression part can

contain the value of this attribute in the predecessor node and any values of normal

(source) attributes in the current node (these are unqualified). The attribute value

from the predecessor node can be qualified either by its instance name or by a

PRED keyword. The use of PRED is required in cases when a node may have

several nodes as predecessors – due to loops in patterns. Each node in the path must

have the corresponding assignment statement, otherwise the attribute computation is

terminated there. Several attributes may be computed simultaneously in a rule.

The example in Fig.10 contains assignments for the single computed attribute –

?prefix, which is contained in Attribute and Class. The computation starts in the

'**��� ������	
� ��� ��
����	
� ��� ����	�� �" �-� �#���!"#$��%"�� ���./�.�� ��

root, where the constant value – the string “c-“ is assigned. When the value is

propagated through an Attribute, the value of its name and the constant “-“ is

concatenated to it. The propagation through the Class node does not change the

value. It is easy to see, that in the result the value of ?prefix for each leaf of the

match tree is the concatenation of all Attribute names along that path, separated by

“-“ and prefixed by “c-“ – namely the value specified in this task as a Column name

for indirect attributes. The obtained values are used namely for this purpose – they

are used in the assignment for the name of the new Column instance. A Column is

built only for those instances assigned to a2 which are of primitive type (are leaves

in the tree) – this is specified by the OCL constraint at the mapping association.

Fig. 10 completes the example transformation program in extended MOLA – the

complete transformation consists of Fig. 6, 7, 8 and 10.

We conclude the section with a weaker restriction for patterns, than the

distinguishability by associations. Namely, if in a pattern an association with the

same role name can lead to several nodes, these nodes must be K-distinguishable –

their neighborhood of order <=K (in the sense of directed graphs) must contain

mutually exclusive elements – different local constraints, different mandatory (just

one) associations, mandatory associations leading to different classes etc. The

distinguishability by associations can be considered to be 0-distinguishability.

For most MDA examples – e.g., more complicated versions of the example in this

paper, and many similar ones, typically K is 1 or 2. In order to use patterns with K-

distinguishable elements, a look-ahead (in the instance set, but along the pattern

edges) not longer than K has to be included in the matching step 3.

6. Conclusions

The paper describes the basic principles of the graphical model transformation

language MOLA. There are two innovative elements in MOLA. One is natural

combination of simple control structures with pattern based rules. The other one is

the powerful pattern mechanism supporting variable cardinality and looping

patterns, thus enabling transitive closure in patterns and simplifying even more the

control structure of the language. The complete language MOLA is tested on several

real world MDA examples, such as converting statecharts to FSM and realistic

class-to-database transformation including class inheritance, transformation of

business process models to workflows etc. The results show that in most cases more

compact and readable rule definitions have been obtained, when compared to e.g.,

pure recursive style in [10]. The extended patterns permit to strike a right balance

between complexity of rules and control structures governing them, thus providing

the required transformation readability. Simple recursions, typical e.g., to statechart

flattening job, can be specified in a readable way using the WHILE loop in basic

MOLA.

The extended patterns, though more complicated than patterns of basic MOLA,

are defined in a way to permit also an efficient implementation.

'*� �
�
+
����
��� ������
����� �������

Acknowledgements

Authors of the paper are grateful for valuable discussions and comments provided

by their colleagues at the IMCS Modeling and Model Transformations seminar. This

research was partially funded by Science Council of Latvia under the project Nr.02

0002.

References

[1] OMG: MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf

[2] OMG: Unified Modeling Language: Superstructure. Version 2.0 (Final Adopted

Specification). http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 (2003)

[3] Booch G., Jackobson I., Rumbaugh J. The Unified Modeling Language. Reference

Manual, Addison-Wesley, 1999.

[4] OMG: Meta Object Facility (MOF) Specification. Version 1.4. http://www.omg.org/cgi-

bin/doc?formal/2002-04-03

[5] OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,

http://www.omg.org/cgi-bin/doc?ad/2002-04-10

[6] Bettin J. Ideas for a Concrete Visual Syntax for Model-to-Model Transformations.

Proceedings of the 18th International Conference, OOPSLA’2003, Workshop on

Generative Techniques in the context of Model Driven Architecture, Anaheim, California,

USA, October 2003.

[7] QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission,

version 1.0. OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-

04-01

[8] Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.

OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

[9] Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0

Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-11,

http://www.omg.org/cgi-bin/doc?ad/2003-08-11

[10] Willink E., A concrete UML-based graphical transformation syntax - The UML to

RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,

England, 24-25 November 2003.

[11] Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models.

Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-

03-403, November 2003.

[12] DSTC/IBM/CBOP. MOF Query/Views/Transformations RFP, Second Revised

Submission. OMG Document ad/2004-01-06, http://www.omg.org/cgi-bin/doc?ad/2004-

01-06

[13] Celms E., Kalnins A., Lace L. Diagram definition facilities based on metamodel

mappings. Proceedings of the 18th International Conference, OOPSLA’2003, Workshop

on Domain-Specific Modeling, Anaheim, California, USA, October 2003, pp. 23-32.

[14] Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice

and promise. Addison-Wesley, 2003.

���������	�
��	�����
	������
�����
�����
����������

������������	�����

��������	�����
���������
������

��
���������������	�������	�	��
����
����	�����	�������
��

�����������	�����	�����	����������

��
����
� !"#!$
���
���
�����
�����

%&�������
����
�'(�	����)&�
)���

���������� ������� ������������ *	���� +��*,� ��� ��	�	���� �	�� ��������	�� 	��

��-
��������� �	�� �����	������ 	�� .���� ������ 	�� ���	�����	�� ��������

�	�������������	�������	�����������	��	����	����������)������������������������

	�� ���	��
� ����������� �	� ������� ������� +�	�� �����	������ 	�� �"��������,� 	��
����������� �	� ��	����� +�	�� �����	������ 	�� �"/
������� ��	������,
� �	����� 	��

��	/���� �	������ ���� �
/"�	�����
� �������� .���� ����������)� *����	���� 	��

������� ������������ *	���� ��������� �
/���� 	�� �*�� 0)!� �����	���� .����

������	���� �	���������)� ���� &������ �	�� ���
����� ��������� �	����������� ����

�	�����/������ 	�� ��-
��������� ��� ������
� ��� .����� ���������	��� ���� ������

��������	��� �������� �������� 	�� /�����	�� ���� ����������� .���� ������� ���
��
���� 	��
��������� 	�� ��	/���� �	����)� ������� ���� �������� ��	���
���� �	�� ��������

/��.���� ��-
����� ��������� ���� ������ ������� ���� ���������� ����� ����� �������

���	������������ ���� ���	����������� ��� ��������	�� 	�� ��-
����� /�����	�)�

1	���/�������� �	�� ������������	�� ��� �2�3� �		��� ���� ������������
� ����� ��
���

�������
����������4��������������������)�

���� �
�	�)� ���	�����	�� �������
� �����	���
� �*�
� 5��
� ���������
� ������

�������
����������	�)�

�������
	 ���
��

���	�����	�� �������� +��,� �����	������ ��� ���������� ��	�� 	/6���"	�������� �	�

�	���"������
� .����� �	����� ���� �����	����� ���� �������� �������� �	��� �������� 	��

	/6����� 789)� 2��	
� ���� ������ �	� ��������	�� 	�� /�����	���� 	/6����� +��������� ����

��	������,� ��	�� ���	�����	���� 	/6����� +��������,� ��� 	/������� ��� 	��	���� �	� 	/6���"

	�������������������	�� ������/����������
��
��������/�����	���� ����
���� �	������)������

������ ��� �������/�����������/��.����/
������������	��.����+��������	��	����	�������

��	����������,
�	��/��.���������������	��.������������������	/6���"	��������	��+�)�)
�

�������� ���� �������������������� ��	�� ���� -
�
�� �������� 	�� ���	&���� 	������	��� 	��

	/6����,)��

�	���
� �.	� ���������� ��	������� ��� �����	������ 	�� ��� ���� /�� ������
����:�

������	�� 	�� ��� ��������� +�"��������� 	�
� �	��� ������������
� ;�/� ��������� 70$9,� ����

������	�� 	�� �"/
������� ��	������� �	�� ����������� 	�� �"��������)� ��������	�� 	��

��	������������������	��/
��������
����	�����������	
��/�������������������������	��

��	�����.��� �������������� �����	��;	�&��	.�*������������������+;�*�,)��	����

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '(�)'��� 	�

'(* �
�
+
����
��� ������
����� �������

����� ����� ���� ����������� ��� 3���������� 2��������	�� ���������	�� +32�,
� ;�*�
�

<
�������1�	�����*	�����������34��
��	������
�����+<1*�
�3<=*�
�<13�
����),�

���������������	�	�	����	���	��.���������	�����������4��	�����	�)��

2�	����� ������ ����	�	�	������ ������ ��� *	���� ������� 2��������
��� +*�2,� 789
��

7009)� ���� �������� 	�� ����� ����	���� ��� ��� ����� ����� ���� �	
�����	�� 	�� �	��.����

�����	������ ��� 1����	��"������������ *	���� +1�*,� 	�� �	��.���� ������)� 1�*� ���

	/���������	��<
�������*	����+�	��������	��
����	��������������*	���
�	����*,�

������������	����������	���	���
�������1����	������������*	�����+1�*,
���	��.�	���

������������	���	�����������������	��������/�����������)������������-
�������������

�	������	������	�����������������.�������	���"<
�������1�	������)��

��� ����� ������ ������� ������������ *	���� +��*,� ��� ��	�	���� �	�� ��������	�� 	��

��-
��������� �	�� �����	������ 	�� .���� ������ 	�� ���	�����	�� �������� �	�������� ���

��	������� 	�� �������� �	��	����	�� ��������)� ���	
��	����	�
� ������ ��� �� ����/��.����

<
������� *	���� ���� 1����	��� ������������ *	���)� 1�*
� �����	��� ������������

�	���
� ��� ����������
�	�� �	��.���� ���������
��� ���� ������� ����	�	�	��)� ���

�	������
���*� ����������� �	������������ ��������	�� 	�� ��-
��������� >� ���
��
��� ����

/�����	�� 	�� ��� �������������� 	�� �	��.���� ���������
��� +�)�)� 	/6���"	�������
�

�	��	����"/����
� �������"	�������
� ;�/,� ���� ������� ����	�� +�)�)� ����"������
�

�����"������
� ����	���/�����"������� ���),)� ������������� ��	�� ������� �������� �����

	������	��� ���� �	�� ���	������ �	� �	���	�� �������� 	�� �	��	������ /
�� �������� ������� ���

����������������������������	/6����)����������
����
��	���	����*�����	�����?���	��	��

��	����� �	���� ��	�� ��-
��������� �	� 1�*
� /
�� ��� �	��� /��	��� ������� 	�� ����� �����)�

����	�
���	�� 	�� ��*� ������ �	� ������������� 	�� ������� ������	��� ������
��� /�������

�
����������	������	��1�*)�

��*���������������������	�����	��
�������������	���������������+�	�������	������	��

�"��������,� 	�� ����������� �	� ��	����� +�	�� �����	������ 	�� �"/
������� ��	������,
�

�	����� 	�� ��	/���� �	������ ���� �
/"�	�����
� �������� .���� ����������)� ��� ��������

����� ��� ���� /�� ������������ ���
����� /�� �����	�������*�� 7@@970 9� �����
� ��-
����
�

�����������������������������������.����5����	����������70A9�7@09�7A9�70B9��	��	.����

�����������	�����������	�������70#9
�7@B9������	������"/����������	������7$9)�������

�����������������������	��������������.��
�������*���������
��������������������	��

��� 7@!9
� �
���� ������������� ������ ���� /�����	�� 	�� ���
����� �����	������ ��� ������"

�������������������7 9)�

����
��������������*�������������	�������	��	�����������������
�������������
�
�����

	�� �����
� ��-
����� ���� ����������� ��������)� �	�� �����	������ 	�� ���������� ���������

������ ���� �	� ��-
��������� �	�� �4������� ����������� 	�� ��	����� +��� �	��� �����
� .��

���������.���� ��������� ����������	�� 6	�����/���	��	����	�����������,)� ��� �
��������

�����������������������	��������	��
� ��	
������/�����	���	��	����	����� ����������

�4������	��� ���	������� ���� ���� /��
���� ��� /��������� 	�� ��*� �����	������ 	��

������������	����*�.������� ����	�������)����	��	����	�
����������������������������

��
������	�����������	������	�����.�������	��������
���/�����������������������/���

�	� ���������� ����� ��	.� ���� �	���	�� �������� 	�� /�����	�� �	������� .���� ���	��� �	����

�������������������	����)�

���� ������
���� �������	�� ��� ���	���� �	� ���������	�� 	�� ���������	��� .���� ������

��������
� .����� ���� ��������?��� ��� ������ ��������� 	�� ��������� ���� ����������� �	�

/�����	�)� 34������� ��������	�� ���� ���	��������	�� 	�� ������� 	�� ��������� .���� ������� 	��

��������� ��� �������� �	� 70C9)� ���������	��� ���� �	�� ��������� ����������� .���� ������

�������������*�������	���)��
������������	����������������	������	��?���	��	�����

'(,��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

�	���� �������������	�������	������������+��-
��������
��������	�� ������������	�,)�

��� ����� .	�&� ���	������ ��� ��	�	���� �	�� ������� ���� �������� ������	�����	��� /��.����

��-
��������������������������������)����������������.	�&��	��������	����+�)�)
�7C9
�

7@C9
� 7089,
� /
�� /�"�������	���� ������	�����	��� .���� �	�� �	���/��)� �	�� ����� �
��	���

�	�����6
���������	��*�������	�����
���/������)��

*	����� ���� ���	������� ���������� ��� ����� �����
� ��� ������������ ��� �*���2�3�

�		��
�.	
�������� �������	�����������������
������	�������������� �	�������	������ ���

*�2)� ������������ ��������	�� 	�� ���&���� ��������� ��	�� �������� 	���
� ��
��	�� �/	
��

������������� .	
��� ����� ��������� �	� �����	�� �	�����
�
���/��
	
�� �	����� ����

&�������������������������	���������&���������
�������
��		������������.�)��

���� ������ ��� �	��	���� 	�� � �����	��)� ��� �����	�� 0
� ���� ���
��
��� 	�� �������

������������*	����	���	���������������������
�

��-
���)������	��#�������	�����	����������	��

	�� ��������������� ��	�� ��-
�������������� ��������������)������	��C� ����	�
���� ����

�������
������
��������� ����
�����	����*)��������
������	�� ��	���
������������������

����
������	���/����
�
���.	�&)��

!�����������	�
��	�����
	���

�	��	����
��� ������ ����
���� �	� ����
��� /�����	���� ��-
��������� 	�� �	��.����

�������
� /
�� ����� 	����� ���� ��4�
��� ���������	��� ��� ���
���� ����
���� ���� ������� 	��

�������
��� ������������	�
� �	� ���� ��/��
	
�� 7@#9� 70!9)� ��� ����� .	�&� �	���� 	��
���

������������������4�
������������	���+����������-
��������,������������
���	��������	��	��

���/	��������-
����������	���
��)�)
���*)�

*	���� �	�� �	������������ ��������	�� 	�� ��-
��������� ��	�	���� ��� ����� .	�&� ���

/����� 	�� ����� �	
����� +�)�)� 7@9
� 7#9
� 7C9
� 7@89� ���)9)� 2�� �	�����
��� ������ ��� .���

����	�
���� ���7 9)�3��/	�������	����	����-
����������
��������������������/�����	��

	�� �����������������	���
�
���������)�<�����	��	���������������������:����������	��
�

��������������	��
��	���	����	.�������������	.�)�����������&�����	���*���������������

���	�����	��������������	��	�����������������
�	�����	������������������
�/
������������

��������� ���� ���.��
����� ���� ������	���� 	�� ������� ��)� ��� ��-
��������� ������ �����

�	���
� ������ ��*
� ��� �����������	�
� �	��������� ���������� ��������� 	�� ��� �	���
�

.����� ���� /�� ���
����� ������������
����� �����
� ��-
����
� ������ ������� ���� ���������

���������+���)@,)�

��� ��*
� ���/	������
��� ������ ���� ���������� ��� ����������� �	� ���� ������� �������

�	�������.�������	���>���������
����������4���������������+����������	������,
�.�	���

������������
���/�����������/���������������������	���	�������-
��������������)��
���

�	��� .���� �	��	���� �	� ��-
��������� �	�� �����	������ 	�� �	��	������ ���� ;�/�

���������/
��������	�����/�����������	���������	���	��.����������)��
�����
������������

��������������/����������	��	������	����������������	�����������
�������������������	��)�

3����� 	������	�� ��� �������� /�� ���� ������
��
� ���� ���� �	��� �	�����	��� +�)�)
� 7$9
� 7B9�

���),)�������������	����.�����	�	�������70@9
�.�����
��������������
�����������.����

	������	���� �������
� /
�� ��	
����� 	�� 	������	��� ��� �	��)� ��� �����.	�&
� ������	�������

/��.����
��� ������ +DD����
��EE
� DD�4����EE�������������?���	�,� �������������� ���

��������?���	�� ������	������� /��.���� ����������� ���	����� �	��	.���� ���&	��

�
/����
��	�� ���������� 7@ 9)� 5����� �	���/��� ������	������� /��.���� ����������� ����

'�� �
�
+
����
��� ������
����� �������

������������� .���� �����	����� DD
��EE)� ������ ������������� 70 9� ������/��

������	������� /��.���� ��������
����� ���� ����������
� ����������� ���� �4������� ��������

��	������
� ���� ���������� ����������)����� �����&����	�����������������/������	������

�
�����
��� ����� ��������� .���� ��-
����� ��������� ���� �������� �	�� �	�������

���������	���/��.�������	�����������������)��

��������	��� ��
	�����	���

��	������

��	������
��
�	���
���

��	����������

����

�

����

�

��	��

����

�

����

�

��	������
���
	����	

����

�

����

�

��	������
�		����	�

��	������
�����	���

����
�

����
� ����

�
����
�

��	������
�	�	�

��	������
� ����

���
��

� ����
� �����

���
��

����

����

�

����

�

����� �����
����

�

����

�
��

����

��

����

��

����

��	�	�
��
�	���
���

 �!�������

����

�

����

�

��	�	�
���
	����	

����
�

����
�

��	�	�

�		����	�

��	������ �!���
����

����

�

����

�

��	�	�
�

����

���
��

�
����

� ����

���
��

� ����

����

�

����

�

����������
�

����

�

����

����

����

����

���� ��"��	

�

����

�

����

��"��	�	�	�

�
����
�
����

#�����
�$�	���%
�&� �

����	���

 ��

�� ��

��

 ��'

���
	����	

����

��

����

�
	�	� ������	��� ��		����	�

�

"�� ���@��*����	����	���������������������*	����

<������� ���� ����������
���*� ����
���� ��������� ���� �������	�� ����������	������� ����

������ 	�� ��	/���� �	����� ���� �
/"�	������ ���	������� .���� ������
���� ����������)�

1	���/��� ������	������� /��.���� ��������� ���� ���	�����	��� ���� ��������?���	��
� ���

��	�	���� /�� �
��	��� 	�� �4��
��/��� �*�� 70#9)� 3������ ���� ���������� �	����������

+����������,����	���������
���������*)�

!������# �����	��������
����
���������
��
����# ���������

�	�������	������	����*
�	���	���	�����-
���������������	��������
������������

�	����
����� ��	�� �����������	��� 	��
��� ����� �������	�)� ������ ��-
����� ���������

�
��� ���������� ���� ������/��� ���������	��� /��.���� ���	��� +��������
����,
� �����������

+�)�)�
��������,�	������������������	���/�������������������	��4��������������
���������

���� ������� �	� �
������ �������� ��-
����)� ��*� ������ .���� ���/	������ ��-
��������F� �	�

��������
��� ������ +	�� ������ ����������,� �
��� /�� ��"���
��
���� �	�� ��
��� 	�� /�����	��

.�����������/��)��

���� ����� ��������� 	�� ���� ��-
����� �������� ���� ���������� +
���� ��� �*�� 0)!�

�������� 	�� ����������� �	���� ��	�� �����	
�� �����	��� 	�� �*�,
�����	
��� ���� ��	��

���	��	���
� ������������� ������� 	�� ���� �����������)� �.	� ������ 	�� ����	
��� ����
�������
�����:� ��������� ���� ���������
� ���� �.	� ������� ���� �	�������� �	� �����

�������� ��� ��-
����� �������:� ����
 ������ �	�����	���� �	� 	��� �������� ���� ����

�������������� �	�����	���� �	� ����	�����	���+���
���0,)���������������������������

���������������	����������
���/�����������/��	����
����������	���������)�

'�0��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

��(��
	'�����)������	'��(��
	�

����	'��
���
�'��
���
�'�����)��'

�

"�� ���0��3�����������

��-
����� ��������� ��� ��*� ���� /����� 	�� �*�� 0)!� /
�� ����� �	��� ������	����

��6
�������)�*����	����	����-
�������������
�
�����	����*
��������������������
���

#�+�������������	�����	�����	�������������������70 9,)�*����������������������	�/��

������	�	
�� ��� .���� �������	�	
�)� �	�� ������	�	
�� �	��
������	�� ��������� 	�����

�
������
 ��������
 ��������� ��� ��������� ������ ��������� ����������� �	��	.�� ������

�������)� �	��
���/��
	
�� ������������	�� 	�� ���������	��� ��������� ��������� ����

���	������ ���� �	�� ������	�	
������������
��� /�� ����
���� /�� ����
��)�2��	�����	��

�	��������� �������
 ���� ��������� ����	
��� ��� ������ �	� �*�� �����	���
� ��
��

���
����������	���/������	������&����.������������������������.����	�.������������)�

����

�

��	��
*���
���

��	������
*���
���

��
���
�

��	�������	�	�'
��)�����	

+���!'���
	����	
,

����

�

����

�

��(��
	

����� ����
���
���
�-�
�

����

����

���������&�	�	�����

����

����

�
��������&�	�	�

����

��	����	��� ��(����� ��&��!

����

��

�&�

�
����

�
����

*���
���

����
�
����
�

#�����
�������&

�)��	'���
	����	
+���!'���
	����	
, �)��	

����

����
�
����)��	

����
�
�����

�&����

����

����

����
������)���

�&����

����

������)��)��	

����

����

�

����

�

����

�

�	�.�����

����

���	��
�

����

�

�	���	��

����

��������

����

�

�

"�� ���#����-
������������������	�����	����*�

������������	
������������	�������������������	�������.���������������������	�������

��������� /�� ���	�����	��� ��������
��	��� ���� ��������
��	���
 /���
��� ���������
�������� ��������� �	�����	��� �	� ���� ��������	��� /��.���� ������� 	�� ���������)� ��	��

���	��	����������/������������������������	�������.�������������+���������,����������

+�
��������,�������������	
��
������
���������������������	
��������	�������.����

�����	��	.������-
�����	���������������
���������������	���)��

�	�����������	����*���-
������������������	���:�

>� ��� ������ ��� ������	
�� ��� ���� ��-
����� �������� �������
��� ���	� /�� ��� ������ 	���

��������������������������		:�
����������	
������
��
���

�������������
���

>� ����	
��������������������������������/��	����	������������-
������������:�
 ���������	
������
��
��

'�� �
�
+
����
��� ������
����� �������

������

���������
�������!����"����������������

���������"����#������$����������������
�$�����������������

���������"����#��������������������������

>� 3���������������/�����	�������	����.����	�������	
�
����������	������:��
 �������������

������

��������$���

��$����������������

>� 3�����������	�	
���������
����	
���
����������������:�
 �����������
���

������
����������
�������#�����%
���������������
�������#�����%����
���

�$���������&�'��$(���)�	
������������������)���������������������

!�!�����������$������
����
���������
��
����# ���������

������ �������������� ������������/�����	��	��	/6�����	�� �����	�����	��������������

�
����� ������������� ��������)�1�	�	�	�����������������������	�	�����	��������/��������

/�����	�� 	�� ��� ���������� 70 9
� /
�� ����� �	� �	�� ������/�� ������� ����� �	� 	����� ������

��������)� ����
����� 	�� ����� ������� ��� ���	������ �	�� ��������	�� 	�� ���������	���.����

�4��������������)�������	���/�������������
���������������������������*�+���
���C,)��

G�����	�������/��.���
���/������
�������

������ ��������F� 	����.���� ��� .	
��� /�� ���	���/��� �	� ������ ���������	��� ��	��

����������� ��������)� ������ ������	������� ���� ����/������� ��� �	���� 	�� ������������ �����

�	�����	����	�����������	����-
������������)�

��	�������	�	�'
��)�����	

+���!'���
	����	
,

��	������
+���!'��	������'!���
,

��	�������	�	��������

����

�

����

�

��	������
�	�	� ���� �������� ����

����

�

����

�

�

����

�

����

-���
�	���
��������	���
+���!'���
	����	
,

-���
�	���
��
	�����	���
+���!'���
	����	
,

��	�������	�	�-���
�	���

����� �����

����

�

�����!��&
����

�	��&�	
�

����

�

���	&���&
����

�
�����
�

����

�

����

�

����
�
����

�

��	������'
�����	���

����� �����

�
�

������)��	

����

����

�
��� ����&
����

�
���
����

����

����

������)����
����

������)�� ����

����

�

����

� ��������
������)��

��������

��������
�
�����

��������

��/���

�

"�� ���C�������������������������������	�����

�	����������	����*�������������������	���:�

>� ����������������������	����������������������������	��
���/�����������	�����������������

���������������		:�
��������&�����
����
���
�%�����

������

�����&�����
����
��*�
������������������������������

�����&�����
����
�����������������

>� 3������
��������	����	������	�����	��.���������������>��������	����������:�
 �������������

������

��������$��

'�'��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

��$������������

>� �����������	��������������������
���	�������.�����������
����	
�
��������	�������

��������������	�������.������������
����	
�:�
 �������&�����
����
��*�
��������

�����

������������$������������
����$����&�'��$(��)�	
�����
�$�

��������$����$����
����$����������������������

��������$����$����
����$����&�'��$(��)�	
������

!�%��&�����
��$�
����
�����# ����'���������	�������$����	��������

3�������� 	�� �����
� ��-
����� ��������� ���� ������ ������� ���� ��������&��� ��� �*��

�����	���
� /
�� ������	������� ��	��� ����� ����� �� ����� ������� 	�� �/�������	�)� �
���

���4�/������ �
��	���� ���������� &����� 	��
����� 	�� �*���	����
� /
�� ��� 	
�� ����� ��� ���

���������� �	� �����	������	�����
������	���	����������/��.�����������������.��	������

�����������)��

���������	�������	���
�������������������������
�������������-
�������������
����

���������� ��� ���
���)� H���� ������ ������� ���� ����������� .���� ��-
����� ���� ������

�������������������������������	������	���	���������������	�������������������������)�

��������������������������������������.�����	������	����	�������������������
������

	�� 	������	��� 	�� ���� ���������� ���������� ��������
� �����/
���� ���� ����� ������ ��	��

�	������	����+	����.��������������	��	��/
���"��������,)�5������	���	��������������

.�������
����� ������� 	�� ��������� ��	�� ��	/���� �	����)� ��������	��� 	�� ������� 	��

���	�������.�����������������������	��)�

��������	��� 	�� ������� 	�� ��������� 	��
�� ��� ������� 	�� ����������F� ������� 	�� ���������

�	����������������	���	���������	������������)�

��	��
*���
���

��	��

����

�

���
� ����

�

��	������
*���
���

��	������

�

����

�

���
�
����

��	������'
�����	���

����

�

����

�

��	�	�

��	������
�	�	�

�

����

�

����

��	�	��	�	�

����

�

����

�

*���
���

��"��	�	�	�-���
�	���

�

����

�
������

���� ����

�

����

�	��&�	

�

��	�������	�	�-���
�	���

����

�

�����!��&
����

�	��&�	

�

����

�

���	&���&

����

�
�����

�

����

����

����

����

�)��	

�

����

�

����

����

����

����

��������

����

�
��� ����&

����

�
�������

��������
������)����

����

������)��

����

��

�&�

����

�

����

�
�&��	���
�

����

����

�
����)��	'

����

�
�����

�&����

����

����

����

������)���

�&����
����

������)��)��	

����

��	�������	�	�'
��)�����	

����

����

����

����
����

����

����

����

�

"�� ��� �����������	�������	����������������������������
�������������-
��������������

1����	���	�����������	����*����������������	�����
���B)�������	���������	����������

���	���� ��/��
���� ��	�� ������	������� /��.���� ������������	��� 	�� ���������	��� ����

������)�������������	������������
����/����	����/��.�������-
����������������������������

'�� �
�
+
����
��� ������
����� �������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

"�� ���(����*��	�������������	�������.������-
������������������������������

 ��������&��

&����

�����&�����
����$���&�����
������

���+���������������
���$��

�����
��������,-
����
��.����������

���!����"��&�����
����
�������������/"�/��
���#�,-
����
��.��
�$�

���+���
����������������&�����
���

���!����"��&�����
���������������"���

���!����"������������+���
�������������������

���&�����������)������$�)�	
���0���������
����������

�����������������
����$����&�'��$(��)�	
�����%���

����&�����
����
�������������"���
���#����
�������
���,��
��.��
�$��

��� &��)������$�)�	
���� ������ ��� ������ ������ ��� ��������� ��� ��� %
�

�������$���� �����)�������0� *�
�������� ������� ����� -
��� ��
��� ��� �����

�����
���
�$����������)������$�����%���*�
���������+���1��

���������2������3�������������������������2������3��������

�����������4"�4����$����
����$���'��$(��)��������������

���%�����������������

��������������"����
����#��/�
�$����
�����#���
�$����������$�#�����

����$���
�$�

��� &� �����)�	
���� �
����$��)������$�)�	
���� �����0� �%���)�	
���� ��

��������$
�����*�
�������������������
����+���5��

���������!�����
��������$����
����$���'��$(��)�	
�����

���%��������$�#�����!�����
������

��� &�� �����)�������� �
����$��)������$�)�	
���� ������ �%��� ��
�������

�����������������������
������-
�����
����

��������������!�����
��������$����
����$���'��$(��)���������

�����%������
����������

��������������4"�4��������$�#�����!�����
�����
�$��4���
����#����

�����
�$��4��
������/��

������$���

����$���

��� &��)������$)�	
���� ���
����%����
�� ����� �%��� ��
�������� ������

����������������
������-
�����
����+���6��

��������������$����
����$�����
�������#�
����%
������

��������������$����
����$�����
�������#�
����%����
����

����%������
������������������4"�4���
����#���
�$��4��
�����#��/��

���$&����

��$&��

��� &�� ������ �� ���)������$�)�������� �%��� ��
��� ������� %
����� ��������

��� *�
�������� $
����� 7%��%�)�	
���� ���� �%���)�������� 7
�� ������ *%��

��� ��
��� ��� �%�� ��
��� ��� �%�� �
���)������$�)�	
���� ������ 3�����

���)������$�)�����������������+���4/��

������������������
����$�&�'��$(��)���������

���%�����������
����
������������

�����"���
���#�����2��������

���������4"�4������������
����$���'��$(��)�	
�������

���������������������
������
�������
��,��
��.��
�$�

���&��)������$�)������������
���������������������������%
���
����$��������

��)����������%����*�
������������������������%������
��������-
������
���
�$�

���)������$�)��������������������$�����%���*�
��������
�$������
����$���������

���)�����������������+���44��

�������!�����
���������������������

���������!�����
��������$����
����$���'��$(��)���������

�%������
������������������"����
����#���
�$�����

�������
�����#��/�
�$����������$�#���
�$��

�����������!�����
�������������������

������%��������$#����!�����!�������$�����

��� &��)������$�)�������� %
�� �
����$���� �����)�	
���� �%��� ���
�����

�� *�
�������� ������� ��������$� 3��)��������
�$�)�	
���� ��� ����

���$
������%���*�
���������+���4/���

���������������!�����
��������$����
����$���'��$(��)�	
������

�����%������
������������������"����
����#���
�$����
�����#����

����
�$����������$�#���
�$������$�#�����!�����
�������

������$&���

����$&������$&����$&�������

'�(��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

��������
� /��.���� ��������������� ���� �������F� ������� 	�� ������������
��� /�� ��������

.�����������	��������������)�����������&�����	���	�����������
����	��	����)�

'0'�
'0'��

�+',

�
��

�
'0'�

'0'��

��+',

�+',

�
/�

�@���������������

� 1��	�	�	�

��	�	�

���

�
��

"�� ���)�� G�����������	�� 	�� ��������
 �������
 �����
� ������ 	�� ��������� +�,� 	�� ������� ���������� �����

���������+/,
�	����-
�������������+�
�/,�����	����������������+�,�

'0'�

'0'�� '0'��

��+',
��+',

�
��

�@���������������

1��	�	�	� ���	�	�

����'2�����

�
/�

"�� ��� *��G�����������	�� 	�� ��������
 �������
 �����
� ������� �
��������� ����
 �������
� 	�� ��-
�����

��������+�,�����	����������������+/,�

�

'0'�

'0'�� '0'��

�+', ��+',

�
��

�@���������������

1��	�	�	� ��	�	�

���'2�����

�
/�

"�� ���+)�G�����������	��	���������	�	
����������
�������
������	����-
�������������+�,�����	��������

��������+/,�

�
'0'�

'0'�� '0'�� '0'�3

�+',

�3+',

��+',��+',

�
��

�@���������������

�

���	�	�

����'2�3��3

�
/�

"�� ����,��G�����������	��	����������
��������
���������
�������������
�������
�����
�	����-
�����
��������+�,�����	����������������+/,�

� '0'�� '0'��

�3+', ��+',

�+',��+',

'0'�

�
��

�@���������������

1��	�	�	� �3�	�	�

����'2����

���3'2�����

'
/�

"�� �������G�����������	��	����������
��������
������	����-
�������������+�,�����	����������������+/,�

'�� �
�
+
����
��� ������
����� �������

��� �*�
� ��� ��� �	���/��� �	� ������� �	��������� �	� ������ �������� 	���	���)� �����*
�

������	��
 ��	��
 ���	��	���
� �����
 ������	�����
 ��	��������������������
� ����	����

�������������� ��������
����������� ����
���)������������*��0)!������������4�����

�����
������	����� �����.����
���� ��������	�� �����	�����
������	����� 70 9)�G
�����	��

�	���-
���� ��������	�� 	�� ������	��
 ��	��
 ��	��������
 �������������� ���� ����

�������������	�������
������	����
�����		�������������	��	������������������������

�����������	������	�������������/	�����
�/
������������	�����������������/���
���	��

�������	�����������)���

5���	
���
��
��
����	��������� ��-
��������� �	����.�����4�������������.	�&)��2�3�

�		�� ���� ����� ��������� �	� &���� ���������� ��������� ���	������� ���� �	� ��	�
��� ��.�

��������� ��	�� �4������� 	���)� ;��� ��� ��� ������I� <���
��� ��� ��� �� .��� �	� ���� ����

���
����������	�� ������	/����
����� �����������	�)�������������������.	
���/����������

��	�� ��-
����� ��������
� ���	������������ /��.���� ���������	��� .	
��� /�� ����
� ���

���������	���	��	��������������.	
���/���������������	������������-
�������������)��

�������	���/����	���	����������������	�����>��	���&�����������������	���������������

���� 	
�������� ����� �	� ���������	��
� ����� .�	��� ������� .	
��� /�� ���������)� *	���

������������	�������&����	���������������������������������4�������	�)�

%��&��
��������
��
����# �������	����������������

���� ���	������ �	�� ��������	�� 	�� ������ ������� ��	�� ��-
����� ��������� .���

�����	���� ����� ���� /��
���� �	�� ������������ ��������	�� 	�� ������ ������ �������� ��	��

��-
��������������	�� ������	��?���	��/��.�����������������������-
�������������)�

���� ������ �����	�� 	�� ����� ���	������ .��� ���������� ��� 7@A9� ���� ������������
�����

2��	�*���2�3��		�)������	���
�.�	����
����������������������������	����-
�����

��������
� ���� ���	�
��� ����� ��	����)� �	��	.���� ���� ����������� �
��������� ����� ��� ��

����� 	�� �	�"�
�	������ ��������	�� ������ �	� ��������� ���� �	���������� 	�� ���� �������

���������	�)����� ����������	����� ��� ��	�	���� �	�� 	/�������� ��-
�������������� ��	��

������ ������)� ��� .	
��� ����� �	� ����� �����/��� �������	�� 	�� /�����	�� �������� /�� ������

�������
������	����������������	���)�

%����"�
����# �����	���������
��������$�����

������������	��	�� �������������� ��	�� ��-
�������������� �	������� 	�� �.	� ������:�

	/�������� ���� ������ ��-
������ ��	�� ���� ���������� ��	�� ��-
����� ��������� ����

��������?�����������������������	����������-
�����)��

���� ��-
����� +��������� ��	�� ���� �	�� 	�� ��������,� �	������� 	�� ������.����� ���� ������

���/��� �	�����	���� �	� ���� ������ ���� ���� ���	��� ���/��� �	�����	���� �	� ����

��������	�� ��� ������ ������ ���	������ �	� �	���������� +���)B,)� �	�� �4�����
� ������

��������
����������
�	�����	�����	���������	������������������������F��������
��������

�
�����������������	���������	�������������
������	��������	�������
����)��

3����� �	���������� ���� ������ �	� �	�����	������ ��������	��)� ���	�����	�� �/	
�� ����

�������� ���� ���������� 	�� ������� ��� ����
���� ��� ������ �������
� ��
�� ���
�����

�	���/�������	���"���������-
����������������	�����������������+���������	������	����

��� �*�� ������ ��������
� ����	
��� ��	������ ��� �*�� �����	���,)� ������� ���� /��

������/������������	���������:���������������

'����� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

������-
�������������������������.�����������
���������������������	�����������������

+��� �	�����	���� �	� ���� 	��
 ��	��� ��� ���� �������������,� ������	��� ���� ��������������

�������������� �������	�����������	��������)� ��� ����������
��������
����
�������� ��� ���

�	���������	�������������
�����)��

�	�� ���� ���	��� ����
� ���� ������ ���/��� ��� ������ ��� ��
.���� �	����������� �������

J�����KF��������	������/����	�������	������	����.	���������
�����������
 �+����������>�

��������
����������������F��������	���>�����
��������
	������
�������
�������,)��

���� ���������/��� 	�� ���� ��4�� ����� ����������
 +��� ���� ����� �����?��� ������ �������

��������!�	�����������	��������.�����	������������������J�����K�+�����������������?���

������ �������
�������,)��������	������/��� ����	����
����� ����������������������	��

��������������)
���������������	���������������������
�����������������
�����������)�����
�������������	��������������������������)��

���� ���
��� 	�� ���� ������ ������ %%�"F
 �#'F%�$F
 �%'L%��&"F��''� ���
���� ��� ���� ���	���

������>���������	��	�������	�����	�������������������)�����.	�&�	���������	���������

���
��������������
����@0�����@#)�

�

�

'0'�

'0'�� '0'��

��+',
��+',
�3+',�4+',

�5+',

6��7�

�

��-
�����	����������	���@�

�

88���9��$:�!��4;&<��<=:�

�8�4��
��:�&<��>;!��?=:�

�8���9��$:�!��@A 4B=:�

�8�@��
��:����9��$==�

��-
�����	����������	���0�

�

88���9��$:�&4��<=:�

�8�<��
��:�;&4��>=:�

�8���9��$:����9��$==�

�

"�� ����!��34������	����-
������	���������	/���������	����-
��������������

�

�5�	�	�

���	�	�

1��	�	�	�

���3'2���4

���'2�����

���56��7

��'
	�	�'!������

�

�

1��	�	�	�

���	�	�

�����

2����3

��'
	�	�'!������

"�� ����%��G��
����������������������	���@
��0�

%�!��"�
���������$������
���# �����	��������

���� ���	������ �	�� ��������	�� 	�� ��-
����� ��������� ��	�� ������ ������� ��	
���

��	�
��� �� ���� 	�� ��-
����� ��������� .����� ������ ��-
����� �	�����	���� �	� 	���

��-
����� 	�� ������� ��	�� ������ �����)� ��-
����� ��� �������� /�� .��&���� ���	
��� ����

��������������	�� 	��
��	����	����������������������/��������������)����	�����-
�����

�������������	������/����&����	���	��������	����+������������	���	�����������������,)�

��������	������ /�� ����
���� ��� ��-
����� ��� ���� �	
���� ������ ��� ����
���� ��� ��-
�����

���� ��� �	��� �	�� ����� ��������� ������� ���������� 	�� ������� ����� ���� �	�� ����
���� ���

'�* �
�
+
����
��� ������
����� �������

���������� ��-
����� +������ �"� �������� 	�� ������ �#
� ��� ��� ��������������������� �	�

����
���������#:��#���������������������M��"!���

���
������������������	����������	����������	�	/�����������-
��������	���������������)�

������-
����������������/��� ��� ������������������� �����������	��������������� ��	��

��-
����� ��������)� �.	� ������� 	/������� ��	�� ���� ������ ������ �������� ����

������������	�����
���@C:�

1��	�	�	� ���	�	�

����'2�����
����3'2�3��4

�3��56'��'7'2�3��8

�3��9'2���:

�3��56'��'7'2���:

�
�>�)����������������*��#��<�
�$��@�)����������������*��#��?�
�$�

�1�)����������������*��#��C�
88���9��$:���!��4;&<��<=�

�8�4��
��:���&<��>;&>��?=�

�8�4��
��:���&>��@A 4B;!��5=�

�8���9��$:����9��$==�

88���9��$:���!��4;&<��<=�

�8�4��
��:���&<��>;&>��?=�

�8�4��
��:���&>��@A <B;&>��C=�

�8�4��
��:���&>��1;!��5=��

�8���9��$:����9��$==�

"�� ����-��34������������������������-
������	/���������	������������������

�	��������������-
����������������������������?������	�������	���������-
����:�

>� ������������ 	�� ���� �������������� 	.���
� ������� 	�� ��������� �	��� �	�� �4���� ��� ����

��-
������������
������������F��

>� ��� ���� ������ ���/��� 	�� �� ����� ��� 	��
 ��	��
� ���� ���	��� ���/��� ��� ������� �	�

�������� �������
� ��������� /�� ������ �������� 	.���F� ����
 ������ 	�� ����� ���	���

���/��������������	��������
�������
������/��������������������	.���F��

>� ����������������/���	�������������	�� 	��
��	��
�/
���������������/���	���
/��-
����

�������� 	��
��	��
� �������	������/��������������	���������
����	
����������

�����
� ��� ���
� ���������� �	���������
����	
�
� �����/�� ��������������	.���� �	�

���������	�����������	������
�����F��

>� ����������������/���	��������������������������/���	���
/��-
�������������	�� 	��

��	��
��������	������/��������������	��������������	
�
�������	���������������

	.���� ��	�� ��������
 ������ ������F� ����� �����
� ��� ���
� ��� ������� �	� �������

����	
�
'�
�������	�'����������F�

>� �	����������������������������
������	����
+���)@ ,)�

�
'0'�

'0'�� '0'�� '0'�3

��+', ��+',

�3+',

�4+',

�5+',
�:+',

6��7

�

'0'�

'0'�� '0'�� '0'�3

��+', ��+',

�3+',

�4+',

�5+',

�:+',

�8+',

6��7

�9+',

�

"�� ����.����-
�������������
�����������	����������������	�����
���@C�

'�,��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

G���	����� �/	
�� �	���������� 	�� ������ �������� ������ �	���/������ �	� ����	���

/�����	�� �	���
� ������/��� /�� ��-
����� ��������)� �	��� 	�� ���������	��� 	�� ������

��������/�����	����������	��
�����������	�����
����A>@ �+�4��������)8,
������	������)�

�	� ���
��� �	����������
� �	��� ������	���� �	���������� �
��� /�� ������ �	� ��*�

�����	���
�������:�

>� �	�������� ������	�	
������
������������������� ������ �.	� ����	������ ��������	���

�
���/����	�����:�	����	����������
�.��������	���������������
���������	�����	��
�

.���� ����	���� ��� �	�� ��������
� �)�)
� �@� ���� � #� �����4�� +�
��� �	�����	������

�4����������	
���	��.�������	��������	��
������,F��

>� �	�� ������ ��������
 ��������� �������� �	�����	��� ���� �	��
� ���� ��������

��������	��� 	�� �������� ����� ��������� �
��� /�� ��	������ ��� �	�����	������� .����

�������	�����	��)��

�������������4�������������������&�������������������������	����	�����������
�.����

���������������	�������������	���#�	���$�+���)@B,)�

�

1��	�	�	� ���	�	�

����'2�����
����3'2�3��4

�3��56'��'7'2�3��8

�3��9'2���:

�3��56'��'7'2���:

6'�3'��'�4'��'�5'7'2���:

 4�#�������>�0� <�#�������@�0� >�#�������1� �

"�� ����(������	�������������������������

2�����	�����
� ���������� ��������� ���� ������� �
�� �	� �	�����	��� 	���������� ��	��

��������� ����	����)� �	�� �4�����
� ������ �������� �$� ��������� ��	�� �#� ��� �����
 �.	�

������������������������
�����:� ����$��	����������������
� ��-
�����%��
���/�������

�	��#
���������$��	��������6����	�
�����	�����(
�
���/��������	�	����)����������������
�

�� ���� 	�� ��������	��� +.���� ������� ���� �	�����	��,� ��	�� 	��� ������
 ��	��� �
���

�	������� ��
�	�	��
� ���� ��������� +.���� ������� ���� �	�����	��,� ����� ������ 	���

��������
������������������	��
����	���������
�	�	��)��

����*��0)!
� ������.����������>���')����
*�	
'�����>�������	�	���� �	�
��� ���

��-
����� ��������F� ������ ��������� ���� ���
��� �	��� ���	������ �	��� 	�� ��-
�����

�������
� ��� .����� ���� ��-
������ �	�� 	��� �������� ��������
 �������� ���� /��

�����������)� 2��	
� ���� ���	������ �	��� 	�� ������ ������ �������� �	�� ��-
���������

��������	������/�����
�.����������/	��������	������-
�����������	
���/�����
���)��

-�����������	�
��	�����
	����/��
���

��� ����� �����	�� ������	�	��������	�� ��� ���
��������/�� ����������	����*��	�����	��

1
/������	���2�����)������������������	��������������������������������
���@A)�����

���
������ ���������� ������ �������� ��� ���������� ��� ���
��� @$)� G�����	������� /��.����

�������	������������������������	������������������
��������������
���@8)�

'�� �
�
+
����
��� ������
����� �������

���
��
��&�
	��

��	���

��)��/

���!�	

��(��
	 ��!!�		��

�/���

��'���
���	���'�&����;'���
��
'���'
��&�
	��;'
��!�	'	����'���
���	���
'
���'���
�'���'
�����	'���'���
�
���&�'
��!�'���
��
'���'��	'�
'
��)��/��
�'-�'���
�
�;'�)���'
���
���	���'!�
	'��'��)��/��'���'
�����)���'-�'�����)�;'�	'
��
	'3'
��)��/
'!�
	'��'��
�	�)��'-�'&�	'

�����	;'	��'���
���	���'!�
	'��'
�����)���'��	���'�����	'&�	'!���'
	���'3'
�����	
'�	��

'''''''''''''''���
���	���'�&����

��)�
�

��)��/��

�

"�� ����)�������������������	��1
/������	��2������

�

��)��/��

���)��/����&�
	��

��&�
	��+,'0'��)��/��

<��/��)��/��+�'0'��)��/��,

���&�
	��

��&�
	��+�'0'���
��;'�'0' �	�,'0'���
��

<��/���
��+�'0'���
��,

��!�	��

��/���

�/���+
'0'������	,'0'.��
���

���)��/����&�
	��

��&�
	��+,'0'��)��/��

<��/��)��/��+�'0'��)��/��,

��)��/��

��	���

����!�	

���!�	+�'0'��	���;'�'0'���
���	���;'�'0' �	�,'0'
.
<��/���
���	���
+�'0'��	���,

<��/���
���	���+�'0'��	���;'�'0'
� �
� 	� ,����=���
���	���+�'0'���
���	���,

���)��/

��)��/+�'0'���
���	���;'�'0' �	�,'0'
� �	�<��/������	!��	
+�'0'��)��/��,

<��/���
���	���+�'0'������	!��	;'�'0'���
���	���, ��!�	��

���(��
	

��(��
	+�'0'��	���;'�'0'���
���	���;'�'0' �	�;'
'0'������	,'0'
� 	<��/������	
+�'0'��	���,

<��/������	+�'0'��	���;'
'0'
� 	,

>>�
�??

���)�
�

������	+�'0'��)��/��;'�'0'���
���	���,'0'
� � 	 	��)�
�+�'0'���
���	���,'0'.��
���
�����)�+�'0'���
���	���,'0'
�
<��/������	!��	
+�'0'��)��/��,

<��/���
���	���+�'0'���
���	���,

<��/���	�(��
+�'0'���
���	���,

<��/���	�(��+�'0'���	�(��,

�����

+�'0'��	���;'�'0'���
���	���;'�'0'
 	 ,

>>�
�??

>>�
�??

�

"�� ����*)�G�����������	��	������������������������������

�

���)�
�'
��)���'��	������

������	�	�	�

�����)��	�	�

��)�
��	�	�

>@��������	���

���
���	������
���	�	�+���!�		��,

@?�)��	

�����)�

��
	'�����	���

���
���	���
���!�		�

�

�����	�

�

A�����

����

�����)�

����	��

1��	�	�	�

��"��	��

�

"�� ����+��G�����	�������/��.�����������	������������������������	�����������

'�0��� �����	���
� ��� ���
��	���� ���%-�� �� �.�� ���� �" �/%�-� "!� ��!"#$��%"�� �&���$�� ��

.���
��� ��
��

1�������������	���	���	�������	����-
����������	����	�����	�����������	���������

	�����������������	�����	����&�������������	����������������������������������
����	��

���������	
���/��
������		��
���/��
	
���)�*���	�����/�����	��/�����	�����	����

.�������������/������
���������.�������������������	����	��������������
��
�����.�����

�������� ��� ��	�����
� �	���/��� ��� �	���/	����	��.���� 	����� ��������� 	�� �������)� H	.�

��������� ���� ��	������ ��� ��� �	�� �	��������� ��� ������� ������������ *	������� >� ����

����� �
��	��� ��� �	� ������� ���� ���	��� +����
����� �4������� �������,
� ����������
� ������

	������	��
����������	����	/�����	����
�������������	������������	���������)��

���� ����� 	�� ����� .	�&� ��� ��� �	���-
���� ��������	�� 	�� �	���
� �
���� �������������

������� ������������ ������ ���� /�����	�� 	�� ��������� ���	�����	�� ������
� ��	�� ��������

��-
��������)����� ������ ���� �	�����?��� ��� ����������F� ���/	������ ��-
�������������

/������������ ���5���	�� ������
��� �	��)���������
��
��	�����.����5����	���������
�

���� ����������� ���� ������/��� ��	�� 	����� 	���)� ��� ��� ���	��������
� �	.� ������� ����

�����������������/��.������-
�����������������������������������/���
������������

�	.����������	�����������������������������	��������������	���������������)�

;����������/���� ������ ������
� ���������� �
��	���������� �	�
��� �������	�����������	��

�������	������	��)�G�����
�/	���&�����	����������������	�����������
���/���	���������

����������� ������)� ���� �	��� 	�� ������ ���������
���� ��� ����� ������ ���� ����������

�������� 	����� &����� 	�� ������ ��������� .���� �������� �������� ���� �	�����
� ��� ������

����������������	��)��

2��� ����	����� ��� /����� 	�� �*�� 	/6���� �	���� ������
� 	�� �
��	��� �	� ����	��

�	�������� 	�� ����� �	������� ����
���)� ��� �
�
��� .	�&
� ��� ��� ��������� �	� ��&�� ����

���	��� ����� >� ��	�� ��-
��������� �	� ������
� �
����� .����� 	������	��� 	�� �����������

�
���/�����	�������	��	���	����������	���	��	���������	�������
����	����	�����������

����	�)�

&0"0&01�0��

7@9� 2�������	� 3)
� G����	� N)� ��	.������ ���
��
����� ���� G�����������	�� ��� G�-
��������
�����������	�)�����������G��	��)�����"��������������N��	��
������
�0!!0)�

709� <	�&� �)� N	��"������� *	������)� O	
����� 	�� 5/6���"5�������� 1�	��������� @#+ ,
� ��N�

1
/������	��
�0!!!)�

7#9�<	�&��)�������&�����	��<�����	��*	���)� O	
�����	��5/6���"5��������1�	���������@0+C,
�

��N�1
/������	��
�@888)�

7C9� <	������
� �)� ���� �	������
� O)"1):� ��	�� �������	�� �	� H������������ ������ *�������:� 2�

1������"<�����2���	���
� ���1�	�)�	��551��2�0!!!�;	�&��	�:��������	"/������	
��"�����

�����������
��������������������	�������	�	��
��	��.��������������/	���	��
�G��	���0!
�

5��	/���0!!!
�@#"@$)�

7 9����	�������)
����
�������)
�1�����
�&���<)��������	����������	������������/�����	
���	��

��������� ���	�����	�� �������)� � 3�������� ����/���� G�������� ��� 3������� 3
�	��)�

1�	��������� 	�� ����1��"�	���������;	�&��	�� 	��P��<�0!!#)�<������/
��������������	��
�����	�	�������	��/
�
��	���/���0!!#
��)�0A"#@�

7B9���������
�O)���������O)��*���	��	�����)�2���	��;�����
�0!!!�

7A9��		&��)� ��� ���)� ����2���������*�������	�	��5��)�����
����	���� ����	��
�����������
�

00B#
���������"P�����
�0!!0
���)@@ >@C8)�

'�� �
�
+
����
��� ������
����� �������

7$9� �Q�	
?�� �)� �)
� ;����� 2)� �)� 5/6����
� �	��	�����
� ���� �����.	�&�� .���� �*�)� ����

��������������	���)��2����	��;�����
�@888)�

789� ����&��� �)� *	���� ������� 2��������
��:� 2�������� *�2� �	� 3���������� �	��
����)� O	���

;�����R��	��
�0!!#)�
7@!9� ��5S��8AS�� S;N#)� �	������� ���� ������	�	��� �	�� ���� �	�����
��� ������� ����

���	�����	��<���
�@8$0)�

7@@9� O��	/�	�� �)
� <		��� N)
� G
�/�
��� O)� ���� �������� *	������� ����
���� ����� N
���)�

2����	��;�����
�<	��	��+0!!!,�

7@09� ������� 2)
�;������ O)� 34��������5��� �	� ����
��� 2���	��)� ����
��� �	���� ����	��
����

�������
�@8#8
���)�CC!>C !
�0!!!)�
7@#9��	������N)
���4�H);)
�;������*)��	
��������������������������*	����������*������	��

P�������	�� ����P���������	��	��G�-
��������� �����������	��)�G�-
���������3����������
� B
�

��������"P�����
�0!!@
���)�#"@A)�

7@C9� *T&����� 3)� ���� ����T� �):� 2�� ������������ ����	���� �	�� ��������?���� �*�� �����������

�����������	����-
�������������
� ���1�	�)�	��551��2�0!!!�;	�&��	�:��������	"/�����

�	
��"����� �����������
� ������������������� 	�������	�	��
� �	��.������������ ��/	���	��
�
G��	���0!
�5��	/���0!!!
�A"@0)��

7@ 9� *������ G)�)� 2����� �	��.���� �����	�����
� 1���������
� 1�������
� ���� 1��������)� 1��������

H���
�0!!0)�

7@B9�*���	�� �)O)
� <������*)O)� 34��
��/��� �*�)�2� �	
�����	�� �	���	���"������� ���������
��)�

2����	�";�����
�0!!0)�

7@A9� ���
������ �)
�������
�&����� �)
� 2�/��?�����
�� 3):� �	.����� 3��
����� �	���������� �	�

�*��*	����)�����	�����6	���	&����
�0C
�P�����
��
������������
�0!!0
���)�$ "8A)��

7@$9� 1�����
�&��� <)
� ���
������ �)� ����� <����� ���� ��������� *	����)� *	�	�����)�

�����	�	��6�
���
���
�0!!0�+�������
�����,)�

7@89� G����	� N)
� ����	��� *)
� 2�������	� 3)� 2�� 2���/����� ���������� 	�� �*�� �
��	������ ��Q��

*
������.�2���	���)� ����
����	���� ��� �	��
���� �������
� 0!08
� ���������P�����
�<�����
�
0!!@)�

70!9� G	���/���� �)
� ��	��� �)� 2�������� ���� ����� ������� 5/6���� *	������� .���� �*�:� 2��

2��	�������"�	�������34�����)�>�<	��	�:�2����	��;�����
�0!!@)�>�@ #��)��

70@9����������)
����	������2)���	�������������	��������5������	�������������	��)�DD�*�EE�

0!!!
�����
����	��������	��
�����������
�@8#8
���������"P�����
�0!!!
���)�@>@)�

7009�������� O)������	��������5*NQ��*	���"�������2��������
��)�5*N��	�
�����	��S!@"@0"
!@)�����:SS...)	��)	��)�

70#9��������)�34��
��/����*�)�H	.��	�/
�����������	����)�1��������H���
�0!!0)�

70C9� �*�� 1�	����� �	�� 3���������� ������/
���� 5/6���� �	��
����� �����������	�)� 5*N�

�	�
��������S	0"!0"!)�0!!0)�����:SS...)	��)	��)��

70 9���������*	�����������
���)��
������
��
��� �����������	�)�P����	��0)!)�5*N��	�
�����

���S!#"!$"!0
�0!!#)������:SS...)	��)	��)��
70B9� �������� *	������� ����
���:� 5��)� P����	�� 0)!)� 5*N� �	�
����� ���S!#"!$"!$
� 0!!#)��

����:SS...)	��)	���

70A9�;������ O)<)
��������2)N)�����	/6�����	��������� ����
���:����������	�������.�����*�)�

2����	��;�����
�0!!!)��

70$9�;�/����������2��������
��)�;	�&���������)�;#��	��	���
�
�0!!0)�����:SS�...).#)	��)��
7089� ;������� O)
� ���
����� O)� N���������� ����������� �������� ��	�� �������	�)� ���������	����

�	���������	���	��.����3����������
��������
�0!!!
���)#@C"#0#)��

Transformation of business rules models in information
systems development process

Sergejus Sosunovas, Olegas Vasilecas

Information Systems Laboratory, Vilnius Gediminas Technical University

Vilnius, Lithuania E-mail:

{sergejus, olegas}@isl.vtu.lt

Abstract. Object management group’s offered model driven architecture is

actively propagated to use in development of information systems. Model

driven architecture enables transformation of models of business systems to

the models of information systems and then to the models of software

systems. Despite of numerous publications on this topic, the transformation of

business rules between different enterprise systems components, for example

business systems and information systems, is not addressed suitably. This

paper analyses transformation of business rules, which are formally specified

in UML/OCL to the event-condition-action rules of active database

management systems. Meta-models necessary for the transformation and

transformation problems are analysed. Paper presents results of transforming

of one kind of business rules expressed in OCL to event-condition-action rules

allowed to emphasize strength and weaknesses of model driven architecture

framework

Keywords. Model driven architecture, meta-modelling, business rules,

transformations, OCL, platform independent models, ECA rules.

1. Introduction

An unavoidable technological change challenges nowadays enterprises. In order

to stay profitable and competitive enterprises have to accept this challenge and to

adopt new technologies in their business environment as fast as possible. However

utilization of new technology does not always mean change of the way business

goes. Technological changes may result in increasing the speed of business or the

quality of information what affects the quality of business decision making. The

main business practices and experience possibly will stay the same.

Enterprise transition to the modern information processing and management

requires to establish a new project, and to execute appropriate phases like business

analysis and requirement elicitation. Bigger part of the enterprises already have

executed the number of business analysis and requirement specification phases in

the previous projects hence the new one project could use already created business

models and requirements specifications. Nevertheless existing models were created

with the old technology in mind and could not be very useful. Hence existence of

technological independent business oriented models will simplify enterprise

adaptation for the future technologies.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '�'(')�� 	�

'�� �
�
*
����
��� ������
����� �������

The problem of technological change and reuse of models is addressed by the

object management’s group (OMG) model driven architecture (MDA). MDA is

based on the existence of the several layers of models and transformation of models

of platform independent layer to the models of platform specific layer. At the last

layer applications are generated. Model transformation is defined by transformation

rules of the transformation specification. These transformation rules refer to the

meta-models of model being used. Meta-models and common meta-model creation

requirements defined by OMG meta object facility (MOF) and formal specification

of business rules using UML/OCL [1], [2] enables model transformation in process

of enterprise systems development using business rules (BR) approach.

A modern enterprise system consists of business, information and software

systems [3]. It is usual to create models of business systems, elicit business needs,

specify information system (IS) requirements, and then using IS needs to specify

software systems requirements. At each of before mentioned steps some kind of

models should be created. Transformation between these models usually is executed

manually by appropriate IT staff. It is feasible to map the models of these systems to

the corresponding MDA levels and automate transformation.

BR are the general part of all these systems. BR in the business systems context

are defined as a directive, intended to influence or guide business behaviour, in

support of business policy that has been formulated in response to an opportunity,

threat, strength, or weakness [4]. Whereas in the IS context BR is statement that

defines or constrains some aspect of the business [4]. Usually BR are implemented

in the software code. It is possible to claim that automatic transformation of BR

from one system to another will facilitate system development.

The rest of the paper proceeds as follows. Section 2 maps business, information

and software system models to the corresponding MDA levels. Section 3 presents

theoretical foundations of BR in IS specified in OCL transformation to the event-

condition-action (ECA) rules of software systems using MDA. Transformation

example of one of BR type and supporting meta-models are described in Section 4.

Section 5 provides formally specified transformation rules. Section 6 summarises

the proposed approach.

2. Related work

System development using MDA framework implies creation of models of

following types: platform independent models (PIM) and platform specific model

(PSM). Models of PIM enable specification of the several, usually selected by the

user, platform independent and technological free perspectives of the modelled

system. To simplify the complexity of PIM for different user groups (e.g. business

staff, IT staff) several abstraction levels can be outlined: computation independent

models (CIM) and PIM per se [5]. Though CIM and PIM overlap to some extent, the

boundaries of these levels are defined in terms of problems and solutions they

represent. CIM assumes existence of problem statement and its description, as far as

PIM includes a number of platform independent solutions [6].

Informational needs and related problems are identified during analyses of

business systems. Business system - the place where the problems reside, is a set of

'�+��� �������	�
� ��� �	�
���	��� �#���!"#$��%"�� "!� �,�%����� #,-��� $" �-�� ��

interrelated business processes performed to achieve certain long duration goals [3].

The usage of CIM to model business systems simplifies understanding of these

systems, elimination of the problems and its sources. Supporting processes of IS

fulfilling the needs of business systems. IS concentrate on information and

information processing methods therefore these systems are technology free and can

be modelled by PIM. IS are supported by business software systems, the latter ones

employs the power of different technologies to provide information processing

facilities for IS. The technological solutions of business software systems are

modelled by PSM.

Computation
independent model

(CIM)

Platform independent
model
(PIM)

Platform specific
model
(PSM)

Platform dependent
model
(PDM)

CIM >> PIM
Transformation

PIM >> PSM
Transformation

PSM >>PDM
Transformation

Business
system

Information
system

Software
system

Computer
system

Figure 1. Mapping different levels of MDA to the different systems.

Technical environment enabling an execution of the code of business software

systems itself is a system. This environment – computer system – includes necessary

hardware, networks, system and middleware software, and a realisation of business

software system. Computer system can be modelled using platform dependent

model introduced in [6]. Mapping between presented systems and MDA parts is

depicted in Fig. 1.

BR are one of the integral part of the business system. BR exist and are used in

each of before mentioned systems however the form of BR may be different in every

particular system. In the business system BR exists in the form of mission statement

and business goals usually expressed in natural language. Besides the number of

rules exist in unexpressed yet form.

BR modelling in business systems is challenging issue because of a business

variety and the lack of general business vocabulary. Following an industry demand

for general business vocabulary and BR meta-model OMG issued request for

proposals for business semantics and BR [7]. Submitted responses [8], [9], [10]

present three different approaches for BR modelling at CIM level. Meta-models for

a limited number of BR are presented in [11], [12]. Additionally, BR can be

specified using RuleML [13] language. The degree BR are involved in business,

information and business software systems development may be different. Business

rules approach [14], [15] assumes that BR are the main component of the

development of these systems and provides some BR modelling methods.

'�� �
�
*
����
��� ������
����� �������

BR in IS appear to be more information-centric and usually refer to some data

items. BR from business system have to be transformed to corresponding constructs

of IS, hence CIM have to be transformed to PIM. During this transformation the

form of BR changes and additional semantic value is gained. Usually during

transformation of BR specified in business system in natural language are

formalised. In the context of PIM BR are most often formally expressed in OCL.

This language was created to specify business constraints at IBM insurance and is

powerfully enough to express different types of BR [16], [17], and [18].

OCL is declarative language however in order to implement BR on some

platform it is needed to transform them to imperative form. The notion of event,

when violation of BR occurs and an action is important to model BR using PSM.

ECA rules are widely used in implementations of different platforms and it is

feasible to transform BR specified in OCL to the ECA rules. ECA model as the

result of transformation can be used to generate applications or triggers of active

database management system that is more effective than implementation by means

of declarative assertions [16].

Model transformation is essential part of the MDA framework. Transformation

specification, a set of transformation rules, is used to define transformation of one

model to another model, assuming that models are based on the meta-models

complying with the MOF. Meta-model transformation approaches [19], [20] are

implemented in a number of transformation specification languages: UMLX [21],

ATL [21], BOTL [23], TRL [24]. Despite of numerous publications on this topic,

the transformation of BR between different enterprise systems components, for

example business systems and IS, is not addressed suitably.

3. Transformation decisions

OCL became part of the UML specification from version 1.1. It was developed in

the IBM and is based on the first order logic. OCL is designed to specify constraints

on object-oriented models (e.g UML). The semantics of UML itself is defined using

OCL.

Every OCL expression begins specifying its applying context. The context may

be a UML model classifier (e.g. class name, class attribute) or a method. Depending

on the context it is possible to use an invariant, a keyword: inv, when context is

classifier or pre- and post condition, the keywords pre and post, when the context is

a method. There is a condition at the end of each OCL expression. The invariant

condition must be satisfied by each instance of the model. When the context is

method pre condition must be satisfied before executing the method, post condition

must be true just before the end of the execution. Despite of the word “constraint” in

the title of the OCL not only constraint BR can be specified. The UML 2.0

specification will include the notion of actions which will expand the OCL

application domain for other BR types. One of the possible appliances of the action

clause is to specify events being sent during the execution of the method, allowing

to specify actions of BR, or to specify what would happen when the invariant fails.

In this paper it is assumed that constraint BR are specified using OCL invariants.

OCL invariants are designated to constraint UML class diagrams. Events, initiating

'����� �������	�
� ��� �	�
���	��� �#���!"#$��%"�� "!� �,�%����� #,-��� $" �-�� ��

part of ECA rules, are generated after some action executed on data item. In order to

transform OCL clauses to the ECA rules it is necessary to transform UML class

diagram to the database schema. In this paper “one-class-one-table” approach is

used, each UML class is transformed to the table of relational database (RDB).

Corresponding transformation of interclass relations is executed. The formal

transformation specification is presented in [24]. However MDA allows easily

change UML-RDB transformation principles do not affecting OCL-ECA

transformation.

OCL is a purely declarative language and can be expressed in database in the

following way: using assertion statements [25], using views [26]. In order to

transform OCL clauses to the ECA rules it is necessary to answer the following

questions [27]:

•What event initiates a trigger?

•What is trigger granularity?

•What is trigger condition?

•What is trigger initiation time?

OCL specification defines that every instance of the model must satisfy OCL

constraints. Hence there are three strategies to implement OCL constraints:

toleration, avoidance and combined. Constraint violation toleration strategy implies

checking of all implemented OCL constraints from time to time. Usually user

initiates checking and takes appropriate action if the violation is detected. In

violation avoidance strategy user is alerted if violation occurs, the last transaction

triggered violation is cancelled. Often in the case of complicated BR user from the

business environment may be not competent enough to solve the problem which

initiates violation of BR. Then combined strategy should be used. According to this

strategy two types of BR are distinguished. Violation of BR of first type could be

solved by the user and transaction must be cancelled. Respectively violation of the

BR of the second type must be only detected and transaction must be stopped for a

while.

This description of OCL clauses implementation uses the violation avoidance

strategy. It is necessary to watch a value of every attribute used in the OCL clause.

Hence each invariant instance must be evaluated every time those attributes are

created changed, deleted. Therefore triggers implementing constraint must be

initiated on database column creation, modification and deletion actions.

Trigger initiation time implies the time when the trigger condition must be

evaluated, before execution of trigger initiated action or after. But if the trigger

condition is executed before the action it does not have access to the

created/modified data. It necessary to check condition after trigger initiated action.

Inserting n records in a time trigger can be executed one or several times,

depending on the trigger granularity. There are two types of trigger granularity

statement level and row level. Using violation tolerance strategy, when all

constraints are evaluated on the snapshot of the database it would be feasible to use

statement level triggers, however avoidance strategy must be implemented using

row level triggers.

OCL clauses are effect free, which means that specification doesn’t describe what

action should be executed if the violation of constraint occurs. Implementing OCL

clauses in ECA rules of active database systems the system can just alert user about

constraint violation or cancel transaction. During database transaction execution it is

'�) �
�
*
����
��� ������
����� �������

4. Example of transformation

In the following example BR belonging to the comparative evaluators’ family

will be transformed to the ECA rules. The comparative evaluators’ BR family

contains business rules of several types: equal-to, not-equal-to, greater-than, greater-

than-or-equal-to, less-than. An example of comparative business rule: “Cigarettes

can not be sold to the customers younger than 18 years old”. This business rule

expressed in OCL (context is presented in Fig. 2):

Customer

Age

Figure 2 UML model for the OCL example.

Context Customer
Inv AgeConstraint: Age >=18

In order to transform such business rule to the ECA rule according to MDA

framework two meta-models are needed, one describing the semantics of OCL and

the second describing semantics of ECA rules. OCL specification already contains

general meta-model, for our purposes that meta-model is too big and the view of it

must be created. Simplified OCL meta-model used for transformation of

comparative evaluators’ BR and complete to present such kind of BR is depicted in

Fig 3 and Fig. 4.

ECA meta-model which is partly based on meta-model presented in [11] and

extended to include ability to represent conditional statements is depicted in Fig. 6.

Event of ECA rule is usually related to some data structure, in simplified ECA meta-

model this data structure is “Table” from [24] (Fig. 5).

As it is common for MOF compliant meta-models almost all elements are

inherited from one single element. In ECA meta-model case this element is called

“ModelElement” (Fig 7.) and its one attribute “name”, used in the child elements in

a number of ways (e.g. to represent operation sign, and elements names).

ModelElement

name : String
(from SimpleUML) Class

<<reference>> attributes : Attribute
<<reference>> reverse : Association
<<reference>> forward : Association

(from SimpleUML)

ExpressionInOcl

<<reference>> contextualClassifier : Class

Classifier
(from SimpleUML)

OclExpression

<<reference>> appliedProperty : PropertyCallExp
<<reference>> type : Classifier
<<reference>> parentOperation : OperationCallExp

+contextualClassifier

0..10..1

+type

Figure 3 Simplified OCL meta-model (First part).

'�.��� �������	�
� ��� �	�
���	��� �#���!"#$��%"�� "!� �,�%����� #,-��� $" �-�� ��

ModelPropertyCallExp

Attribute

<<reference>> owner : Class
<<reference>> type : TypedElement

(from SimpleUML)

AttributeCallExp

<<reference>> referredAttribute : Attribute

1

0..n

+referredAttribute

1

0..n

PropertyCallExp

<<reference>> source : OclExpression

OperationCallExp

<<reference>> arguments : OclExpression
OperationName : String

OclExpression

<<reference>> appliedProperty : PropertyCallExp
<<reference>> type : Classifier
<<reference>> parentOperation : OperationCallExp

0..1

0..1

+source

0..1

+appliedProperty
0..1

0..1

0..n

+parentOperation
0..1

+arguments 0..n

IntegerLiteralExp

integerSimbol : Integer

Figure 4. Simplified OCL meta-model (Second part).

Figure 5 Simplified relational data base meta-model [24].

')� �
�
*
����
��� ������
����� �������

ErrorAction Action

<<reference>> owner : ECArule

ECArule

<<reference>> events : Event
<<reference>> actions : Action
<<reference>> evaluatedCondition : Condi tionExp

1..*

1

+actions 1..*

+owner
1

OperationCal lExp

<<reference>> parentOperation : Condi tionExp

Event

<<reference>> triggeredRules : ECArule
<<reference>> referedT able : Table

1..*

0..*

+events 1..*

+triggeredRules
0..*

Condi tionExp

<<reference>> owner : ECArule
<<reference>> arguments : OperationCallExp
<<reference>> appliedCol lumn : ColumnCal lExp

1

1

+evaluatedCondi tion
1

+owner
1

0..*

1

+arguments
0..*

+parentOperation

1

Table

<<reference>> columns : Column
<<reference>> foreignKeys : ForeignKey
name : String

(from SimpleRDB)1

0..n +referedTable

1

+is_produced

0..n

ColumnCal lExp

<<reference>> parentExpression : ConditionExp
<<reference>> referedColumn : Column

0..*

1

+appl iedCol lumn
0..*

+parentExpression

1

Column

<<reference>> owner : Table
name : String
type : String

(from SimpleRDB)

*

1..1

+columns
*

+owner 1..1

hasColumn

0..*

1

+is_used_in

0..*

+referedColumn

1

IntegerLiteralExp

integerSymbol : Integer

Figure 6. Simplified ECA rule meta-model.

ModelElement

name : String

ColumnCallExpAction EventECAruleOperationCallExp ConditionExp

Integer
<<DataType>>

String
<<DataType>>

Figure 7. Classes of ECA simplified meta-model.

')/��� �������	�
� ��� �	�
���	��� �#���!"#$��%"�� "!� �,�%����� #,-��� $" �-�� ��

5. Transformation specification

There is no standard transformation language for the specification of

transformation rules of meta-model based transformations. However the general

structure of transformation rules proposals is quite similar. Every transformation

language first declares the meta-model or the view of meta-models being used in

transformation. There is a pattern in the beginning of each transformation rule

specifying what source meta-model elements will be used for the transformation and

destination meta-model constructs will be produced. The main differences between

different transformation languages are: the type of transformation rules (declarative

or imperative), the notion of source-destination models, rule usage strategies, rule

organisation, transformation directions [19].

Transformation rule language (TRL) [24], is used to define model queries and

transformations according to MOF 2.0 meta-model principles. This language is an

OCL extension, hence bigger part of methods including model navigation methods

are taken from OCL. TRL is organised in modules and packages. Three main

packages are: query, transformation and view.

TRL extends OCL in a number of ways aimed to enable and facilitate

transformation. Low coupling between different transformation specifications allows

easily apply different transformation approaches for the different parts of the same

meta-model. Ability to refer to the already transformed elements simplifies the

development of specification.

OCL-ECA transformation specification presented in this paper is defined using

TRL. This specification extends UML-DBMS transformation specification defined

in [24]. UML-DBMS transformation specification is necessary to refer to the

“Column” and “Table” already transformed elements.

OCL-ECA transformation specification (formal definition):
transformation Ocl2ECA

-- Reference to the already executed transformation
extends transformation Uml2rdbms;

-- Declaration of used meta-models
use modeltype SimpleOCL, SimpleECA

-- Transformation direction specification
purpose create ecamodel:SimpleECA from oclmodel:Simple:OCL

-- Activation of the transformation.
activator go()
 {oclmodel.objects() [OclExpression].create ECArule();}

-- The first rule transforming OCL expression to ECA rule
rule R1 create ECArule from OperationCallExpression(){
-- ECA rule will have the same name as OCL constraint
 name:=name;
-- The sequence of events must be generated for the each ECA rule
-- element
 events:=ContextualClassifier.create Sequence(Event);
 evaluatedConditions:=self.create OperationCallExp();
 action:=self.create ErrorAction();}

-- The ECA condition must be checked on UPDATE and INSERT events

')� �
�
*
����
��� ������
����� �������

rule R2 create Sequence(Event) from ContextualClassifier(){
 result:={self.create Event(“UPDATE”),
 self.create Event(“INSERT”)};}

rule R3 create Event(n:String)from ContextualClassifier(){
 name:= name+”_”+n;
--Resolution of the already transformed object Table
 table:=self.resolve(Table);}

rule R4 create OperationCallExp() from OperationCallExp(){
 name:= ”not ”+OperationName;
 owner := self.resolve(ECArule);
 arguments := arguments.Create Sequence(ConditionExp)
 from OclExpression;
 }

rule R5 create Sequence(ConditionExp) from OclExpression
{

-- Here the OCL if expressions and IsTypeOf operation are used to
-- transforms necessary arguments

 :result = if self.IsTypeOf(IntegerLiteralExp)
 then self.create IntegerLiteralExp().asSequence()
 else if self.IsTypeOf(AttributeCallExp)
 then self.create ColumnCallExp().asSequence()
 end
 end
}

rule R6 create IntegerLiteralExp from IntegerLiteralExp
{
 name:=name;
 integerSymbol := integerSymbol;
}

rule R7 create ColumnCallExp from AttributeCallExp
{
 name:=name;
 referredColumn := self.referredAttribute.resolve(Column);
}

rule R7 create ErrorAction() from ExpressionInOcl()
{
 owner := self.resolve(ECArule);
 name := ”Violation of: ”+name;
}

6. Conclusions

Transformation development process has some similarities with classical system

development processes. First the transformation requirements are specified, then

transformation is designed in a declarative manner. At the high abstract level the

mapping between appropriate components of destination and source models is

defined. Transformation is implemented specifying imperative transformation rules.

In order to achieve necessary quality the transformation correctness should be

evaluated. It is feasible to apply iterative transformation development process.

')'��� �������	�
� ��� �	�
���	��� �#���!"#$��%"�� "!� �,�%����� #,-��� $" �-�� ��

Developing of the transformation rules is very close to the programming of usual

software. So well known approaches to the organisation of business rules can be

applied. However because of the specificity of transformation rules (e.g. high

granularity) the new programming techniques and tools should be developed.

MDA enables uncomplicated migration of the BR based systems to the new

platforms. Modelling of BR in platform independent language OCL allows precise

and unambiguous specification of BR. Presented transformation of OCL clauses to

ECA rules and then to trigger of active DBMS is a common and efficient approach

to implement BR. BR implemented as triggers are more easily maintained and

changed.

References

[1] OMG UML 2.0 OCL Draft Adopted Specification. OMG document: ptc/03-08-08.

http://www.omg.org/cgi-bin/apps/do_doc?ptc/03-08-08.pdf

[2] OMG. OMG/MOF Meta Object Facility (MOF) Specification. OMG document:

formal/02-04-03, http://www.omg.org/cgi-bin/apps/do_doc?formal/02-04-03.pdf.

[3] Ļaplinskas, A., Lupeikienǟ, A., Vasilecas, O. Shared Conceptualisation of Business

Systems, Information Systems and Supporting Software. Databases and Information

Systems II. Kluwer Academic Publishers, 2002, pp. 109-120.

[4] Ross, R., G. Principles of the Business Rule Approach. Addison Wesley, 2003.

[5] Siegel, J. Developing in OMG’s Model-Driven Architecture. OMG document: 01-12-01,

2001. http://www.omg.org

[6] Bézivin, J., Gerard. S., Muller, P.-A., Rioux L. MDA components: Challenges and

opportunities. Proceedings of Metamodelling for MDA workshop, York, England,

November, 2003. http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf

[7] OMG. Business Semantics of Business Rules RFP. OMG document: br/03-06-03, 2003.

http://www.omg.org/cgi-bin/apps/do_doc?br/03-06-03.pdf.

[8] Adaptive, Business rule Solutions LLC et all. Business Semantics of Business Rules.

OMG document: bei/2004-01-04, 2004. http://www.omg.org/cgi-bin/doc?bei/04-01-04

[9] Fujitsu Limited. Business Semantics of Business Rules. OMG document: br/2004-01-01,

2004. http://www.omg.org/cgi-bin/doc?br/04-01-01

[10] International Business Machines. Business Semantics of Business Rules. OMG

document: br/01-01-02, 2004. http://www.omg.org/cgi-bin/doc?br/04-01-02

[11] Herbst, H. A Meta-Model for Business Rules in Systems Analysis. CAiSE’95

proceeding. Berlin, Springer, 1995, pp. 186-199.

[12] Moriarty, T. Business Rule Management Facility: System Architect 2001. On-line paper.

http://www.intelligententerprise.com/000801/metaprise.jhtml?_requestid=441609

[13] Boley, H. The Rule Markup Language: RDF-XML Data Model, XML Schema

Hierarchy, and XSL Transformations. Proceedings of INAP2001 LNCS 2543. Invited

Talk, Tokyo, Springer-Verlag, 2003, pp. 5-22.

[14] Ross, R., G. The business Rule Book (2nd ed.). Business Rule Solutions, Houston, 1997.

[15] Von Halle, B. Business rules applied: building better systems using the business rules

approach. John Wiley & Sons, New York, 2001.

[16] Wagner, G., Tabet, S., Boley, H. MOF-RuleML: The Abstract Syntax of RuleML as a

MOF Model. Integrate 2003 proceeding. http://www.omg.org/docs/br/03-09-01.doc

[17] Sosunovas, S., Vasilecas, O., Using UML/OCL for business rules modelling.

Proceedings of Sixth Lithuanian young scientist conference, Vilnius Gediminas Technical

University, Technika, Vilnius, 2003, pp: 139-148.

')� �
�
*
����
��� ������
����� �������

[18] Sosunovas, S., Vasilecas, O. The meta-model based transformation of business rules

models. In A. Caplinskas, V. Denisov at al (eds.). Proc. of the Conference "Information

Technology'2004", Kaunas University of Technology, 2004, pp. 585-592. (in Lithuanian)

[19] Czarnecki, K., Helsen., S. Classification of Model Transformation Approaches.

OOPSLA’03 Workshop on Generative Techniques in the Context of the MDA

proceedings, 2003, http://www.softmetaware.com/oopsla2003/mda-wokshop.html

[20] Gardner T., Griffin C., Koehler J., Hauser R. A review of OMG MOF 2.0

Query/View/Transformations toward the final Standard. OMG document: ad/03-08-02.

http://www.omg.org/cgi-bin/apps/do_doc?ad/03-08-02.pdf

[21] Willink, E. D. UMLX - A Graphical Transformation Language for MDA, Workshop on

Model Driven Architecture Foundations and Applications, University of Twente, The

Netherlands, 2003, pp. 13-24.

[22] Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J., E., First experiments with the

ATL model transformation language: Transforming XSLT into XQuery, 2nd OOPSLA

Workshop on Generative Techniques in the context of Model Driven Architecture,

October 23-30 2003, California, USA.

http://www.softmetaware.com/oopsla2003/bezivin.pdf

[23] Brauna, P., Marschall, F. The Bi-directional Object-oriented Transformation Language.

Technical report, Technische Universität München, TUM-I0307, 2003,

http://wwwbib.informatik.tu-muenchen.de/infberichte/2003/TUM-I0307.pdf

[24] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Technologies Corp. Response to the

MOF 2.0 Query/View/Transformations RFP. OMG document: ad/2003-08-05, 2003,

http://www.omg.org.

[25] Demuth, B., Hussmann. H., Using OCL constraints for relational Database Design.

LNCS 1723, Springer-Verlag Berlin Heidelberg, 1999, pp. 598-613.

[26] Demuth, B., Hussmann, H., Loecher. S. OCL as a Specification Language for Business

rules in Database Applications Design. LNCS 2185, Springer-Verlag Berlin Heidelberg,

2001, pp. 104-117.

[27] Badawy, M., Richta. K. Deriving triggers from UML/OCL specification. In M. Kirikova

at al (Eds.). Proceedings of ISD 2002 conference on Information Systems Development:

Advances in Methodologies, Components and Management. Kluwer Academic/Plenum

Publishers, 2002, pp. 305-316.

Reverse Engineering of Relational Databases to Object
Databases

Irina Astrova

Tallinn University of Technology

Ehitajate tee 5, 19086 Tallinn, Estonia

irina.astrova@cellnetwork.com

Abstract. Whereas reverse engineering of relational databases to object

databases is a widely studied subject, a majority of the work on schema

transformation has been done on analyzing key correlation. Data and attribute

correlations are considered rarely and thus, have received little or no analysis.

This is partially evident from that the existent approaches can extract only a

small subset of semantics embedded within a relational database; for example,

they can fail in discovering inheritance and optimization structures. Another

problem with the existing approaches is that they can require much user

interaction for semantic interpretation, thus giving less opportunity for

automation. As an attempt to resolve these problems, we propose a novel

approach, which is based on an analysis of key, data and attribute correlations,

as well as their combination. Our approach transforms a relational database

schema into an object database schema in the context of Unified Modeling

Language (UML). It has two important advantages over the existing

approaches in that: (1) it allows the user to extract more semantics from a

relational database, and (2) it reduces user interaction, which is mainly

required to confirm the extracted semantics and to give them names.

Keywords. Schema transformation, relational databases, object databases

1. Introduction

Reverse engineering of relational databases to object databases is defined as a

process that obtains semantics about the legacy database, then converts the schema

from relational to object, and finally represents the results as an object database

schema [1]. There are several motives that require reverse engineering of relational

databases to object databases. For example:

• To gain an understanding of semantics of the legacy database [2]

• To document the legacy database structure (i.e. schema) [3]

• To migrate the database from relational to object [4].

Regardless of these motives, the main task of reverse engineering of relational

databases to object databases is schema transformation, that is, the translation of the

relational database schema into a semantically equivalent database structure

expressed in the new (e.g. object) technology [5]. In particular, the schema

transformation consists of deriving an object database schema from a relational

database schema, by replacing a construct (possibly empty) in the relational database

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� '()*���� 	�

'(� �
�
+
����
��� ������
����� �������

schema with a new construct (possibly empty) in the object database schema [1].

Mapping a relation into a class, replacing a primary/foreign key with a

generalization relationship are examples of the schema transformation.

2. Related work

Over the past ten years, researchers have proposed different approaches to reverse

engineering of relational databases to object databases, as shown in Table 1. The

existing approaches differ in their specific assumptions, inputs and methodological

characteristics. However, a majority of that research has been done on analyzing key

correlation. Data and attribute correlations are considered rarely and thus, have

received little or no analysis.

Table 1. Approaches to reverse engineering of relational databases to object databases

Approach Assumptions Input Output Characteristics
Albert et

al.’s [6]

3NF - Relational

database schema

- Data instances

Object

database

schema

- Provides a simple

and an automatic

schema transformation

- But does not cope

with inheritance and

optimization

structures

Premerlani et

al’s [3]

Non-3NF - Relational

database schema

- Data instances

Object

database

schema (in

the context

of OMT)

- Emphasizes on an

analysis of candidate

keys, rather than

primary keys

- Copes with

optimization

structures

- But requires much

user interaction

Ramanathan

and Hodges’

[7]

3NF - Relational

database schema

- Key

dependencies

Object

database

schema (in

the context

of OMT)

- Requires less input

information

- But does not cope

with optimization

structures

Behm et al.’s

[4]

3NF - Relational

database schema

- Data instances

- Key

dependencies

- Inclusion

dependencies

- Types of

relationships

(strong or weak)

Object

database

schema

- Includes both

schema transformation

and data mapping

- But considers only

data equality and data

inclusion

'(��� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

Tari and

Stokes’ [8]

3NF - Relational

database schema

- Data instances

- Key

dependencies

Object

database

schema

- Emphasizes on an

analysis of external

keys, rather than

primary keys

- Analyzes key and

data correlations, as

well as their

combination

- But does not

distinguish between

data equality and data

inclusion

This is partially evident from that the existent approaches can extract only a
small subset of semantics embedded within a relational database, thus producing

an object database schema that looks rather “relational”. For example, [4, 6, 8, 7]

fail in discovering optimization structures. Even though, more recently, new tools

have appeared to provide an automatic mapping of the relational model to the object

model, they still have limitations. For example, Rational Rose [9] maps an

inheritance structure to a composite aggregation. After the schema transformation,

the user can replace the composite aggregation with a generalization, also known as

an inheritance hierarchy.

Another problem with the existing approaches is that they can require much
user interaction for semantic interpretation, thus giving less opportunity for

automation. For example, even though [3] discovers inheritance and optimization

structures, it represents a fairly informal process of schema transformation with

weakly ordered steps that entail a lot of involvement from the user, backtracking and

reodering.

As an attempt to resolve the problems, we propose a novel approach, which is

based on an analysis of key, data and attribute correlations, as well as their

combination. Our approach transforms a relational database schema into an object

database schema in the context of Unified Modeling Language (UML) [9, 10].

Our choice of UML yields an important advantage. One notation is used to

represent both schemata. The existing approaches usually use Peter Chen’s Entity-

Relationship (ER) notation for relational database schema representation and the

OMT (Object Modeling Technique) for object database schema representation.

3. Relational database schema vs. object database schema

Before going into detail of schema transformation, we give a formal description

of: (1) relational database schema, (2) object database schema, and (3) relationship

between the two.

3.1. Relational database schema

This is the source for the schema transformation. Formally, a relational database

schema (based on the relational model) consists of:

'((�
�
+
����
��� ������
����� �������

• A set of relations R

• A set of attributes AR

• A set of relational database types TR that includes only simple types

• A function attr: R � 2
A

R that returns attributes of relations: ∀r(r∈R ∧

attr(r)⊆AR)

• A function type: AR � TR that returns types of attributes: ∀a(a∈AR ∧

∃t(t∈TR ∧ type(a)=t))

• A function key: R � 2
A

R that returns primary keys of relations: ∀r(r∈R ∧

key(r)⊆attr(r)) [4].

3.2. Object database schema

This is the target for the schema transformation. Formally, an object database

schema (based on the object model) consists of:

• A set of classes C

• A set of attributes AO

• A set of object database types TO that includes both simple and composite

types

• A function attr: C � 2
A

O that returns attributes of classes: ∀c(c∈C ∧

attr(c)⊆AO)

• A function type: AO � TO that returns types of attributes: ∀a(a∈AO ∧

∃t(t∈TO ∧ type(a)=t)) [4].

3.3. Relationship between schemata

We describe how the relational database schema is related to the object database

schema using:

• A function rel: C � R that returns relations from which classes have been

derived. Generally, each class corresponds to a single relation: ∀c(c∈C ∧

∃r(r∈R ∧ rel(c)=r))

• A function tt: TR � TO that translates relational database types into object

database types (e.g. VARCHAR into String), because of “impedance

mismatch” between the two type systems [11]: ∀a(a∈AR ∧ ∃t(t∈TO ∧

tt(type(a))=t)) and TR⊂TO.

4. Our approach

The schema transformation uses a relational database in third normal form (3NF)
1

as the main input. It goes through five steps: (1) classification of relations, (2)

1 The reason for starting schema transformation with 3NF relations is that such relations are the

“best” structures, which reflect object concepts [8]. “More normalized” relations, such as 4NF

and BCNF, may break relations at the level of loosing the original structures of classes. On

the other hand, “less normalized” relations, such as 1NF and 2NF, may leave relations

'(1�� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

mapping relations, (3) mapping attributes, (4) mapping relationships, and (5)

establishing cardinalities.

We illustrate each of these steps for the schema transformation using the UML

notation [9, 10].

4.1. Classification of relations

Relations are classified into one of the three categories: (1) base relations, (2)

dependent relations, and (3) composite relations.

4.1.1. Base relations
If a relation is independent of any other relation in the relational database schema,

it is a base relation. Formally, a relation r∈R is a base relation, if ¬∃r1∈R such that

K1⊂K, where K=key(r) and K1=key(r1).

In Fig. 1, Department is a base relation, as it has no foreign key. An attribute

Department_ID in Employee is a foreign key to Department. However,

Employee is also a base relation, as Department_ID is not part of its primary

key. Yet another example of base relation is Project.

4.1.2. Dependent relations
If a primary key of a relation depends on another relation’s primary key, it is a

dependent relation. Formally, a relation r∈R is a dependent relation, if ∃r1, r2 …

rn∈R such that K1⊆K2 …⊆Kn⊆K, where K=key(r), Ki=key(ri), i∈{1… n} and n≥2.

In Fig. 1, Identification is a dependent relation, as it gets Employee’s

Employee_ID that is part of its primary key.

containing many tuples, which are difficult to assembly into objects during the data mapping

process.

Passport
Employee_ID : INTEGER
Identification_ID : INTEGER

Department
Department_ID : INTEGER

Project
Project_ID : INTEGER
Department_ID : INTEGER

1

0..*

1

0..*

Assignment
Employee_ID : INTEGER
Project_ID : INTEGER

1

0..*

1

0..*

Employee
Employee_ID : INTEGER
Department_ID : INTEGER

1

1.. *

1

1.. *

1

0..*

1

0..*

Identification
Employee_ID : INTEGER
Identification_ID : INTEGER

1 1.. *1 1.. *

1

0..1

1

0..1

Figure 1. Classification of relations

'1� �
�
+
����
��� ������
����� �������

4.1.3. Composite relations
All other relations fall into this category. Formally, a composite relation is a

relation that is neither base nor dependent.

In Fig. 1, Assignment is a composite relation, as its primary key is composed

of primary keys of Employee and Project2.

4.2. Mapping relations

Mapping relations is straightforward and usually poses no difficulties in the

schema transformation, as each relation becomes a class, with the exception of

composite relations. A composite relation is difficult to map, because depending on

its structure, it can correspond up to three different constructs in an object database

schema:

• A binary or higher degree association, when all its attributes are

primary/foreign keys
3

• An association class, when it contains an additional attribute that is not a

primary key or primary/foreign key

• A qualified association, when it contains an additional primary key.

In Fig. 2, a base relation Employee maps to a class Employee. Similarly, a

base relation Project maps to a class Project. A composite relation

Assignment becomes a binary association, as it consists entirely of primary keys

of all its associated relations: Employee and Project.

Figure 2. Mapping relations: A binary association

In Fig. 3, not only does a composite relation Employment comprise primary

keys of all its associated relations (Employee and Department), but it also

2 Because both dependent and composite relations require a composite key – the key that has

more than one attribute in it – sometimes it may be difficult to distinguish between them. In

Fig. 1, Passport “looks” like a composite relation, as its primary key is composed of

primary keys of Employee and Identification:

 key(Passport)=key(Employee)∪key(Identification).

 However, it is a nesting of keys that classifies Passport as a dependent relation, as

opposed to it being a composite relation:

 key(Employee)⊆key(Identification)⊆key(Passport).�

3
 A composite relation can also map to a generalization (namely, a multiple inheritance), when

all its attributes are primary/foreign keys. But as there is no really good way to represent a

multiple inheritance in a relational database schema, a composite relation will map to an

association. The user can then replace that association with a generalization.

Employee Project

0..n1..n 0..n1..n

Assignment

Project
Project_ID : INTEGER
Department_ID : INTEGER

Assignment
Employee_ID : INTEGER
Project_ID : INTEGER

1

0..*

1

0..*

Employee
Employee_ID : INTEGER
Department_ID : INTEGER

1

0..*

1

0..*

'12�� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

contains the date, when an employee started to work for the department. Therefore,

Employment becomes an association class, the class that acts as an association,

but yet has an attribute startDate.

Figure 3. Mapping relations: An association class

In Fig. 4, a primary key attribute deptName in a composite relation

Belongs_to is a qualifier, meaning that a company has many different

departments, identified by a (unique) department name. Therefore, Belongs_to

becomes a qualified association.

Figure 4. Mapping relations: A qualified association

4.3. Mapping attributes

Each attribute in a relation becomes an attribute in a class, with the exception of

foreign keys and primary/foreign keys. A foreign key and primary/foreign key are

ignored, as they refer to another relation.

In Fig. 5, we add an attribute name (of type String) to a class Employee.

Figure 5. Mapping attributes

Employee

Employee_ID : Integer

Department

Department_ID : Integer1

1..n

Employment

startDate : Date

1

1..n

Employment
Employee_ID : INTEGER
Department_ID : INTEGER
startDate : DATE

Employee
Employee_ID : INTEGER

Department
Department_ID : INTEGER

0..1

1

0..1

1

0..*

1

0..*

1

Belongs_to
Department_ID : INTEGER
Company_ID : INTEGER
deptName : VARCHAR(1)

Department
Department_ID : INTEGER

Company
Company_ID : INTEGER

0..1

1

0..1

1

0..*

1

0..*

1

Department

Department_ID : Integer

Com pany

Company_ID

deptName

1..n

deptName

1..n

Employee

Employee_ID : INTEGER
Department_ID : INTEGER
name : VARCHAR(1)

Employee
Employee_ID : Integer
name : String

'1� �
�
+
����
��� ������
����� �������

4.4. Mapping relationships

In the relational database schema, relationships are represented through foreign

keys and primary/foreign keys
4
. For example:

• In Fig. 1, an employee works for a department. This relationship is

represented by an attribute Department_ID in Employee.

Department_ID is a foreign key to Department

• In Fig. 1, a passport is an identification document. This relationship is

represented by an attribute Identification_ID, which appears as a

primary/foreign key in Passport.

A foreign key and primary/foreign key can correspond to a binary association,

generalization or composite aggregation, depending on the types of key, data and

attribute correlations.

4.4.1. Key, data and attribute correlations
Formally, given two relations r1∈R and r2∈R:

• The types of key correlation: key equality (K1=K2), key inclusion (K1⊂K2),

key overlap (K1∩K2≠∅, K1–K2≠∅, K2–K1≠∅) and key disjointedness

(K1∩K2=∅)

• The types of data correlation: data equality (r1[K1]=r2[K2]), data inclusion

(r1[K1]⊂r2[K2]), data overlap (r1[K1]∩r2[K2]≠∅, r1[K1]–r2[K2]≠∅, r2[K2]–

r1[K1]≠∅) and data disjointedness (r1[K1]∩r2[K2]=∅)

• The types of (non-key) attribute correlation: attribute equality (A1=A2),

attribute inclusion (A1⊂A2), attribute overlap (A1∩A2≠∅, A1–A2≠∅, A2–

A1≠∅) and attribute disjointedness (A1∩A2=∅),

where K1=key(r1), K2=key(r2), A1=attr(r1)–K1, A2=attr(r2)–K2, r1[K1]=πK1(r1) and

r2[K2]=πK2(r2).

4.4.2. Analysis of key correlation
To map relationships, we start with analyzing key correlation. Then we proceed

on to an analysis of data and attribute correlations, because additional (“hidden”)

semantics, such as inheritance and optimization structures, are not solely contained

in keys, but also in tuples (i.e. data) and attributes.

First, consider a relationship between Project and Task in Fig. 6, when key
inclusion holds on it

5
. That relationship maps to a composite aggregation (also

known as a non-shared aggregation, an aggregation by value or just a composition),

because the identification of instances in Task requires the primary key of

4 Relationships can also be represented through composite relations, but we have already

handled them in the prior step of schema transformation (see Section 4.2). For example, in

Fig. 2 an employee is assigned to a project. This relationship is represented through a

composite relation Assignment. Here an attribute Employee_ID refers to Employee,

while Project_ID to Project.

5 If tasks were uniquely identified only within a project, then the primary key of Project (i.e.

Project_ID) would be combined with an attribute Task_ID to define the primary key of

Task: key(Project)⊂key(Task).

'1'�� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

Project (i.e. Project_ID). That is, Project has an identifying relationship

with Task.

Figure 6. Mapping relationships: key inclusion

Second, consider a relationship between Project and Task in Fig. 7, when

key disjointedness holds on it
6
. That relationship maps to a binary association, as it

associates two relations that are independent of each other, or use a non-identifying

relationship. (Indeed, the relationship cannot be identifying, because the

identification of instances in Task does not require any attribute in Project’s

Project_ID.)

Figure 7. Mapping relationships: key disjointedness

4.4.3. Analysis of data and attribute correlations
In mapping relationships, while the analysis of key correlation is crucial for

deriving semantics from the relational database schema, data and attribute

correlations are also important to analyze. For example, key equality can determine

an inheritance structure. But the type of inheritance (either single or multiple) is

determined with the types of data and attribute correlations. The importance of the

analysis of data and attribute correlations is perhaps best explained by example.

First, consider a relationship between SoftwareProject and Project in

Fig. 8, when key equality, data equality and attribute disjointedness7
 hold on it.

This is an example of vertical partitioning, where attributes of a single (logical)

relation have been split into two relations, having the same primary key. Therefore,

we combine SoftwareProject and Project into a single class, say

SoftwareProject, whose attributes are the union of the attributes of the two

relations.

6 If an attribute Task_ID in Task were always unique, even between projects, then Task

would get Project’s Project_ID that was not part of its primary key:

key(Project)∩key(Task)=∅.

7
 By attribute “disjointedness”, we mean that the two relations have no common attributes other

than primary keys, foreign keys and primary keys/foreign keys.

Project

Project_ID : Integer

Task

Task_ID : Integer
1..n1 1..n1

Project
Project_ID : INTEGER

Task
Task_ID : INTEGER
Project_ID : INTEGER

0..*

1

0..*

1

Project

Project_ ID : Integer

Task

Task_ID : Integer
1..n1 1..n1

Project
Project_ID : INTEGER

Task
Task_ID : INTEGER
Project_ID : INTEGER0..*

1

0..*

1

'1� �
�
+
����
��� ������
����� �������

Figure 8. Mapping relationships: key equality, data equality and attribute disjointedness

Second, consider a relationship between SoftwareProject and Project in

Fig. 9, when key equality, data disjointedness and attribute equality hold on it.

This is, again, an example of optimization structure; but horizontal partitioning,

where data of a single (logical) relation have been split into two relations, having the

same attributes. Therefore, we combine SoftwareProject and Project into a

single class, say SoftwareProject, whose data are the union of the data of the

two relations.

Figure 9. Mapping relationships: key equality, data disjointedness and attribute equality

Third, consider a relationship between SoftwareProject and Project in

Fig. 10, when key equality and data inclusion hold on it. That relationship maps to

a single inheritance, as all data of SoftwareProject are also included in

Project; i.e., a software project is a project. But the converse is not true, as some

projects can be hardware projects, for example.

Figure 10. Mapping relationships: key equality and data inclusion

Fourth, consider a relationship between SoftwareProject and

HardwareProject in Fig. 11, when key equality, data overlap and attribute
disjointedness hold on it. This is an example of a multiple inheritance, as some data

are common to both relations. Therefore, we “discover” a new class, say

HardwareSoftwareProject, which has generalization relationships to both

SoftwareProject and HardwareProject.

Project

Proj ect_ID : INTEGER
budget : FLOAT
dueDate : DATE

SoftwareProject

Project_ID : INTEGER
language : VARCHAR(1)

SoftwareProject
Project_ID : Integer
budget : Double
dueDate : Date
language : String

Project
Project_ID : INTEGER
budget : FLOAT
dueDate : DATE
language : VARCHAR(1)

SoftwareProject
Project_ID : INTEGER
budget : FLOAT(0)
dueDate : DATE
language : VARCHAR(1)

SoftwareProject
Project_ID : Integer
budget : Double
dueDate : Date
language : String

Project

Project_ID : INTEGER
budget : FLOAT
dueDate : DATE

SoftwareProject

Project_ID : INTEGER
language : VARCHAR(1)0..1

1

0..1

1
Project

Project_ID : Integer
budget : Double
dueDate : Date

SoftwareProject

language : String

'1)�� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

Figure 11. Mapping relationships: key equality, data overlap and attribute disjointedness

Fifth, consider a relationship between SoftwareProject and

HardwareProject in Fig. 12, when key equality, data disjointedness and

attribute overlap hold on it. This example also illustrates generalizations, but a

single inheritance. Because some attributes (e.g. budget and dueDate) are

common to both relations, we can see that SoftwareProject and

HardwareProject are part of the inheritance hierarchy, but there is no relation

corresponding to their superclass. Therefore, we “discover” a new class, say

Project, which both SoftwareProject and HardwareProject inherit

from.

Figure 12. Mapping relationships: key equality, data disjointedness and attribute overlap

Sixth, consider what a relationship between SoftwareProject and

HardwareProject in Fig. 13 might look like, if key equality, data overlap and

attribute overlap held on it. Because some attributes and data are common to both

relations, this is an example of the “diamond-shaped” inheritance hierarchy, in

which a class has generalization relationships to two superclasses and the two

superclasses refer in turn to a common superclass.

SoftwareProject
Project_ID : Integer
language : String

HardwareProject
Project_ID : Integer
supplier : String

HardwareSoftwareProject

HardwareProject
Project_ID : INTEGER
supplier : VARCHAR(1)

SoftwareProject
Project_ID : INTEGER
language : VARCHAR(1)

SoftwareProject
language : String

HardwareProject
supplier : String

Project
Project_ID : Integer
budget : Double
dueDate : Date

SoftwareProject

Project_ID : INTEGER
budget : FLOAT
dueDate : DATE
language : VARCHAR(1)

HardwareProject

Project_ID : INTEGER
budget : FLOAT
dueDate : DATE
supplier : VARCHAR(1)

'1� �
�
+
����
��� ������
����� �������

Figure 13. Mapping relationships: key equality, data overlap and attribute overlap

Finally, consider a relationship between Employee and Project in Fig. 14,

when key overlap and data equality (or data inclusion) hold on it. Because all the

information about departments in Project is also included in Employee, a closer

examination of that relationship reveals that a relation Department is missing.

Therefore, we “retrieve” Department, which has composite aggregations with

both Employee and Project. That is, Employee and Project are indirectly

related to each other through Department. (E.g. an employee works on a project

controlled by a department he or she belongs to.)

Figure 14. Mapping relationships: key overlap and data equality (or data inclusion)

4.5. Establishing cardinalities

Cardinality (or multiplicity) is the number of data instances that can participate in

a relationship. To establish cardinalities, we need to consider foreign key values, as

it is the ability of foreign key to be null and unique that determines if the

relationship is zero-or-one-to-one, one-to-one, one-to-many or many-to-many, as

shown in Table 2.

Table 2. Cardinalities for a foreign key in r2, which refers to r1

Foreign key values r1 r2
Nullable and unique 0..1 0..1 or 1

Nullable and not unique 0..1 0..* or 1..*

Not nullable and not unique 1 0..* or 1..*

Not nullable and unique 1 0..1 or 1

SoftwareProject
language : String

HardwareProject
supplier : String

Project

Project_ID : Integer
budget : Double
dueDate : Date

HardwareSoftwareProject

SoftwareProject

Project_ID : INTEGER
budget : FLOAT
dueDate : DATE
language : VARCHAR(1)

HardwareProject

Project_ID : INTEGER
budget : FLOAT
dueDate : DATE
supplier : VARCHAR(1)

Employee

Employee_ID : Integer

Department

Department_ID : Integer

1..n

1

Project

Project_ID : Integer

0..n

1

1..n

1

0..n

1Employee
Employee_ID : INTEGER
Department_ID : INTEGER

Project
Project_ID : INTEGER
Department_ID : INTEGER

'1��� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

In Fig. 15, assuming that in Employee, a foreign key attribute

Department_ID cannot be null, we can see that every instance of Employee is

associated with exactly one instance of Department. In addition, assuming that

Department_ID is not unique, we can see that more than one instance of

Employee can be associated with each instance of Department. Therefore, we

establish a one-to-many relationship between Department and Employee (or

many-to-one relationship between Employee and Department).

Figure 15. Establishing cardinalities

4.6. Alternatives

The schema transformation defines how a construct in the relational database

schema is mapped to a (semantically equivalent) construct in the object database

schema. However, generally, there can be several alternatives to this mapping. Some

examples below show these alternatives more clearly.

In Fig. 16, Department has a cardinality of 0..1. Alternatively, we can

introduce a subclass of Employee, say Manager, to represent those employees

that manage departments. In some situations, however, the user may not be willing

to introduce a new subclass. Therefore, we represent the relationship between

Department and Employee as a zero-or-one-to-one association and express the

constraint – that an employee can manage at most one department – with the

cardinality alone.

Figure 16. Mapping relationships: key disjoint and data equality. We can recast a zero-or-one-to-one

association to a combination of inheritance and one-to-one association

Employee

Employee_ID : Integer

Department

Department_ID : Integer11..n 11..n
1..* 1

Department
Department_ID : INTEGER

Employee
Employee_ID : INTEGER
Department_ID : INTEGER 1..* 1

Department

Department_ID : Integer

Employee

Employee_ID : Integer

1 0..11 0..1

manages

Employee

Employee_ID : Integer

Manager Department

Department_ID : Integer11 11

Department
Department_ID : INTEGER

Employee
Employee_ID : INTEGER
Department_ID : INTEGER

0..1

1

0..1

1

'1(�
�
+
����
��� ������
����� �������

Fig. 17 shows an association relationship between Project and Task.

Alternatively, that relationship can be modeled as an aggregation, because logically

projects are at a higher level than tasks. In particular, projects consist of tasks.

Figure 17. Mapping relationships: key disjoint and data inclusion. We can recast an association to an

aggregation

5. Future work

A relationship between base (or dependent) relations is the most common kind of

relationships. However, a relationship between composite relations gives rise to

some special construct – a constrained association – that we need to consider, when

transforming the relational database schema into the object database schema.

Constrained associations may arise in many situations, such as:

• When two composite relations are connected by a time sequence. For

example, consider a relationship between Works_on and Works_for in

Fig. 18, when key overlap and data inclusion hold on it. The former

specifies that an employee works on a project, while the latter specifies that

an employee works for a department. Of course, an employee cannot work

on a project, if he or she has not worked for a department. Indeed, the

employee is first employed by the department, and then he or she is assigned

to the project. Therefore, the relationship between Works_on and

Works_for maps to a constrained association. In particular, Works_on is

a subset of Works_for

Figure 18. Mapping relationships: key overlap and data inclusion

• When one composite relation represents a possibility, while another is the
actual realization. Indeed, we often use a constrained association to represent

the fact that one entity can “do” something with another. For example,

Department
Department_ID : Integer

Employee
Employee_ID : Integer

1

1..n

1

1..n
works for

Project
Project_ID : Integer

0..n

1..n
works on
0..n

1..n

{subset}
Works_for

Employee_ID : INTEGER
Department_ID : INTEGER

Works_on
Employee_ID : INTEGER
Project_ID : INTEGER

Project
Project_ID : INTEGER

Task
Task_ID : INTEGER
Project_ID : INTEGER0..*

1

0..*

1

Project

Project_ ID : In teger

Task

Task_ID : Integer
1..n1 1..n1

Project

Project_ID : Integer

Task

Task_ID : Integer
1..n1 1..n1

'11�� ������	
� ��,�#��� ��-%���#%�-� "!� ��.��%"��.� ���������� �"� ��/�0�� ���������

consider a relationship between Can_be_assigned_to and Works_on

in Fig. 19, when key equality and data inclusion hold on it. The former

shows the mere possibility of instances of Employee being associated with

instances of Project; i.e. an employee can be assigned to a project. But it

does not depict the actual realization of this association, which is represented

by a separate relation, Works_on, which captures what employees have

been worked on projects
8
. Again, the relationship between

Can_be_assigned_to and Works_on maps to a constrained

association.

Figure 19. Mapping relationships: key equality and data inclusion

6. Conclusions

We have proposed a novel approach to reverse engineering of relational databases

to object databases. Based on an analysis of key, data and attribute correlations, as

well as their combination, our approach has two important advantages over the

existing approaches in that:

• It allows the user to extract more semantics from relational databases, which

include inheritance and optimization structures, and

• It reduces user interaction, which is mainly required to confirm the extracted

semantics and to give them more appropriate names
9
.

Acknowledgements

This research is partly sponsored by Estonian Science Foundation under the grant

nr. 4067.

8 The actual realization may involve additional attributes that are not part of the possibility. For

example, in Fig. 19 Works_on has an additional attribute hours.

9
 The schema transformation process cannot be completely automated. User interaction is still

necessary, when ambiguities occur and semantics cannot be inferred [4].

Employee
Employee_ID : Integer

Project
Project_ID : Integer

0..n1..n 0..n

{subset}

1..n
can be assigned

1..n1..n

Works_on
hours

1..n1..n

Works_on
Employee_ID : INTEGER
Project_ID : INTEGER
hours : INTEGER

Can_be_assigned_to
Employee_ID : INTEGER
Project_ID : INTEGER

��� �
�
+
����
��� ������
����� �������

References

[1] J. Hainaut, J. Henrard, J. Hick, D. Roland and V. Englebert; Database Design

Recovery, Proceedings of the 8
th

 Conference on Advanced Information Systems

Engineering, 1996, pp. 272 – 300

[2] J. Petit, F. Toumani, J. Boulicaut and J. Koulomdjian; Towards the Reverse

Engineering of Denormalized Relational Databases, Proceedings of the 12
th

International Conference on Data Engineering, 1996, pp. 218 – 227

[3] W. Premerlani and M. Blaha; An Approach for Reverse Engineering of

Relational Databases, Communications of the ACM, Vol. 37. No. 5, 1994, pp. 42

– 49

[4] A. Behm, A. Geppert and K. Dittrich; On the Migration of Relational Database

Schemas and Data to Object-oriented Database Systems, Proceedings of the 5
th

International Conference on Re-technologies for Information Systems, 1997, pp.

13 – 33

[5] R. Chiang, T. Barron and V. Storey; A Framework for the Design and Evaluation

of the Reverse Engineering Methods for Relational Databases, Data and

Knowledge Engineering, Vol. 21. No. 1, 1996, pp. 57 – 77

[6] J. Albert, R. Ahmed, M. Ketabchi and M. Shan; Automatic Importation of

Relational Database Schema in Pegasus, Proceedings of the 3
rd

 International

Workshop on Research Issues on Data Engineering: Interoperability in

Multimedia Systems, 1993

[7] S. Ramanathan and J. Hodges; Reverse Engineering Relational Schemas to

Object-oriented Schemas, Technical Report No. MSU-960701, Mississippi State

University, 1996

[8] Z. Tari and J. Stokes; Designing the Reengineering Service for the DOK

Federated Database System, Proceedings of the IEEE International Conference

on Data Engineering, 1997, pp. 465 – 475

[9] Rational Rose; Using Data Modeler, version 1.3, 2001, http://www.rational.com

[10] Rational Rose; Unified Modeling Language (UML), version 1.3, 2001,

http://www.rational.com

[11] D. Maier and S. Zdonik; Fundamentals of Object-oriented Databases, Readings

in Object-oriented Databases, eds. D. Maier and S. Zdonik, 1990, pp. 1 – 32

MDA: Correctness of Model Transformations –

 The Level M0 Phenomenon

Karlis Podnieks

University of Latvia

Institute of Mathematics and Computer Science

29 Raina boulevard, Riga, LV-1459, Latvia

www.ltn.lv/~podnieks

Abstract. The paper considers the model transformations that are solving the

working problem posed to the MOF QVT submitters, the so-called UML to

RDBMS transformation. How to determine, is a proposed transformation

correct, or not? The most natural solution: extend the model transformation

(level M1) by including the corresponding uniform instance data

transformation (level M0). If the latter one is “correct”, then so is the former.

Here we have the “level M0 phenomenon”: it seems, in many cases, we

cannot specify the correctness of model transformations, if we do not include

correct instance data transformations. The problem: is this phenomenon

inevitable? Couldn’t we escape it – at least theoretically?

Keywords. Model transformations, MDA, model mappings, correctness,

completeness.

1. The UML to RDBMS transformation

The Object Management Group (OMG) has issued a Request for Proposal for a

Query/Views/Transformations (QVT) language that would allow defining of

mappings between different information models [9] (OMG, 2002).

In [5] (Gerber et al, 2002), the authors ask: “In defining mappings from model to

model, the question of correctness of the mapping arises. ... The more complex form

of correctness is that of semantic correctness; does the result of transformation mean

the same thing as the input?“

Indeed, let us consider a small fragment (see Figure 1) of the working problem

posed to the MOF QVT submitters, the so-called UML to RDBMS transformation

[9] (OMG, 2002).

The transformation problem is expressed as follows.

The input model is an interpretation of the input meta-model. It consists of persistent

and transient classes owning attributes. Attributes may be primitive (having a

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ��'(�'�� 	�

��� �
�
)
����
��� ������
����� �������

primitive data type), or complex (having a transient class as a type). The output

model is an interpretation of the output meta-model. It consists of tables owning

columns.

Figure 1. Fragments of UML and RDBMS meta-models

The transformation in question must: a) Transform each persistent class into a single

table. b) Transform each class attribute of a primitive type into a column of the

corresponding table. c) “Drill down” class attributes of complex types to leaf-level

primitive attributes; transform these primitive attributes into columns of the

corresponding table.

How could we determine, is a proposed transformation of this kind “correct”, or

not?

2. Two transformations of the same input model

Figure 2 represents an example input model – an interpretation of the fragment-

UML meta-model from Figure 1.

2.1. An “absolutely complete” transformation

As a trivial example, the following transformation T1 should be regarded as

“absolutely complete” (see also Figure 3):

a) T1 transforms a persistent class named C1 into a table named t_C1.

��*��� �����	
��� ��
+� �"##�,������ "!� �" �-� �#���!"#$��%"��� (� �.�� ��/�-� ��

b) If the class C1 owns an attribute A1, and the type of A1 is the class C2, and C2

owns an attribute B1 of a primitive type STRING, then T1 transforms A2 into a

column named c_A1_C2_B1_STRING.

c) Similarly, in all the other situations.

T1 is “absolutely complete”, because it is completely reversible – no information
gets lost during the transformation. Indeed, having an output model, generated by

T1, we can restore the entire input model:

a) From the table named t_C1 - restore a persistent class C1.

Figure 2. Example input model – an interpretation of the UML meta-model

b) From the column named c_A1_C2_B1_STRING, owned by the table t_C1 -

restore: an attribute A1 owned by the class C1, the class C2 (if not restored earlier) -

as the type of A1, an attribute B1 owned by C2, and the primitive type STRING (if

not restored earlier) - as the type of B1.

c) Similarly, in all the other situations.

Thus, all elements of the input model can be restored from the output model.

��� �
�
)
����
��� ������
����� �������

Note. Of course - with the exception of transient classes that are not used as attribute

(or sub-attribute) types in persistent classes. This small problem can be solved (as in

[3] (Bernstein, 2003)) by requiring each model to have a root object, to which all the

other objects must be connected via “is part of” relationships.

2.2. Practical transformations do not need to be “absolutely complete”

But, of course, none of the actual MOF QVT proposals includes the “absolutely

complete” transformation T1 as its part (see, for example, [11] (QVT Partners,

2003) and [12] (Willink, 2003)). Instead of T1, they include another transformation

T2, which differs from T1 as follows (see also Figure 4):

Figure 3. Example output model created by the transformation T1

Figure 4. Example output model created by the transformation T2

b) If the class C1 owns an attribute A1, and the type of A1 is the class C2, and C2

owns an attribute A2 of a primitive type STRING, then T2 transforms C2 into a

column named c_A1_A2.

��0��� �����	
��� ��
+� �"##�,������ "!� �" �-� �#���!"#$��%"��� (� �.�� ��/�-� ��

When compared to the above T1’s version of the column name

(c_A1_C2_B1_STRING), T2, in its version c_A1_B1, omits the intermediate class

name C2, and the primitive type name STRING. Thus, T2 is not completely

reversible - the information about names of transient classes and primitive types gets
lost during the transformation. Then, why should we regard this widely used T2

as a “correct” transformation? In which sense, the result of T2 “means the same

thing as the input“ [5] (Gerber et al, 2002)?

Although, perhaps, never spoken out explicitly, the intended semantics of the UML

to RDBMS transformation is as follows. We do not need this transformation by

itself. We need it as a basis for instance data (database contents)
transformations. Indeed, the input UML model (level M1) can be regarded as a

schema of an advanced object-oriented database (level M0), and the output RDBMS

model – as a schema of a traditional relational database. Thus, in fact, to solve the

UML to RDBMS transformation problem completely, we must provide not only the

model (database schema) transformation. To make the model transformation useful,

we must provide also the instance data (database contents) transformation that

would allow converting (without loss of information) the contents of an advanced

object-oriented database into the contents of a traditional relational database. Of

course, the solution of this problem is a well-known topic described in the database

textbooks for students.

And, of course, for the above small fragment of the problem (Figure 1), the database

contents transformation D2 corresponding to the schema transformation T2 is trivial:

a) For an instance of a persistent class C1, create a row in the table t_C1.

b) Scan all instances of attributes of an instance of C1. If we meet an instance of a

complex attribute A1, and the type of A1 is the class C2, then scan all instances of

attributes of A1. If we meet an instance of a primitive attribute B1, and the value

contained in the instance is “123”, then, in the corresponding row of the table t_C1,

create a cell corresponding to the column c_A1_B1, and containing the value “123”.

c) Similarly, in all the other situations.

Thus, in the resulting database created by D2, the instances of intermediate complex

attributes (like as A1 in the above example), and links connected to them, are

completely ignored. But, nevertheless, D2 is completely reversible. Indeed, we can

restore easily the contents of the input (object-oriented) database from the contents

of the output (relational) database, if we can use, additionally, the information

contained in the (input and output) database schemas:

a) For each row of the table t_C1, create an instance of the class C1.

b) For a cell corresponding to the column c_A1_B1, and containing the value “123”,

create (if not created before) an instance of the attribute A1, and link it to the

��� �
�
)
����
��� ������
����� �������

corresponding owner instance of C1, and create an instance of the attribute B1

containing the value “123”, and link it to the corresponding owner instance of A1.

c) Similarly, in all the other situations.

Thus, by referring to database schemas, we can restore all the input database

information, missing in the output database contents.

And thus, the pair T2+D2 can be regarded as a complete database schema

transformation. And, of course, all the actual MOF QVT (and similar) proposals can

be proved to be complete (for examples, see [11] (QVT Partners, 2003) and [12]

(Willink, 2003)).

Note. Of course, in the MDA context, many transformations do not need to be

complete even in the above-mentioned restricted sense. In MDA, transformations

may lose information; they may merge parts of several models, add new information

via user interfaces etc. In MDA, a model transformation is acceptable, if it performs

its task.

3. The level M0 phenomenon

As we now see, it may happen that specifying the correctness (for example, the

completeness) of model transformations becomes hard (if not impossible), if we
restrict the problem to the model level (level M1), and ignore model semantics
(level M0).

Perhaps, the simplest case when a general setting of this problem becomes possible

by adding the level M0 considerations, are database schemas (see Figure 5). Here, a

solution can be achieved, if we require extending of each database schema

transformation T by a corresponding uniform data transformation D. If the data

transformation D can be proved to be completely reversible, then T+D can be

regarded as a complete schema transformation.

In fact, we have arrived here at the same “level M0 phenomenon” as several other

researchers.

For example, in [6] (Kalinichenko, 1997), the author defines a general notion of data

model mappings (see Definition 5). This definition includes data type state space

mappings (i.e. database contents transformations) as a component that cannot be
reduced to the schema level components. And, in the example mapping (of

ODMG’93 data model into SYNTHESIS data model), the author defines the

necessary state space mapping and verifies its correctness.

In [1] (Alagic, Bernstein, 2002), by using the language of category theory, the

authors propose a general definition of a schema transformation framework (see,

Definition 7). This definition includes database morphisms (i.e. database contents

������ �����	
��� ��
+� �"##�,������ "!� �" �-� �#���!"#$��%"��� (� �.�� ��/�-� ��

transformations) as a component that cannot be reduced to the model level

components. And, in the example framework (transformations between object-

oriented database schemas with constraints) the authors define the necessary

database morphisms (see Definition 15) and prove their correctness (Theorem 2).

In [3] (Bernstein, 2003), after considering several model management operators, the

author concludes (see Section 3.10): “The model management operators defined in

Section 3 are purely syntactic. That is, they treat models and mappings as graph

structures, not as schemas that are templates for instances… Still, in most

applications, to be useful, models and mappings must ultimately be regarded as

templates for instances. That is, they must have semantics. Thus, there is a semantic

gap between model management and applications that needs to be filled.”

Figure 5. Database schema transformations

In [10] (Pottinger, Bernstein, 2003), extending [3] (Bernstein, 2003), the authors

propose a generic version of the model management operator Merge. Among the

directions of the future work they mention “showing that the Merge result, when

applied to models and mappings that are templates for instances, has an appropriate

interpretation on instances.“

In [8] (McBrien, Poulovassilis, 1999), the authors propose an interesting class of

automatically reversible transformations between database schemas. The

reversibility is achieved by including database (i.e. instance data) queries into

transformations. For example, the transformation delNode(c, q) (see Section 2.1)

includes a query q, which should allow restoring the contents (i.e. the instances) of

the entity class c from the database contents remaining after the deletion. Thus, here,

the schema transformation framework includes level M0 considerations from the

very beginning.

��1 �
�
)
����
��� ������
����� �������

4. The nature of relationships between modeling layers M2-M1-
M0

In [4] (Bezivin, Gerbe, 2001), the authors indicate that the level M0 may become

significant even in software engineering. This argument can be generalized to cover

any models having a kind of execution semantics, for example, UML state and

activity diagrams (see Figure 6).

Figure 6. Process model transformations

In both of the above Figures 5 and 6, the relationship between the modeling layers

M2 and M1 is indicated as “language syntax”. Indeed, usually, a meta-model

defines only the allowed syntax of the corresponding models, and not their

semantics. If the meta-model is represented as a UML class diagram, then the

“language syntax” is defined uniformly by applying the standard UML diagram

semantics. Or, if the meta-model is represented by means of predicate logic, then the

“language syntax” is defined uniformly by using the usual interpretations of

(normally - many sorted) first order languages. But, as the result, at the level M1,

we obtain models without semantics.

The relationship between the layers M1 and M0 should be called, on the contrary,

“model semantics”. Usually, this relationship is more complicated, and much more

specific (i.e. less uniform) than the relationship between the layers M2 and M1. For

example (see Figure 1), the RDBMS database schema semantics is essentially

different from the UML schema semantics.

��2��� �����	
��� ��
+� �"##�,������ "!� �" �-� �#���!"#$��%"��� (� �.�� ��/�-� ��

As an example, let us consider the “database schemas” represented in Figures 2, 3

and 4. In Figure 4, we see the “table” t_C1 (what’s a table?), which owns three

“columns” – c_A1_B1, c_A1_B2, and c_A2 (what’s a column?). Of course, we

know that a table is a collection of rows; each row consists of cells; each cell carries

a value and corresponds to one of the columns; and, in each row, each column is

represented by exactly one cell. But, of course, this knowledge cannot be derived

from Figure 4, which represents only the data specific to the table t_C1, and not the

general semantics of relational database tables.

However, this knowledge can be derived from an alternative RDBMS meta-model

represented in Figure 7 (with the following constraint added: in each row of a

particular table, each column – of this table - is represented by exactly one cell).

Surprisingly, such a simple extension changes the nature of the RDBMS meta-model

radically. Indeed, if, at the level M2, we will have the meta-model of Figure 7, then,

at the level M1, we will have already… “two in one” – the database schema (i.e.

table names with column names assigned), together with the database contents (i.e.

cell values arranged in rows, columns and tables).

Figure 7. Fragments of alternative UML and RDBMS meta-models (compare with Figure 1).

To capture the intended semantics, the UML meta-model of Figure 1 can be

extended in a similar way (see Figure 7, with the following constraint added: in each

�'� �
�
)
����
��� ������
����� �������

object of a particular class, each attribute – of this class - is represented by exactly

one property).

If OMG, in its Request for Proposal for QVT language [9] (OMG, 2002), would

have used the Figure 7 style meta-models instead of the Figure 1 style ones, then the

QVT partners would be forced to demonstrate that the proposed languages are good

enough for simultaneous transformations of models and instance data (of course,

they are, see [11] (QVT Partners, 2003) and [12] (Willink, 2003)).

5. The problem

Is the above-stated “level M0 phenomenon” inevitable? Couldn’t we escape it – at

least theoretically, and, at least, for some classes of model transformations?

Suppose, we have two different meta-models (level M2), and each of them defines

the syntax of its own class of models at the level M1. Assume also, that we have

precise definitions of semantics of these classes of models. Does this mean that,

having these definitions only; we will be able, for each (complete, or correct,

whatever it means) model transformation, to obtain automatically the corresponding

correct uniform instance data transformation?

Could a correct uniform instance data transformation be derived from two
model semantics definitions and a model transformation?

If, for some class of models and transformations, the answer would be positive, i.e.,

if there would be a general algorithm allowing to build automatically, for each

model transformation (of this class), the corresponding (complete, or correct,

whatever it means) instance data transformation, then the level M0 considerations

would not add new information to the level M1, and transformation problems could

be solved working exclusively at the level M1. Then, for this class of model

transformations, the “level M0 phenomenon” would disappear…

But, if, for this class, such a general algorithm is impossible, then the model

transformations (of this class) always must include, as an integral part, the

corresponding instance data transformations. And, transformation specifications (for

this class) must include the requirement of providing these level M0

transformations.

The database schema transformations proposed in [8] (McBrien, Poulovassilis,

1999) include database queries that allow building of the corresponding data

instance transformations automatically.

�''��� �����	
��� ��
+� �"##�,������ "!� �" �-� �#���!"#$��%"��� (� �.�� ��/�-� ��

6. Transformation specifications

Of course, we should specify transformations before trying to develop them.
Defining and proving correctness of a proposed model transformation may be a non-

trivial task (see above). Is here a general solution possible? How should we specify a

transformation before we try to develop it? Without a specification, we will never

be able to verify correctness of a proposed transformation. If there is an error in our

transformation, how could we detect it without a specification?

In [2] (Appukuttan et al, 2003], the authors propose to specify transformations by

using relations (i.e., in general case, non-executable, “multi-directional”

transformations, see Section 4.1). The next step – transformation implementations

should be mappings (i.e. operational, “potentially uni-directional” transformations).

How this approach is working in practice – see [11] (QVT Partners, 2003).

In [7] (Madhavan et al, 2002), the authors propose “a powerful framework for

defining languages for specifying mappings and their associated semantics” (see

Abstract). Mapping specifications (see Definition 1) are represented here by sets of

formulas, i.e. they are, in fact, a kind of relations.

In terms of the above three-level diagrams (Figures 5 and 6), these specifications

have the form P(S1, S2), where S1, S2 are interpretations, and P is a complicated

relation. They specify, “which pairs of interpretations can co-exist, given the

mapping” (see Section 3).

Thus, if P would be a “maximally strong” relation, then, for each S1, only one S2

would satisfy P(S1, S2), and, theoretically, we could hope to “compute” S2 from S1,

thus, solving the “equation” D*S1=S2*T with respect to D. Indeed, the task of the

transformation D is, in fact, converting of any S1 into the corresponding S2 (the

model transformation T helping the process).

For which classes of models are such “maximally strong” relations P feasible? This

question brings us back to the above-stated problem. Indeed, by “computing” D

from P, we could escape the “level M0 phenomenon”…

Acknowledgements

I’m grateful for valuable discussions and comments provided by my colleagues,

especially Janis Barzdins, Audris Kalnins and Martins Opmanis. Science Council of

Latvia has funded the work reported in this paper under project Nr.02 0002.

�'� �
�
)
����
��� ������
����� �������

References

[1] S. Alagic, Ph. A. Bernstein. A model theory for generic schema management. Proceedings

of International Workshop on Database Programming Languages (DBPL '01), Lecture Notes

in Computer Science 2397, 2002.

[2] B. Appukuttan, T. Clark, S. Reddy, L. Tratt, R. Venkatesh. A Model Driven Approach to

Building Implementable Model Transformations. Workshop in Software Model Engineering

(WiSME@UML’2003), October 21, 2003, San Francisco, USA.

[3] Ph. A. Bernstein. Applying model management to classical meta data problems.

Proceedings of the Conf. on Innovative Database Research (CIDR), 2003, pp. 209-220

[4] J. Bezivin, O. Gerbe. Towards a Precise Definition of the OMG/MDA Framework.

ASE’01, Automated Software Engineering, San Diego, USA, November 26-29, 2001.

[5] A. Gerber, M. Lawley, K. Raymond, J. Steel and A. Wood. Transformation: The Missing

Link of MDA. Proceedings of Graph Transformation: First International Conference (ICGT

2002), October 7-12, 2002, Barcelona, Spain, Lecture Notes in Computer Science, vol. 2505,

Springer-Verlag, 2002, pp. 90-105.

[6] L. A. Kalinichenko. Method for Data Models Integration in the Common Paradigm.

Proceedings of the First East European Symposium on "Advances in Databases and

Information Systems", St. Petersburg, September 1997.

[7] J. Madhavan, Ph. A. Bernstein, P. Domingos, A. Y. Halevy. Representing and Reasoning

about Mappings between Domain Models. Proceedings of 18
th

National Conference on

Artificial Intelligence (AAAI'2002), Edmonton, Canada, 2002.

[8] P. McBrien, A. Poulovassilis. Automatic migration and wrapping of database applications

– a schema transformation approach. Proceedings of the 18
th

 International Conference on

Conceptual Modeling / the Entity Relationship Approach, Paris, France, November, 15-18,

1999, Springer Verlag, LNCS 1728, pp. 96-113

[9] OMG, “Request for Proposal: MOF 2.0/QVT”, OMG Document, ad/2002-04-10.

Available at http://www.omg.org/cgi-bin/doc?ad/2002-04-10

[10] R. A. Pottinger, Ph. A. Bernstein. Merging Models Based on Given Correspondences.

Proceedings of the 29
th

 VLDB Conference, Berlin, Germany, 2003.

[11] QVT Partners. Initial submission for MOF 2.0 Query / Views / Transformations RFP.

Version 1.0 (2003.03.03). Available at www.qvtp.org/downloads/1.0/qvtpartners1.0.pdf

[12] E. D. Willink. A concrete UML-based graphical transformation syntax – The UML to

RDBMS example in UMLX. Proceedings of Workshop on Metamodelling for MDA,

University of York, England, 24-25 November 2003.

MDA as a Telecommunications

Network Documentation Tool

Guntis Barzdins

University of Latvia, IMCS

29 Raina boulevard, Riga, Latvia

guntis@latnet.lv

Abstract. Although UML language and MDA (Model Driven Architecture)

approach primarily are being developed for the needs of large software

projects, these powerful ideas are fruitfully applicable also towards smaller

projects, where having a precise model of a real-life system is essential. This

case study illustrates how a complex telecommunications network can be

precisely documented by means of an “executable model”. Such executable

model takes the form of a highly integrated spreadsheet, which is semi-

automatically constructed from the OCL constrained UML description of the

network structure. We also stipulate that this approach can be extended into

generic MDA tool for creating complex spreadsheet applications from their

OCL constrained UML models.

Keywords. Network documentation, MDA, spreadsheet programming

1. Introduction

Telecommunication systems and services are a notoriously complex domain

consisting of a large number of subsystems. Industry-wide standards for dealing

with this complexity in standardized manner are emerging, like eTOM (Enhanced

Telecom Operations Map) [1], which provide a top-to-bottom view on the involved

systems and interfaces.

Meanwhile the logical distance between such top-to-bottom view and the actual

telecommunications transmission and switching network is so great, that in many

cases an independent bottom-to-top approach is still appropriate. In this paper we

focus on the bottom-to-top part of telecommunications operation IT support, which

is heavily dependent on physical transmission technologies and architectures

involved, and thus requires grassroots design of optimal IT support structure in each

individual case. We claim in this paper that UML based MDA (Model Driven

Architecture) is well suited for this kind of applications, and illustrate this by a case

study from satellite communications domain.

On the methodological side, we claim that UML modeling and spreadsheet

programming are a convenient and little explored technology match for

implementing small, but logically advanced documentation projects.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()���� 	�

�'� �
�
*
����
��� ������
����� �������

Figure 1. eTOM: enhanced Telecom Operations Map.

2. MDA tools used in this case study

Although theoretically any MDA tool could be used for such bottom-to-top cases,

our observation is that the relatively small scale of these projects requires techniques

optimized for quick (but not necessarily very efficient) implementations. We have

found that UML modeling [2] and spreadsheet programming [3] provide a perfect

match for these cases – powerful design techniques and simple implementation

tools.

 Despite their seemingly worlds-apart uses, the UML data modeling and

spreadsheet programming have a common background – they both originate from

the entity-relationship data representation model. It is obvious for UML class

diagrams, but is true also for spreadsheet programming (although casual MS Excel

spreadsheet user might not be aware of it). The full power of spreadsheet

programming comes from lookup functions (LOOKUP, MATCH, INDEX,

COUNTIF, SUMIF, etc.), which can be applied between worksheets (independent

tables) of the workbook (database). We illustrate that lookup functions available in

MS Excel cover the essential features of OCL – the Object Constraint Language [4],

which is part of UML specification and in its expressive power is comparable to

SQL for RDBMS. Therefore entity-relationship data representation model within

�'+��� �����	
��� ��
� ��� �� ��,�-"$$.�%-��%"��� ���/"#0� �"-.$�����%"�� �"",

this paper is used as a “glue” between more abstract UML modeling and more

pragmatic spreadsheet programming. The effect of such integration is three-fold:

¶ It provides means for designing spreadsheets of unmatched complexity,

which adequately capture the data structure of the real-world system to be

modeled.

¶ It yields a clear UML-style documentation of the spreadsheet itself. UML

model of the spreadsheet (which at the same time is also the UML model of

the real-world system to be modeled) gives a new way of communicating

spreadsheet internal logic between its users.

¶ Due to its clear structure, spreadsheet programming provides a simple

transformation path from OCL constrained UML model to its executable

implementation. This, besides being compliant with MDA (Model Driven

Architecture) framework [5], also suggests a useful extension to traditional

spreadsheet software, like MS Excel, where spreadsheet application could be

semi-automatically constructed from its OCL constrained UML description.

The rest of the paper is organized as follows: first we give a brief description of

the real-world telecommunications system documentation problem, which triggered

development of the described approach. Then we show in detail how this problem

was solved using UML modeling and spreadsheet programming techniques, leading

to an easy maintainable documentation (model) of a complex and frequently

changing telecommunications system. The final part of the paper discusses the

techniques used throughout the case study, and how they potentially could be

extended into a more generic and automated tool.

3. Telecommunications system documentation problem

For telecommunications system engineers it is common to use diagrams like

shown in Figure 2 to depict the structure of the particular telecommunications

network setup. Such diagrams are sometimes accompanied with ad-hoc support

documents listing telephone numbers, IP addresses, frequencies etc. configured on

various elements of the telecommunications network. Only for very large and

homogenous telecommunications networks (like public telephone network or large

and homogenous ISP network) it is feasible to develop a specialized database

application, where all essential configuration details are stored. For smaller and less

homogenous networks it is usually left up to the telecommunications engineer to

come up with the appropriate documentation, suitable for maintenance of the

communications system throughout its lifetime. The result in this case is highly

dependent on the presentation skills of the engineer.

�'� �
�
*
����
��� ������
����� �������

HUB STATION

384kb
422

Tx, Pol.: Horiz.
Rx, Pol.: Vert.

3.8

Sat.
Modem

FXS

36 ch

256kb
-422

2.4m

Sat.
Modem

FXS
22 ch

128kb
RS-422

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

64kb
RS-422

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

128kb
RS-422

2.4m

Sat.
Modem

256kb

256kb

128kb

128kb

128kb

128kb

128kb

128kb

128kb

128kb

128kb

FXS
22 ch

FXS
12 ch

FXS
18 ch

FXS
24 ch

FXS
38 ch

FXS
24 ch

FXS
24 ch

FXS
10 ch

FXS
24 ch

128kb
RS-422

IF=70MHz

BNC
Fem.
75
ohm

64kb

RS-422
2.4m

Sat.
Modem

FXS
10 ch

192kb
RS-422

3.8m

FXS
16 ch

64kb

128kb

128kb

RS-422
3.8m

Sat. Modem
FXS
24 ch

128kb

PSTN
Public Sw itched Telephone Networ k

Local
.

Intern.
Exch.

CDR
Billing
Terminal

Sb.nr. 987321

1 kW

2Mb
E1
G703

SS-7

PRI

Modem
PSTN

Public Switched Tele phone Network

M&C
public
switch

16

14Modem

9-2Mb
E1
ISDN
sign.

DX

1

2

3

4

5

6

7

5

1

6

11

2

4

7

10
8

9

3

12

TX&

RX

13

14
8

TX&

RX

TX&

RX

DX

DX

DX

DX

12 34 567

PRI

9-pins
DB9

DTI

9-pins
DB9

ISDN/

PBX

V.35/Winch./
EIA-5302Mb

E1
R2D

9-2Mb
E1
ISDN
sign.
75ohm

Sat. Modem

98 76 543

98 76 544

Router

Ethernet

M&C

01
PCR

1

2

3

4

5

Modem chassis.
female 25 Dsub

5

6

10

11

FIXED SATELLITE TELEPHONY NETWORK

MUX

REMOTE SITES

RS-m

RS
IF=
1GHz

Exch

34Mb

IF=
70MHz

00 LCR

Figure 2. Traditional diagram of the satellite telephony network.

But the situation with such diagrams and ad-hoc support documents easily gets

out of hand, if the system is subject to frequent configuration changes – usually

proper documentation of changes requires massive modifications at various parts of

the documentation. And there are no any safeguards against human-error – like

changes inconsistently reflected in various parts of the documentation. Result of this

phenomenon is that complex and frequently changing telecommunications systems

are extremely hard to maintain error-free.

 Therefore a desired documentation method must avoid redundancies (so

that the same network element does not need to be repeatedly described in several

parts of the documentation – a common source of documentation errors), and must

provide safeguards against human-error (for example, automatic crosschecks, which

would reveal the logical inconsistencies within the documentation). Such semi-

automatic documentation system would also make configuration changes virtually

error-free – the documentation of the intended new configuration can be

crosschecked for consistency even before it is implemented, thus avoiding system

downtimes due to ill-planned changes.

 A proper MS Excel spreadsheet seemed to be a natural solution to this

documentation problem (development and ongoing support of the specialized

software would be an overkill). But how such highly complicated spreadsheet can be

designed? This is where we decided to turn to UML design methodology.

Afterwards it came bit of a surprise, how well the two technologies actually

complement each other.

�'���� �����	
��� ��
� ��� �� ��,�-"$$.�%-��%"��� ���/"#0� �"-.$�����%"�� �"",

4. System description phase

From object-modeling point of view, the system diagram depicted in the Figure 2

is effectively an instance diagram of a yet to-be-drawn object model of this system.

Analysis of the system revealed the functionally essential elements, shown in the

form of UML class diagram in Figure 3. This model looks very different from the

drawing in Figure 2, because it is concerned primarily with the functionally essential

aspects of the system, and not with the physical layout of the components. This

transition is natural from the system-analyst point of view, but might seem quite

unnatural from the communications engineer point of view.

RName

ROUTE

PhoneNumber

PHONE#

PUBLIC# INTERNAL#

IPaddress

SITEMUX

IPaddress

HUBMUX

LOOP

1

0..30

1

1..*

1..*

1

belongs to4

1..*

0..1
has

1..2

1

connects via satellite to4

1..*

1

links PBX to4

4

{ordered}

Timeslot

Kbps

CHANNEL

RName

ROUTE

RName

ROUTE

PhoneNumber

PHONE#

PhoneNumber

PHONE#

PUBLIC#PUBLIC# INTERNAL#INTERNAL#

IPaddress

SITEMUX

IPaddress

SITEMUX

IPaddress

HUBMUX

IPaddress

HUBMUX

LOOPLOOP

1

0..30

1

1..*

1..*

1

belongs to4

1..*

0..1
has

1..2

1

connects via satellite to4

1..*

1

links PBX to4

4

{ordered}

Timeslot

Kbps

CHANNEL

Timeslot

Kbps

CHANNEL

Figure 3. UML object model (class diagram) of the satellite telephony system.

Following comments should help to understand the object-model depicted in

Figure 3:

¶ CHANNEL represents a single telephone line. It has two main attributes –

compressed voice bandwidth in Kbps (when transmitted via satellite) and

timeslot (when transmitted via LOOP).

¶ LOOP represents a bundle of up to 30 voice CHANNELs, which are

physically transported over the same cable between the PBX (telephone

switch) and HUBMUX (voice compression equipment).

¶ ROUTE represents a group of voice channels, which have the same

telephone numbers associated in the PBX. Note that channels that belong to

the same route can be scattered over several LOOPs.

�'1 �
�
*
����
��� ������
����� �������

¶ PHONE# represents the phone number assigned to the route. Several phone

numbers may be assigned to the same route.

¶ There are two types of telephone numbers: PUBLIC numbers, which can be

dialed from public network, and INTERNAL numbers, which can be reached

only within the PBX.

¶ HUBMUX is the voice compression equipment used at the hub side of the

network. It can serve several remote SITEMUXes.

¶ SITEMUX is the voice compression equipment used at the remote location

connected via satellite link. Note that voice CHANNELs belonging to the

same ROUTE can span several LOOPs, but they all must end up in the same

SITEMUX.

The next step is to transform this purely conceptual UML class diagram into the

spreadsheet. As the target environment we will use standard MS Excel spreadsheet

program.

 The transformation is based on viewing UML class diagram as an entity-

relationship data model, and then creating the tables (MS Excel worksheets) with

columns matching the attribute names of the classes. Figures 3 and 4 illustrate this

transformation – first, additional attributes (primary keys, foreign keys, selectors)

are added to the classes to uniquely encode class relationships (Figure 4). Then this

modified class diagram is mechanically transformed into the Excel workbook:

separate worksheets represent each class of the diagram, while columns in the

worksheets represent attributes of the corresponding classes (Figure 5). Rows in the

resulting worksheets represent individual class instances, with columns showing

attribute values for each instance.

RouteID

RName

SiteMuxID

ROUTE

PhoneNumber

RouteID

Pub/Internal

PHONE#

SiteMuxID

IPaddress

HubMuxID

SITEMUX

HubMuxID

IPaddress

HUBMUX

LoopID

HubMuxID

LOOP

1

0..30

1

1..*

1..*

1

belongs to4

1..*

0..1
has

1..2

1

connects via satellite to4

1..*

1

links PBX to4

4

{ordered}

Timeslot

Kbps

RouteID

LoopID

CHANNEL

ChannelID

RouteID

RName

SiteMuxID

ROUTE

RouteID

RName

SiteMuxID

ROUTE

PhoneNumber

RouteID

Pub/Internal

PHONE#

PhoneNumber

RouteID

Pub/Internal

PHONE#

SiteMuxID

IPaddress

HubMuxID

SITEMUX

SiteMuxID

IPaddress

HubMuxID

SITEMUX

HubMuxID

IPaddress

HUBMUX

HubMuxID

IPaddress

HUBMUX

LoopID

HubMuxID

LOOP

LoopID

HubMuxID

LOOP

1

0..30

1

1..*

1..*

1

belongs to4

1..*

0..1
has

1..2

1

connects via satellite to4

1..*

1

links PBX to4

4

{ordered}

Timeslot

Kbps

RouteID

LoopID

CHANNEL

ChannelID

Timeslot

Kbps

RouteID

LoopID

CHANNEL

ChannelID

Figure 4. Additional attributes are added to encode relationships between the classes.

�'2��� �����	
��� ��
� ��� �� ��,�-"$$.�%-��%"��� ���/"#0� �"-.$�����%"�� �"",

Figure 5. MS Excel workbook corresponding to the class diagram in Figure 4.

By filling the newly created MS Excel workbook with data, we can encode there

the actual configuration of the real-world telecommunications system. Note that this

MS Excel workbook contains full information about the telecommunications system

configuration and, importantly, – it avoids any information redundancy (no

configuration information is being duplicated anywhere in the documentation).

But this workbook still has two drawbacks, which we will need to fix in the next

section:

¶ It is not easy to find information in this workbook. For example, to find an

answer to the question “To which site a particular channel belongs to?”, one

would need to search through several tables.

¶ There are no any safeguards against human-error.

5. Report generation and constraint checking phase

If the previous chapter was dominated by UML design techniques to reveal the

functional structure of the system and to encode it into MS Excel workbook in the

non-redundant manner, then now is the time to unleash the power of spreadsheet

programming. The essence of this phase is following: out of the system description

columns created in the previous chapter (which fully and without redundancy

describe the system), we can use spreadsheet formulas to pre-calculate any useful

attribute of the system.

 A “useful attribute” of the system can be specified either in natural

language, or by means of OCL – Object Constraint Language [4], an add-on part of

UML. Below are listed some (not all) useful attributes, part of which are depicted

also in Figure 6. For comparison, attributes are defined in three different syntaxes –

natural language, OCL, and MS Excel:

��� �
�
*
����
��� ������
����� �������

¶ Add a column to Channels worksheet, where formula calculates the SiteID to

which this channel is routed.

OCL notation: Channel: self.Route.SiteMux.SiteMuxID

Excel formula: =INDEX(ROUTE!C:C;MATCH(D2;ROUTE!A:A;);1)

¶ Add a column to Channels worksheet, where formula calculates the HubMuxID

through which this channel is routed.

OCL notation: Channel: self.Route.SiteMux.HubMux.HubMuxID

Excel formula: =INDEX(SITEMUX!C:C;MATCH(INDEX(ROUTE!C:C;
MATCH(D2;ROUTE!A:A;);1);SITEMUX!A:A;);1)

¶ Add a column to Routes worksheet, where formula calculates one of phone

numbers assigned to this Route.

OCL notation: Route: self.Phone#.PhoneNumber->first

Excel formula: =INDEX('PHONE#'!A:A;MATCH(A2;'PHONE#'!B:B;);1)
Besides that, we can create a new worksheet containing some crosscheck and

overview values of the system, for example:

¶ Total number of channels.

OCL notation: Channel.allInstances->size

Excel formula: =COUNTIF(CHANNEL!A:A;">0")

¶ Total number of phone numbers in use.

OCL notation: Phone#.allInstances->select(RouteID>0)->size

Excel formula: =COUNTIF('PHONE#'!B:B;">0")

¶ Total number of misrouted channels: the Loop, to which Channel C belongs, is

connected to the HubMuxID=A, but the Route associated with channel C

belongs to SiteMux, which is connected to HubMuxID=B, and A <>B.

OCL notation: Channel.allInstances ->
select(Route.SiteMux.HubMuh <> Loop.HubMux)->size

Excel formula: first mark misrouted channels in a separate column K on

Channels worksheet by formula
=(INDEX(LOOP!B:B;MATCH(E2;LOOP!A:A;);1)=INDEX(SITEMUX!C:C;

MATCH(INDEX(ROUTE!C:C;MATCH(D2;ROUTE!A:A;);1);SITEMUX!A:A;);1))

and then calculate =COUNTIF(CHANNEL!K:K;FALSE)

Such overview values are specifically oriented towards crosschecking the system

description integrity – for example, if our intention was to change only telephone

number assigned to some route, then it should not change the overview value for the

number of phone numbers in use. And the number of misrouted channels, of course,

must be 0 at all times.

��'��� �����	
��� ��
� ��� �� ��,�-"$$.�%-��%"��� ���/"#0� �"-.$�����%"�� �"",

Figure 6. MS Excel workbook from Figure 5, populated with additional calculated attributes.

MS Excel workbook shown in Figure 6 is the final result of our design efforts

(full example is available at http://www.ltn.lv/~guntis/mdaex.xls). The

resulting spreadsheet has following important properties:

¶ Now we can find any useful information about the system easy. For example,

answer to the question “To which site a particular channel belongs to?” is

automatically pre-calculated and visible in the spreadsheet line describing the

channel.

¶ There is no information redundancy – each system parameter is stored (and

modified) only in one place. From there, all calculated cells are updated with

correct values automatically.

¶ Overview parameters of the system can be used to spot description

inconsistencies.

Note that this spreadsheet is a true model of the real-world communications

system itself – the telecommunications engineer can spend more time designing (and

crosschecking) changes to the system in this virtual model, rather than in the

physical system. Only when the changes seem OK in the model, engineer proceeds

with their physical implementation. Thus documentation is always up-to-date – it is

actually updated already in the change design phase, before the physical change is

even implemented.

��� �
�
*
����
��� ������
����� �������

6. Generic MDA framework for spreadsheet applications

The key remaining question is – how universally applicable is the well-working

approach illustrated in this case study? For reasons mentioned below, we suggest

that it is generally applicable to tasks, where OCL constrained UML static structure

model captures majority of system logic. Development of semi-automatic tools

supporting this approach could potentially spark their rather massive use due to

ubiquity of MS Excel spreadsheet users.

 From data representation point of view spreadsheets are similar to

relational databases – they both support lookup functions and can contain embedded

procedures, where bulk of data-driven business logic can be embedded. In both

cases external code should be used to implement interactivity (note, that also

spreadsheet program can interact with external code through SetCellValue(…)

and GetCellValue(…) methods – see details in [3] about server-based spreadsheet

engines).

 From MDA methodology point of view transformations used in the case

study must be fairly easy to encode in a formal transformation description language,

like the one proposed in [6]. In this case MS Excel workbook shown in Figure6

could be generated by automatic (or semi-automatic) transformation from UML

class diagram in Figure 3 and OCL constraints defined in Section 5. This would

result in a clean MDA framework for creating complex Excel spreadsheets from

UML and OCL models. Although we are not aware of any tool being developed

along these ideas, the implementation appears to be rather straightforward and

would result in substantially enhanced complex spreadsheet development tool.

 Our conclusion is that spreadsheet programming based implementation of

UML models should not be neglected, as this might be adequate for smaller projects,

fast prototyping, or learning purposes. The case study shows that it works quite well

at least in telecommunications operation environment.

References

[1] TMFORUM: NGOSS and eTOM. http://www.tmforum.org/TMFC1859 eTOM

Overview.pdf (2003)

[2] G. Booch, I. Jackobson, J. Rumbaugh. The Unified Modeling Language. Reference

Manual, Addison-Wesley, 1999.

[3] M. Smialek. Spreadsheet Programming: MS Excel as Component Development

Environment, http://www.devx.com/enterprise/Article/11686 (2003)

[4] J. Warmer, A. Kleppe. The Object Constraint Language: Precise Modeling with UML,

Addison-Wesley, 1999

[5] OMG: MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf (2003)

[6] E. D. Willink. A concrete UML-based graphical transformation syntax – The UML to

RDBMS example in UMLX. Workshop on Metamodeling for MDA, University of York,

England, November 2003

����������

Merging DAML+OIL Ontologies

Patrick Lambrix, He Tan

Department of Computer and Information Science

Linköpings universitet, Sweden

patla@ida.liu.se

Abstract. Ontologies are being used nowadays in many areas. Within each

area there are a number of ontologies, each with their own focus, that contain

overlapping information. In applications using multiple ontologies it is

therefore of interest to be able to merge these ontologies. In this paper we

describe a prototype implementation of SAMBO, an ontology merge tool for

DAML+OIL ontologies. The tool generates suggestions for merging concepts

and relations and for creating is-a relationships between concepts. We

evaluate different strategies for the generation of suggestions. We also

compare our tool with the ontology merge tools Protégé-2000 with PROMPT

and Chimaera in terms of the quality of suggestions and the time it takes to

merge ontologies using these tools.

Keyword. ontology merging, ontologies

1. Introduction

Intuitively, ontologies can be seen as defining the basic terms and relations of a

domain of interest, as well as the rules for combining these terms and relations.

Ontologies are being used nowadays in many areas for communication between

people and organizations, as the basis for interoperability between systems, and as

query models and indexes to repositories of information.

Within an area there are always a number of ontologies, each with their own

focus. For instance, in bioinformatics (e.g. [8]), the ontologies cover different

aspects in molecular biology such as molecular function and cell signaling. Many of

these ontologies contain overlapping information. For instance, a protein can be

involved in both cell signaling and other biological processes. In applications using

ontologies it is therefore of interest to be able to use multiple ontologies. However,

to obtain the best results, we need to know how the ontologies overlap and align

them or merge them into a new ontology. Another reason for merging ontologies is

that it allows for the creation of ontologies that can later be composed into larger

ontologies. Also, companies may want to use de facto standard ontologies and

merge them with company-specific ontologies.

In this paper we describe a prototype of the ontology merge tool SAMBO. In its

current implementation it helps users merge DAML+OIL ontologies and performs

description logic reasoning. We describe DAML+OIL in section 2 and SAMBO in

section 4. Further, we describe a number of evaluations in section 5. SAMBO can

generate suggestions for merging, but allows the user to choose different algorithms

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ��'(�)'� 	�

��� �
�
*
����
��� ������
����� �������

for the generation of these suggestions. In the first evaluation we compare the

different algorithms. In the second evaluation we compare SAMBO with two well-

known ontology merge tools, Protégé-2000 with PROMPT and Chimaera (described

in section 3), regarding the quality of the suggestions and the time it takes to merge

two ontologies using these tools.

2. DAML+OIL

DAML+OIL [4] is an ontology language built on Web standards such as XML

and RDF. It takes a frame-based approach, and inherits the expressiveness and

reasoning power from description logics. DAML+OIL can be seen as a highly

expressive description logic. More precisely, DAML+OIL is equivalent to the ����

description logic with the addition of existentially defined classes and data types [7].

This equivalence allows DAML+OIL to exploit implemented description logic

systems to provide highly optimized reasoning services. DAML+OIL has already

been widely adopted, although it may be superseded later by its successor OWL.

From a knowledge-representational point of view ontologies can have the

following components (e.g. [19]): concepts, relations and axioms. DAML+OIL

supports the representation of all these kinds of components. Further, it has concept

and relation constructors (e.g. Boolean operators and quantifiers) that allow for the

definition of new concepts and relations based on already existing concepts and

relations.

3. Related Work

Protégé-2000 is software for creating, editing and browsing ontologies. The

design and development of Protégé-2000 has been driven by two goals: to be

compatible with other systems for knowledge representation and to be an easy to use

and configurable tool for knowledge extraction. Protégé-2000 is available as free

software and should be installed locally. It also has a number of plug-ins, among

others PROMPT, which is an algorithm for merging and aligning ontologies [18,

13]. When merging two ontologies, PROMPT creates a list of suggested operations.

An operation can, for instance, be to merge two terms or to copy a term to the new

ontology. The user can then perform an operation by choosing one of the

suggestions or by specifying an operation directly. PROMPT performs the chosen

operation and additional changes that follow from that operation. The list of

suggestions is then updated and a list of conflicts and possible solutions to these

conflicts is created. This is repeated until the new ontology is ready. PROMPT was

previously called SMART and a high-level description of the algorithm is given in

[12]. In [15] evaluation criteria for mapping or merging tools were proposed. First,

an evaluation should be driven by pragmatic considerations: input requirements,

level of user interaction, type of output and content of output. Tools that satisfy a

user's pragmatic requirements can then be compared with respect to a performance

criterion based on precision and recall. Protégé -2000 with PROMPT was evaluated

according to these criteria.

������ �����	
�� ���
���� ��#+%�+� �
��,���� ���"-"+%��

The initial goal for developing Chimaera [3] was to provide a tool that could give

substantial assistance for the task of merging knowledge bases produced by different

users for different purposes with different assumptions and different vocabulary.

Later the goals of supporting testing and diagnosing ontologies arose as well. The

user interacts with Chimaera through a web browser [11]. The two main tasks when

merging two ontologies in Chimaera are to merge two semantically identical terms

from different ontologies so that they are referred to by the same name in the

resulting ontology, and to identify terms that should be related via is-a, disjointness

or instance relationships and provide support for introducing those relationships.

Chimaera also supports the identification of the locations for editing and performing

the edits. Today, Chimaera has support for merging taxonomies of concepts and for

merging attributes. To assist the user Chimaera generates name resolution lists that

suggest concepts that are candidates to be merged or to have taxonomic relationships

not yet included in the merged ontology. Chimaera also generates a taxonomy

resolution list where it suggests taxonomy areas that are candidates for

reorganization. On the basis of these lists the user decides what should be done.

In [9] we evaluated how well PROMPT and Chimaera work for merging bio-

ontologies. The ontologies we used for testing were Gene Ontology ontologies and

Signal-Ontology. A larger survey on ontology tools and methodologies was

performed by the OntoWeb Consortium [17].

4. SAMBO

The current implementation of SAMBO is a web-based system that helps a user

merge two DAML+OIL ontologies into a new DAML+OIL ontology with unique

names for terms (currently concepts or relations). The system separates the merging

process into three steps: merging relations, merging concepts and introducing is-a

relationships. Each step should be finished before the next step is started. In each

step, the user can choose to manually merge terms or introduce is-a relationships in

the ontologies or to have the system propose suggestions. The user can choose to

accept or reject the suggestions. Upon acceptance of a suggestion, the system

performs the actual merging or includes the is-a relationship, computes the

consequences and makes the additional changes that follow from the operation.

Upon rejection of a suggestion, it is checked that we do not have two different terms

with the same name. If so, one of the terms needs to be renamed. In each case the

suggestion list is updated. At each point in time the user receives information on

which operations have been performed and how many suggestions there are left for

the step. After all suggestions are processed or the user decides that no more

merging should be performed or no more relationships between the ontologies

should be added, the system copies the terms of the original ontologies that are not

merged to the new ontology.

Regarding the generation of the suggestions we use the following strategies. For

the first step (relations) the system generates a suggestion when the names of the

terms in the different ontologies are the same or when one is an affix of the other. In

steps two and three the SAMBO system gives the user the choice to use one of

several underlying algorithms. This allows the user to experiment with different

��. �
�
*
����
��� ������
����� �������

strategies and obtain better results. Currently, we have implemented the following

strategies.

1. N-gram string matching

2. Edit distance string matching

3. Linguistic matching + Porter stemming

4. Linguistic matching + Porter stemming + WordNet

5. Structure-based strategy

N-gram and edit distance matching are simple string matching algorithms. N-

gram matching computes a similarity between strings based on n-grams. An n-gram

is a set of n consecutive characters extracted from a string. Similar strings will have

a high proportion of n-grams in common. In the second algorithm the similarity

between strings is based on the edit distance. This is defined as the number of

deletions, insertions, or substitutions required to transform one string into the other.

The greater the edit distance, the more different the strings are. Algorithms three and

four are linguistic matchers. We assume that the name of a term is represented as a

string of words. The algorithm computes the similarity of the strings based on the

similarity of the pairs of words. Within the algorithms we employ the Porter

stemming algorithm. Algorithm four also uses WordNet to compute the similarity of

the pairs of words. The matching thresholds, e.g. the similarity value in the linguistic

matcher, can be modified by experts. In the structured-based strategy we use the

structure of the ontologies and already merged concepts to propose new suggestions.

In our implementation a path between two concepts is a composition of one or more

is-a links in the is-a hierarchy. The user receives a list of already merged concept

pairs and can ask the system to generate new suggestions based on the paths

between two merged concepts. Thus, the strategy is based on the intuition that

concepts between two given merged concepts in the is-a hierarchy have a good

chance of being similar to each other.

In the second step (merging of concepts) the user can choose any of the strategies.

A suggestion is generated based on the chosen strategy. We also make explicit use

of the fact that several ontologies define a ’synonym’ relation and thus check whether

synonyms match the concept names.

In the third step (is-a relationships between concepts) the user can choose one of

the linguistic matchers. The system generates a suggestion when a concept name in

one ontology contains all the words of a concept name in the other ontology based

on the linguistic matcher.

SAMBO uses further the FaCT [6] system to provide a number of reasoning

services. (Our implementation is partly based on OilEd [2] ideas and

implementation.) The user can ask the system to check whether the new ontology is

consistent. She can receive information about unsatisfiable concepts and cycles in

the ontology. The user can also receive an updated DAML+OIL ontology that is

generated from the FaCT representation and therefore it contains less redundancy

and it contains explicit statements for derived relationships.

��/��� �����	
�� ���
���� ��#+%�+� �
��,���� ���"-"+%��

5. Evaluation

We have performed two different evaluations. In the first evaluation we compare

the quality of the suggestions that are generated by the different algorithms and

strategies in our system. In the second evaluation we compare SAMBO with two

well-known ontology merge tools regarding quality of the suggestions and the time

it takes to merge two ontologies.

5.1. Comparison of algorithms

In this evaluation, we compare the quality of the suggestions generated by the

different matching algorithms and strategies in our system.

Test Ontology
As test ontologies we have chosen two bio-ontologies that are available from

Open Biological Ontologies (OBO) [16]. OBO is an umbrella address for structured

shared controlled vocabularies and ontologies for use within the genomics and

proteomics domains. The ontologies we chose are the Medical Subject Headings

(MeSH) and the Anatomical Dictionary for the Adult Mouse (MA). MeSH is a

controlled vocabulary produced by the American National Library of Medicine and

used for indexing, cataloging, and searching for biomedical and health-related

information and documents. It consists of sets of terms naming descriptors in a

hierarchical structure. These descriptors are organized in 15 categories, such as the

category for anatomic terms and the category for organisms. We used the MeSH

category for anatomic terms, including approximately 1400 terms. MA is

cooperating with the Anatomical Dictionary for Mouse Development (EMAP), to

generate an anatomy ontology covering the entire lifespan of the laboratory mouse.

The adult mouse anatomy ontology we used describes anatomical structures for the

postnatal mouse (Theiler stage 28), including approximately 2350 terms. The

ontology is represented as a directed acyclic graph. It organizes anatomical

structures spatially and functionally, using is-a and part-of relationships. The two

ontologies cover a similar subject domain, anatomy, and are developed

independently. We translated the two ontologies from the GO flat file format to

DAML+OIL retaining identifiers, names, synonyms, definitions, and is-a and part-of

relationships.

Evaluation Result
Using the first linguistic matcher (using the Porter stemming algorithm, but not

WordNet), our system found 377 suggestions. When also WordNet was used, 82

more suggestions are found. (WordNet has a good coverage of anatomy [1], so it

was likely that new suggestions would be found.) These suggestions can be divided

into four types. In the first type one term is the plural of the other (e.g. ganglion

and ganglia). In the second type the terms are synonyms (e.g. midbrain and

mesencephalon). These suggestions are useful. Further, there is the case where

there is a semantic relationship between the terms. For instance, our system

suggested bile canaliculi and bile duct. According to WordNet

canaliculi is a kind of duct. This is a useful suggestion for is-a relationships. We

�)� �
�
*
����
��� ������
����� �������

found that for every suggestion in this category, there always was an is-a or part-of

relationship in the original ontologies. Finally, 12.5% of the suggestions from

WordNet were due to different senses of words. For instance, nerve and cheek
was suggested. These are synonyms in the sense of impudent aggressiveness, but not

in the anatomical sense.

Using the N-gram matcher we obtained 661 suggestions (of which 370 were also

found by the first linguistic matcher). As it is a flexible string matcher, it is able to

find suggestions based on small differences in the spelling of words. For instance, it

suggests brain stem and brainstem. It is able to find useful suggestions that

are not found using WordNet, for instance, striatum and neostriatum. At

the same time, 24.3% of the generated suggestions contain unrelated terms. For

example, the suggestion coeliac artery and iliac artery refers to

arteries but coeliac is of or relating to the abdominal cavity and iliac is of, relating to

or located near the ilium. This matcher has also the characteristic that for a term in

one ontology, often many similar terms in the other ontology are suggested for

merging or is-a relationship. We found that for 53 concepts there were multiple

suggestions. (For the 53 concepts together there were 165 suggestions.) For instance,

for hippocampus the following were suggested: hippocampus,
hippocampus CA1 and hippocampus CA2. SAMBO displays these

suggestions simultaneously.

Edit distance matching is a good approximate string matching algorithm that

allows to eliminate spelling errors. In this test, however, it found the smallest

number of correct suggestions.

When making use of the fact that these ontologies also contain information about

synonyms, 9 more suggestions are found (e.g. cerebellum lobule IX and

uvula).

We also experimented with the structure-based matcher with different path

lengths. The maximum length of an is-a path in the MeSH anatomy ontology is 10,

while for the MA ontology this is only 4. In this experiment we achieve the best

result with maximum path length of 3. In this case we receive two new correct

suggestions. A higher path length does not give more new results. One reason for the

fact that only two correct new suggestions were found, is that, in our tests, most

concepts in the paths were already merged. However, it may also be that the is-a

relation alone does not define a good enough neighborhood of a concept to find

useful suggestions. Further testing will make this clear.

5.2. Comparison of tools

In this evaluation we compare SAMBO with Protégé-2000 with PROMPT and

Chimaera regarding the quality of suggestions and the time it takes to merge

ontologies using these tools. We note that for Protégé-2000 with PROMPT and

Chimaera we have used the systems as they are provided in the basic distribution.

Extensions to the basic algorithms are being made. For instance, Anchor-PROMPT

[14], an extension to PROMPT, uses paths between merged concepts in the two

ontologies to find new suggestions.

�)0��� �����	
�� ���
���� ��#+%�+� �
��,���� ���"-"+%��

Test Ontologies
We tested the tools using three ‘cases’ taken from two different domains:

biological ontologies and ontologies about academia.

For the first two cases we used a part of an ontology from the Gene Ontology

Consortium (GO) [5] together with a part from Signal-Ontology (SigO). The Gene

Ontology Consortium is a joint project which goal is to produce a structured,

precisely defined, common and dynamic controlled vocabulary that describes the

roles of genes and proteins in all organisms. Currently, there are three independent

ontologies publicly available over the Internet: biological process, molecular

function and cellular component. The GO ontologies are becoming a de facto

standard and many different bio-databases are today annotated with GO terms. The

terms in GO are arranged as nodes in a directed acyclic graph, where multiple

inheritance is allowed. The purpose of the SigO project is to extract common

features of cell signaling in the model organisms, try to understand what cell

signaling is and how cell signaling systems can be modeled. SigO is a publicly

available controlled vocabulary of the cell signaling system. It is based on the

knowledge of the Cell Signaling Networks databank [20] and treats complex

knowledge of living cells such as pathways, networks and causal relationships

among molecules. The ontology consists of a flow diagram of signal transduction

and a conceptual hierarchy of biochemical attributes of signaling molecules. In our

tests two cases were created. Each case consists of one part of SigO and one part of

GO. Each case was chosen in such a way that there was an overlap between the GO

part and the SigO part. The first case, behavior (B), contains approximately 60 terms

from GO and approximately 10 terms from SigO. The second case, immune defense

(ID), contains approximately 70 terms from GO and approximately 15 terms from

SigO. We used more terms from GO than from SigO because the granularity of GO

is higher than the granularity of SigO for these topics.

We also created a case, academia (AC), using two ontologies from the DAML

ontology library. The first ontology describes an employment hierarchy in academic

institutes. The ontology was developed at Carnegie Mellon. It contains 31 terms.

The other ontology describes employees, publications and academic activities in a

computer science department and was developed at the University of Maryland. It

contains 83 terms. The overlap between these two ontologies is about employees in

academic departments of a university.

Evaluation Results
In table 1 we show the results regarding the quality of the generated suggestions

in terms of precision and recall for the cases behavior (B), immune defense (ID) and

academia (AC), respectively. (The numbers for PROMPT and Chimaera for the B

and ID cases are taken from [9].) Precision measures how many of the suggestions

are relevant while recall measures how many of the relevant suggestions the system

actually proposed. SAMBO performs perfect with respect to quality of suggestions

on the behavior case and good on the immune defense case. However, it performs

worse than PROMPT in the academia case.

We can have a look at the experiments for SAMBO in more detail. Tables 2 and 3

show the suggestions created by SAMBO (N-gram) for the immune defense case and

the academia case, respectively. The first column describes whether the suggestion

was for a merge (M) or is-a relationship (R). The last column describes whether the

�)� �
�
*
����
��� ������
����� �������

suggestion was correct (C), wrong (W) or not found by the system (NF). In the

immune defense case, the two missing suggestions are for is-a relationships between

concepts. They might have been found by using more flexible string matching.

However, more flexible string matching may also lead to more wrong suggestions.

The wrong suggestions in immune defense have to do with similar concepts where

the matching was too flexible. As we mentioned before, if a concept from the first

ontology is involved in multiple suggestions, the user receives these multiple

suggestions simultaneously. Further, when the user has decided to merge, the

suggestion list is updated and therefore not all the wrong suggestions will actually

be shown to the user. In the academia case there are two missing suggestions for

merging and the system did not find any correct suggestions for the is-a

relationships. The names of the terms in the two ontologies differed too much for the

algorithm to find them.

Based on these tests the quality of SAMBO’s merging suggestions is good.

However, the system behaves from good to poor when suggesting is-a relationships.

This can be explained by the fact that we use linguistic and string matching.

Linguistic matching and string matching find concepts that are similar in name. This

works for some examples (e.g. Antigen Processing and Presentation

is-a antigen presentation), but there are also many examples for which this

strategy does not work (e.g. fever is-a inflammation).

Table 4 illustrates the results regarding the time it took to merge the test

ontologies. The total work time is computed as the work time based on the

suggestions plus the time for merging and adding the relationships that the systems

missed to propose. Due to the good quality of suggestions compared to the other

systems as well as the easy to use user interface and the automatic copy operations,

working with SAMBO was much faster than working with the other two systems.

Table 1. Quality of suggestions

Tool Case Sug. Correct Missing Recall Precision

PROMPT

Chimaera

SAMBO

B

B

B

3

16

5

3

4

5

2

1

0

0.6

0.8

1

1

0.25

1

PROMPT

Chimaera

SAMBO (N-gram)

SAMBO (edit distance)

SAMBO (ling. matcher)

SAMBO (ling. matcher, WordNet)

ID

ID

ID

ID

ID

ID

4

10

9

9

8

9

4

4

7

7

7

7

5

5

2

2

2

2

0.444

0.444

0.777

0.777

0.777

0.777

1

0.4

0.777

0.777

0.875

0.777

PROMPT

Chimaera

SAMBO (N-gram)

SAMBO (edit distance)

SAMBO (ling. matcher)

SAMBO (ling. matcher, WordNet)

AC

AC

AC

AC

AC

AC

7

1008

10

10

9

14

5

8

5

5

4

4

6

3

6

6

7

7

0.454

0.727

0.454

0.454

0.363

0.363

0.714

0.008

0.5

0.5

0.444

0.285

�))��� �����	
�� ���
���� ��#+%�+� �
��,���� ���"-"+%��

 Gene Ontology Signal Ontology

M synonym synonym C

M immune response Immune Response C

M B-cell activation

(synonym: B-cell proliferation)

B Cell Activation C

M B-cell activation

(synonym: T-cell proliferation)

T Cell Activation W

M T-cell activation

(synonym: T-cell proliferation)

T Cell Activation C

M T-cell activation

(synonym: T-cell proliferation)

B Cell Activation W

M complement activation Complement Signaling

(synonym: complement activation)

C

R antigen processing Antigen Processing and Presentation C

R antigen presentation Antigen Processing and Presentation C

R inflammatory response Inflammation NF

R activation of natural killer cell activity Natural Killer Cell Response NF

Table 2. Suggestions for immune defense with N-gram

 Academic Ontology of UM Academic Ontology of CMU

M Student Student C

M Administrative Staff AdministrativeStaff C

M Director Director C

M Faculty Faculty C

M Professor Professor C

M Assistant

(includes research and teaching assistants)

Assistant

(is a kind of administrative staff)

W

M Postdoctoral Fellow PostDoc NF

M Technical Staff Systemstaff NF

R Research Programmer Research W

R Research Staff Research W

R Research Scientist Research W

R Research Engineer Research W

R Masters Student GraduateStudent NF

R PhD Student GraduateStudent NF

R Research Staff ResearchAssistant NF

R Visiting Staff VisitingProfessor NF

Table 3. Suggestions for academia with N-gram

Tool Case Work based on suggestions Total work time

PROMPT

Chimaera

SAMBO

B

B

B

8

3

15

8

3

PROMPT

Chimaera

SAMBO

ID

ID

ID

10

4

28

15

6

PROMPT

Chimaera

SAMBO

AC

AC

AC

18

3

20

22

7

Table 4. Time of Merging Process

�)� �
�
*
����
��� ������
����� �������

6. Conclusion

We have described SAMBO, a merging tool for DAML+OIL ontologies,

evaluated the suggestions generated by its different algorithms and strategies and

compared the system in terms of quality of suggestions and work time with

PROMPT and Chimaera. Regarding the quality of suggestions SAMBO did well

compared to the others and outperformed the other tools regarding time. We note

that our test ontologies did not require the full expressivity of DAML+OIL.

Therefore, the full description logic reasoning capabilities of the tool have not been

exploited yet in this test. We will also investigate further on more advanced

strategies for the generation of suggestions.

The system still needs to be evaluated with respect to other factors as described in

e.g. [9] and [10]. For instance, we already know that the user interfaces of Prot�g�-

2000 and Chimaera have a more elaborate visualization of the ontologies than our

current implementation. Also, these systems allow for many different input and

output formats and are more full-fledged ontology engineering tools than our system.

Acknowledgements

We thank Vaida Jakoniene and Bo Servenius for comments on the system. We

also acknowledge the financial support of the Center for Industrial Information

Technology and of the EU Network of Excellence REWERSE (Sixth Framework

Programme project 506779).

References

[1] Bodenreider, O., Burgun, A. Characterizing the Definitions of Anatomical Concepts in

WordNet and Specialized Sources. Proceedings of the First Global WordNet Conference,

pp 223-230, 2002.

[2] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R. OilEd: a Reason-able Ontology Editor

for the Semantic Web. Proceedings of the Joint German Austrian Conference on Artificial

Intelligence, LNAI 2174, pp 396-408, Vienna, Austria, 2001.

[3] Chimaera. http://www.ksl.stanford.edu/software/chimaera/

[4] DAML+OIL. http://www.w3.org/TR/daml+oil-reference

[5] The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.

Nature Genetics, 25(1):25-29, 2000. http://www.geneontology.org/.

[6] Horrocks, I. FaCT and iFaCT. Proceedings of the International Workshop on Description

Logics, pp 133-135, Linköping, Sweden, 1999.

[7] Horrocks, I. DAML+OIL: a Reason-able Web Ontology Language. Proceedings of the

International Conference on Extending Database Technology - EDBT02, LNCS 2287, pp

2-13, Prague, Czech Republic, 2002.

[8] Lambrix, P. Ontologies in Bioinformatics and Systems Biology. Chapter in Dubitzky, W.

and Azuaje, F. (eds.) Artificial Intelligence Methods and Tools for Systems Biology,

Kluwer, to appear, 2004.

[9] Lambrix, P., Edberg, A. Evaluation of ontology merging tools in bioinformatics.

Proceedings of the Pacific Symposium on Biocomputing - PSB03, pp 589-600, Kauai, HI,

USA, 2003.

�)'��� �����	
�� ���
���� ��#+%�+� �
��,���� ���"-"+%��

[10] Lambrix, P., Habbouche, M., Pérez, M. Evaluation of ontology engineering tools for

bioinformatics. Bioinformatics, 19(12):1564-1571, 2003.

[11] McGuinness, D., Fikes, R., Rice, J., Wilder, S. An Environment for Merging and Testing

Large Ontologies. Proceedings of the Seventh International Conference on Principles of

Knowledge Representation and Reasoning - KR2000, pp 483-493, Breckenridge, Colorado,

USA, 2000.

[12] Noy, N.F., Musen, M. SMART: Automated Support for Ontology Merging and

Alignment. Proceedings of the 12th Workshop on Knowledge Acquisition, Modeling and

Management, Banff, Canada, 1999.

[13] Noy, N.F., Musen, M. PROMPT: Algorithm and Tool for Automated Ontology Merging

and Alignment. Proceedings of Seventeenth National Conference on Artificial Intelligence,

pp 450-455, Austin, TX, USA, 2000.

[14] Noy, N.F., Musen, M. Anchor-PROMPT: Using Non-Local Context for Semantic

Matching. Proceedings of the IJCAI01 Workshop on Ontologies and Information Sharing,

Seattle, WA, USA, 2001.

[15] Noy, N.F., Musen, M. Evaluating Ontology-Mapping Tools: Requirements and

Experience. Proceedings of the EKAW Workshop on Evaluation of Ontology Tools,

Siguenza, Spain, 2002.

[16] Open Biological Ontologies. http://obo.sourceforge.net

[17] OntoWeb Consortium. Deliverable 1.3: A survey on ontology tools. 2002.

http://www.ontoweb.org

[18] Protégé with PROMPT. http://protege.stanford.edu/index.html

[19] Stevens, R., Goble, C., Bechhofer, S. Ontology-based knowledge representation for

bioinformatics. Briefings in Bioinformatics, 1(4):398-414, 2000.

[20] Takai-Igarashi, T., Nadaoka, Y., Kaminuma, T. A Database for Cell Signaling Networks.

Journal of Computational Biology, 5(4):747-754, 1998.

Combining FCA and a Logic Language for Ontology
Representation

Hele-Mai Haav

Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia

helemai@cs.ioc.ee

Abstract. The most important problem of ontology design is to guarantee

accuracy, transparence and consistency of ontology representation. This paper

provides automatic way of transforming lattice based ontology representation

to logical expression by defining first order logic model of concept lattice

based ontology expression. As the latter represents only taxonomic

relationships between concepts, then ontology designer is given possibility to

add additional concepts, properties, and ontological relationships using a rule

language based on first order logic. Validation of ontology, reasoning about

ontology, and search is done using logical inference.

Keywords: Ontology representation, Formal Concept Analysis, logic languages

1. Introduction

The subject of ontology is the study of the categories of things that exist or may

exist in some domain of interest [Sowa 2000].

Formal ontologies provide machine-processable semantics of information that is

shared between different agents (humans or software). Ontologies play important

role in many application domains including semantic web services, business

systems, industrial systems, intelligent information retrieval, etc.

As analysis of existing ontologies and ontology design methodologies shows, it is

very difficult for a designer to develop accurate, transparent and consistent ontology

[Tempich and Volz 2003, Fernandez-Lopez and Gomez-Perez 2002, Maedche

2002]. Domain ontology design usually involves work of domain experts, software

engineers and ontology designers. All parties need to reach to design agreement.

In order to help experts in ontology design process, an initial domain ontology

can be automatically or semi-automatically built from domain-specific knowledge

captured in domain-specific texts, documents, or data [Gangemi et al 1999, Maedche

and Staab 2000, Haav 2003]. Ontology designer can do further development of the

initial ontology.

Next step after extraction of the initial ontology is to formally express ontology in

some logic language for sharing knowledge by software agents; ontology based

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'�(�)�� 	�

�'������� ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

reasoning purposes and search. This can also be done automatically or semi-

automatically.

The main goal of this paper is to present a model of concept lattice based

ontology expression in the form of first order language in order to make it possible

to represent in addition to taxonomic relationships also non-taxonomic relationships

between the concepts. This work is continuation and extension of our previous work

on semi-automatic extraction and expression of domain-specific ontologies using

Formal Concept Analysis (FCA) [Haav 2003]. In our previous approach, an initial

representation of domain ontology is extracted from a set of domain-specific texts as

a concept lattice using FCA and NLP [see Haav 2003]. As an extension to this work,

our current approach presented in this paper, takes concept lattice based ontology

expression and maps it automatically to a set of rules (and facts) in first order

language. This is done according to the first order language model of concept lattice

based ontology description. As concept lattice based ontology description represents

only taxonomic relationships between concepts, then ontology designer is given

possibility to add additional concepts and relationships (part-of, related to, etc) using

a rule language based on first order logic. Validation of ontology, reasoning about

ontology and search can be done using logical inference. As our approach uses first

order language, then it is possible to attach different ontology inference engines for

practical applications by translating ontology expression to any inference engine rule

language.

Our approach is applicable in many application domains, where domain specific

ontologies can be extracted form web catalogs, product catalogs, domain specific

dictionaries and texts etc.

The rest of the paper is structured as follows. Section 2 gives a motivation for the

approach and refers to the related works. General framework of proposed approach

is presented in section 3. First order language model of concept lattice based

ontology expression is given in section 4. Section 5 shows how a rule language can

be used to present non-taxonomic relationships. Section 6 concludes the work.

2. Motivation and related work

Recent study of DAML ontology library by Tempich and Volz [Tempich and Volz

2003] shows that semantic web ontologies are designed in rather heterogeneous way

and many semantic web ontologies fail in being usable for inference. This indicates

that quality of ontology representation is not high enough.

Also analysis and evaluation of ontology development methodologies

[Fernandez-Lopez and Gomez-Perez 2002] result in conclusion that high level

design methods do not support well nontrivial ontology-based reasoning. The latter

is an important feature of any ontology development methodology, because an

ontology expression created by human experts can easily be inconsistent.

Our motivation in this paper is to provide assistance to ontology designer in

ontology design process in order to guarantee accuracy, transparence and

consistency of ontology representation by automatic or semiautomatic methods of

ontology extraction and expression.

�'/ �
�
0
����
��� ������
����� �������

Related work on this topic can be grouped as follows:

¶ Work on extraction of taxonomic relationships and concept hierarchies

from given text or data

¶ Work on formally representing intended semantics of ontology

description in some logic language

We have been inspired by Formal Concept Analysis (FCA) [Ganter and Wille

1999] as one of the methods of learning concept taxonomies. FCA algorithmically

constructs concept lattice from binary relationship between objects and their

attributes. FCA is used in ontology engineering for merging ontologies in FCA-

MERGE method [Stumme and Maedche 2001]. There are other methods available

for extraction of taxonomic relationships as hierarchical clustering techniques

[Manning and Schuetze 1999] or pattern-based approaches [Hobbs 1993, Maedche

2002]. Also works on extraction of concept hierarchies are of interest. Some related

works can be found in [Assadi 1999, Hofmann 1999].

There are many approaches developed within Semantic Web community in order

to define mapping of RDF schemas to some of logical languages for providing

formal semantics [Maedche 2002]. Most widely used are description logic [Baader

et al. 2002], first-order logic and F-logic [Kifer et al 1995]. Grüninger and Fox

[Grüninger and Fox 1995] provide ontology development methodology (TOVE

project), which allows to manually transform informal natural language

specifications into computable model expressed in first order logic. (KA)
2
 ontology

uses F-logic, also Ontobroker [Decker at al 1999] and Text-To-Onto [Maedche

2002] systems use F-logic for inference.

To the best of our knowledge, we do not know works, which report about direct

automatic or semi-automatic extraction of logical descriptions of a domain ontology.

In the approach described in this paper, we also do not extract logical expressions

of domain ontology but instead we rely on initial ontological structure in the form of

a lattice learned from domain-specific texts. We provide automatic way of

transforming lattice based ontology expression to logical expression by defining first

order logic model of concept lattice based ontology expression.

3. Concept lattice based ontology expression

3.1. Formal Concept Analysis

In this section, Formal Concept Analysis (FCA) developed by Ganter and Wille

[Ganter and Wille 1999] is very briefly introduced in order to give basis for

understanding our approach.

FCA is a result of an attempt to restructure mathematical order theory and lattice

theory and as such gives a new interpretation of complete lattices as concept lattices.

Currently, FCA can be seen as a field of applied mathematics used in a number of

applications of conceptual analysis [Godin 1991], knowledge representation

[Stumme and Maedche 2001], data analysis, etc.

FCA allows extraction of similar groups of objects from a set O of objects

described by a set of attributes C using binary relationship R on O³C. For oÍO and

cÍC we note R(o,c)=1 if oRc (the object o has the attribute c, the relationship R

holds) and R(o,c)=0 if o×Rc respectively.

�'1������ ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

The table K(O,C,R) is called formal context that can be used to extract groupings

and relationships between objects and attributes. In the framework of FCA the

discovered groups represent the closed set of the Galois connection induced by R on

the pair O and C. Two mappings are defined as follows.

If X is an arbitrary part of O, then we may define mapping f that maps X onto the

set of all elements of C that are related to all elements of X as follows:

f(X) = {y ÍC ¼ "x ÍX: xRy}

Similarly, if Y is an arbitrary part of C, then we may define the following

mapping:

g(Y) = {x ÍO ¼ "y ÍY: xRy}

These mappings mean that f(X) is the set of all attributes shared by all objects in

X and g(Y) is the set of all objects that have all attributes in Y.

The mappings f and g are monotonously decreasing in the following sense:

XÌX' Ý f (X') Ì f (X)

YÌY' Ý g (Y') Ìg (Y)

The pair of mappings (f, g) meets the criteria of Galois connection between the

powerset P(O) and the powerset P(C). The closed subsets of both O and C form two

lattices wrt the set inclusion. Hence, we have two lattices LO and LC that are

isomorphic. Consider the set L of all pairs of corresponding parts of lattices LO and

LC so that each element of this set is the Cartesian product of closed parts of O and

C (i.e., X ³ f(X) or g(Y) ³ Y wrt R).

These pairs are called formal concepts by Wille [Ganter and Wille 1999]. In

FCA, X is referred to as the concept extent and Y as the concept intent. Thus, a

formal concept is a pair of a set of objects that have common attributes (the extent),

and the defining set of attributes that they have in common (the intent). Each

concept is uniquely determined by either its extent or intent. The partial order

relation on the set of all formal concepts of the given context K(O,C,R) is

determined by the set inclusion between the extensions or equivalently by the

reverse inclusion between intensions of concepts.

In this paper, we define the partial order relation on L based on the set inclusion

between the extensions of concepts as follows,

X ³ Y ¢ X' ³ Y' iff X Ì X' and Y' Ì Y.

This lattice L is called the Galois lattice or formal concept lattice of the

relationship R on O ³ C. This partial order defines subconcept and superconcept

relationships. Concept lattice is a complete lattice [Ganter and Wille 1999] meaning

that for each set of formal concepts, there is always a greatest lower bound (glb or

greatest common subconcept) and a least upper bound (lub or least common

superconcept). Given an object o, there is always a most specific concept, whose

extent contains o, this concept is called object concept. Dually, for each attribute c,

there is a most general concept whose intent includes c, this is called attribute
concept.

FCA is an algorithmic method for construction of concept lattices for a given

context. There are several algorithms for generating the set of all formal concepts

and construction of line diagrams of concept lattices. Excellent comparison of

performance of those algorithms can be found in [Kuznetsov and Objedkov 2001].

��� �
�
0
����
��� ������
����� �������

3.2. Extraction of a concept lattice

In this section we briefly overview our method [Haav 2003] used to extract a

concept lattice from domain-specific texts. This is a basis of our new approach

presented in this paper.

According to the method, first task is to produce a formal context K(O,C,R) for

extractable domain ontology. As a set of objects O, domain-specific text sources are

considered. A set of noun-phrases from the texts is taken as a set of attributes C. It is

assumed that noun-phrases denote/indicate concepts used in application domain, as

text sources are domain specific and use specific vocabulary. Binary relationship R

between descriptions (texts) of domain entities and noun phrases is discovered

during the NLP process of text sources.

Next step is to perform FCA on the context. As a result, formal concept lattice

that corresponds to the domain ontology is constructed.

For our current approach presented in this paper, the resulting lattice is reduced

and certain naming procedure is performed in order to use it as concept lattice based

ontology expression (see section 3.4 below). In the following sections, small

examples from real estate domain are provided in order to illustrate FCA and its

usage in our approach.

3.3. A real estate domain example

As an example, consider real estate catalogs. For example, Table 1 represents formal

context for real estate domain. For each description of a real estate item, there is a

corresponding text source (e.g. A1 corresponds to text about real-estate item one,

etc.). Noun-phrases are extracted from each catalog entry by using NLP tools. In the

table below, existence of a relationship between a catalogue entry (text) and a noun-

phrase is denoted by 1. We feel free to display only some noun-phrases chunked

from real estate catalog entries. This is in order to obtain a small sample lattice in

the example. In this paper, we are not interested in how noun-phrases are extracted

from the texts but we concentrate to the formal context obtained from the texts and

presented as in the Table 1 below.

Table 1. Real estate domain context

Objects Attributes (Noun-phrases)
 Real

estate

Family

house

Country

house

Summer

house

Blockhouse Apartment

A1 1 1

A2 1 1

A3 1 1 1

A4 1 1 1

��2������ ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

After applying FCA to this context we get a set of formal concepts of this given

context as follows.

1. <{A1}, {real estate, family house}>

2. <{A2, A3}, {real estate, country house}>

3. <{A3}, {real estate, country house, summerhouse}>

4. <{A4}, {real estate, blockhouse, apartment}>

5. <{A1, A2, A3, A4}, {real estate}>

6. <{Ø}, {real estate, family house, country house, summerhouse, blockhouse,

apartment}>

The graphical representation of the concept lattice is depicted in the form of

Hasse diagram as following Fig. 1.

A3

Real estate, family house, country house, summerhouse, blockhouse, apartment

Real estate, country house, summerhouse

A4

Real estate, blockhouse, apartment

A2, A3

Real estate, country house

Real estate, family house

A1

A1, A2, A3, A4

Real estate

Ø

Figure 1. Concept lattice of real estate domain

Each node in this lattice (denoted by black circle) is a formal concept. For

example, one of the formal concepts of the context described in Table 1 is as

follows:

{A1, A2, A3, A4,} ³ {Real estate}, where the set {A1, A2, A3, A4,} is the extent of

the concept and the set {Real estate} is its intent. This is top element of the lattice.

This is most general concept; it has one attribute that is shared by all real estate

catalog entries. The bottom element of the lattice (lattice bottom) is the least general

concept that is defined by all the attributes at the same time. In our example, there

��� �
�
0
����
��� ������
����� �������

are no objects that are defined by all the attributes, so the extent of the bottom

concept is empty.

Sub and super-concept relationships between the formal concepts are represented

by edges in the Hasse diagram in Fig. 1. For example, the formal concept {A3} ³

{Real estate, Country house, Summerhouse} is a sub-concept of the concept {A2,
A3} ³ {Real estate, Country house}.

Inheritance of attributes is also present in the concept lattice according to sub and

super-concept relationships.

3.4. Concept lattice based ontology expression

In this section, we define concept lattice based ontology expression. There might

arise confusion in using of the word concept in ontology research comparing to

FCA. There is no direct notion in ontology field to denote formal concepts.

Ontology concepts can be compared to FCA attributes, as both can be considered as

unary predicates on the set of objects.

Our idea in creating concept lattice based ontology expression is to use duality

feature of concept lattice, i.e. lattice of intensions and lattice of extensions of

concepts are connected via Galois connection. In principle, in our case we consider

only lattice of intensions of concepts as a useful structure for ontology expression

learned during the concept lattice construction process.

There is redundant information in concept lattice. For a formal concept C= (X,

Y), X will be present in every ancestor of C and symmetrically, Y will appear in

every descendant. The two kinds of redundancy can be eliminated from concept

lattice without losing any information as shown in [Godin 1991]: redundant

attributes in formal concepts intents and redundant objects in formal concepts

extents.

Our reduction procedure has 2 steps: elimination of redundant attributes from full

concept lattice and elimination of lattice of extents.

Elimination of redundant attributes. Let Y´ be the set of elements of Y (intent)

that do not appear in any descendant of Y. To eliminate redundant attributes we

define a pair (X, Y) as a pair (X, Y'), where Y' = {y ÍC ¼ g(y) = X }. Taking union

of the Y' sets for the ancestors of a pair (X, Y'), including this pair itself recovers the

initial pair (X, Y).

Elimination of lattice of extents. From the reduced lattice above, we eliminate

lattice of extents L
O
 and get reduced lattice of intents LCR of formal concepts.

We call the resulting lattice LCR of reduction procedure as concept lattice based

ontology expression. Fig. 2 shows the lattice LCR of our example.

There are 3 aspects that need to be clarified as follows:

1. The resulting lattice is dependent on the context. Whenever we change

formal context, we get a new lattice structure. For learning initial domain

lattice we need to go through concept lattice construction procedure several

times using different formal contexts (e.g. Real Estate Catalog entries in our

example).

��'������ ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

2. After reducing concept lattice to its intentional part, we need to give formal

concepts the names. Naming in our case can be done as follows:

a. A concept gets a unique name that is the name of the attribute(s) of

formal concepts, which are left after reduction procedure. For each

attribute c, there is a most general concept whose intent includes c,

this is called attribute concept and the name of this concept is the

name of corresponding attribute(s). Let us recall that attributes of

formal concepts indicate domain specific concepts in our approach.

b. After the previous naming procedure, there might be nodes that do

not get names. In principle, the names for these nodes need to be

provided by domain expert or ontology designer. It is possible

automatically generate formal names (e.g. c1, c2…) for those nodes

and then ask advice from human expert.

3. Human expert should manually add concept descriptions in natural

language to each concept to express meaning of a concept in application

domain.

In order to illustrate what was said above the Fig. 2 depicts real estate domain

ontology produced from concept lattice shown in Fig.1 using reduction and naming

procedures.

Real Estate

Summerhouse

Blockhouse, apartment

Country house

Family house

Nil

Figure 2. Reduced concept lattice and naming of concepts

This lattice displays names of concepts according to reduction and naming

procedure. One concept has combined name: blockhouse-apartment. This indicates

that there might be non-taxonomic relationship between the concepts or these could

be separate concepts but a given formal context was not complete enough to enable

��� �
�
0
����
��� ������
����� �������

to extract them. The bottom element of the lattice is empty, which is denoted by

generated name Nil.

The lattice does not refer to objects forming an extent of a certain concept but

these can be recovered if necessary.

The following is concept lattice based ontology expression (see Fig. 3 below) of

the same domain but another formal context is used. It illustrates the naming of

concepts that do not get name by the naming procedure.

C3

C2

C1

SummerhouseFamily house

Blockhouse-apartment

Country house

Real estate

Figure 3. Naming of concepts

The nodes denoted by generated concept names C1, C2, C3 do not have labels in

the lattice. Ontology designer may analyse the lattice above and find out that

concept C1 is sub-concept of both concepts: Family house and Summerhouse. C1

then denotes the concept that is a family summerhouse and C2 denotes a country

summerhouse respectively. The naming is up to ontology designer in this case.

In conclusion, our approach is about learning domain specific ontology from

extensionally defined collections of instances contained in data (e.g. real estate

catalog). It is assumed that the instances represent relevant knowledge for inductive

extraction of intensional descriptions for a given domain.

Our next goal is to define first-order logic model for concept lattice based

ontology expression in order to provide richer language for representation of

ontological relationships and specify intended meaning of the descriptions.

��)������ ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

4. First order logic model of concept lattice based ontology
expression

In the previous section, we have defined domain ontology as a concept lattice

reduced to its intensional part LCR (see for example Fig. 3). In this section, we

provide first order logic model for LCR. At the moment we are not interested in

extensions, which gave birth to full concept lattice for a formal context of a domain.

In principle, it might be interesting to take extensions also into account when

building a logic model, but it is out of scope of this work as we are concentrated to

reasoning about concepts rather than their extensions. Nevertheless, existence of full

concept lattice gives always an opportunity to find extent of a given concept.

In order to build first order logic model for concept lattice based ontology

expression we need to define mappings from lattice structure to a first order

language.

4.1. Language constructs

We use standard syntax for first order logic and define a simple rule language based

on Horn clauses as follows.

An alphabet of the rule-language is defined as follows:

1. Set of constants N that consists of the set of concept names C, names of

properties A, and special names any (lattice top, empty top is always True)

and nil (lattice bottom, empty bottom is always False).

2. Set of variable names V. Uppercase letters denote the variables in V.

3. Set of predicate symbols P

 Terms are either constants or variables. An atom (atomic formula) is a

formula of the form p(t1,...,tn) , where p is a predicate symbol and t1,...,tn are terms.

A formula is called ground if it contains no variables.

Horn rules (clauses) have at most one atom on its head and they are formulas of

the following form:

 A « B1, B2,...,Bn ,

 where B1, B2,...,Bn is conjunction of atoms Bi, i=0,...,n and

universal quantification of variables is assumed.
A definite clause has exactly one atom in the head. A ground rule contains no

variables. A rule with an empty head is considered to be a query or constraint.

Ground rule with an empty body is called a fact.

Rules are used to define conceptual relationships and operations on lattice.

Inference rules based on concept lattice are predefined.

In addition, users are also provided to specify constraints or any other ontological

relationships in the form of the rules.

��� �
�
0
����
��� ������
����� �������

An interpretation for the rule-language is defined as a set of ground atoms

constructed from predicate names in P and constants in N. As the language is

general, then different inference engines can be used. For example, Java Expert

Systems Shell (Jess) [Jess] or Gandalf [Tammet 1997] can be used as inference

engines.

4.2. Mappings of concept lattice to rule language

The mappings from lattice to rule language are defined as follows.

Mapping concepts
Concepts are represented using their names in ontology as constants in rule

language. For example, house, summerhouse etc. If we like to refer to extents, then

concepts can also be represented by predicates like house(X).

Mapping taxonomic relationships
Predicate isa is used to represent partial order relationship between concepts. For

example, the predicate isa(summerhouse, real-estate) defines partial order

relationship between the concepts summerhouse and real-estate stating that

summerhouse isa real-estate (i.e. summerhouse is subconcept of realestate). The

predicate subconcept(Concept1,Concept2) is used to denote that Concept1 is an

immediate subconcept of Concept2. Subconcept predicates are automatically

generated according to the given lattice LCR.

Rules for lattice axioms
As LCR is complete lattice, then the rules for lattice axioms are as follows:

Reflexivity:
isa(Concept, Concept)

Transitivity:
isa(Concept1, Concept2)«subconcept(Concept1, Concept2)

isa(Concept1, Concept2) « isa(Concept1, Concept3), isa(Concept3, Concept2)

Predicate subconcept denotes that Concept1 is an immediate subconcept of

Concept2.

Antisymmetry:
equal(Concept1,Concept2) « isa(Concept1,Concept2), isa(Concept2,Concept1)

Rules for lattice operations
As LCR is a complete lattice, then for each set of concepts, there exists always a

greatest lower bound (glb or greatest common subconcept) and a least upper bound

(lub or a least common superconcept). Lattice meet is used to calculate glb and join

is operation to calculate lub. We define these operations using the following set of

rules.

��������� ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

Meet operation
common_subconcept(C, C1,…,Ck)«isa(C, C1),…, isa(C, Ck)

greatest_common_subconcept(C, C1,…,Ck) « common_subconcept(C, C1,…,Ck),

common_subconcept(T, C1,…,Ck),

isa(T, C)

The predicate common_subconcept(C, C1,…,Ck) means that the concept C is a

common subconcept of the set of concepts {C1,…,Ck}

The predicate greatest_common_subconcept(C, C1,…,Ck) means that the concept

C is the greatest common subconcept of the set of concepts {C1,…,Ck}.

Symmetrically, we define predicates and rules for join operation as follows:

Join operation
common_superconcept(C, C1,…,Ck)«isa(C1, C),…, isa(Ck, C)

least_common_superconcept(C, C1,…,Ck) «

common_superconcept(C, C1,…,Ck),

common_superconcept(T, C1,…,Ck)

isa(C, T)

Logical model of a given lattice LCR can automatically be generated on the basis

of mappings presented above. This process is demonstrated in the following

example.

4.3. Examples about mappings and inference

On the basis of concept lattice based ontology expression shown in Fig. 3 the

following set of ground subconcept atoms is generated.

subconcept(familyhouse, real-estate)

subconcept(summerhouse, real-estate)

subconcept(countryhouse, real-estate)

subconcept(blockhouse-apartment, real-estate)

subconcept(c1,familyhouse)

subconcept(c1,summerhouse)

subconcept(c2,summerhouse)

subconcept(c2,countryhouse)

subconcept(c3,blockhouse-apartment)

subconcept(c3,c1)

subconcept(c3,c2)

Inference rules for lattice axioms and operations can be used to decide taxonomic

relationships between concepts as well as perform lattice operations.

For example, to find the least common superconcept of the set of concepts

{summerhouse; countryhouse}, we define the following query:

least_common_superconcept(X, summerhouse, countryhouse).

The answer is the concept real-estate. If we are interested in finding the greatest

common subconcept of the concepts familyhouse and summerhouse, then the

��/ �
�
0
����
��� ������
����� �������

corresponding query is as follows: greatest_common_subconcept(X, familyhouse,

summerhouse). The answer is the concept c1.

We may be interested in all the superconcepts of the concept familyhouse, for

example. The query isa(familyhouse, X) gives the list of ground atoms as an answer.

In our example, this is one atom isa(familyhouse, real-estate).

5. Representing non-taxonomic relationships

As we have seen, taxonomic relationships between concepts can be automatically

generated from a given lattice based ontology expression LCR. It is easy to add more

rules and facts to the ontology expression above. In order to define non-taxonomic

relationships the corresponding groups of predicates and rules should be defined.

Properties of concepts
For defining properties of concepts, the following predicate can be used:

hasproperty(Conceptname, Propertyname).

For example, the following ground atom can be added to the sample ontology

description above: hasproperty(real-estate, location).

Inheritance of properties
Inheritance of properties can be represented by the following rule:

hasproperty(C1, X)«isa(C1,C2), hasproperty(C2, X)

We may ask the query: hasproperty(countryhouse, X) and receive the answer that it

has also property location as the concept real-estate.

Ontological relationships
Ontological relationships like part-of, related-to etc can be easily represented via

predicates. The following predicates demonstrate opportunities adding other

ontological relationships:

partof(C1,C2)

related(C1,C2)

synonyms(C1,C2), etc.

For example, according to predicates above, ontology designer can add the

following ground atoms to the ontology model:

partof(apartment, blockhouse)

relatedto(blockhouse, city)

synonyms(familyhouse, familyhome)

Additional specific inference rules can easily be added to the set of predefined

lattice based inference rules.

In the end, non-taxonomic relationships give additional possibilities for ontology

representation and reasoning about ontology.

��1������ ������ �"$�%�%�*� ��
� �� � �� �"*%+� ���*,�*�� !"#� ���"-"*&� ��.#�������%"�

6. Conclusion

We have shown how concept lattices can be used for ontology representation and we

have stated notion of concept lattice based ontology expression.

We defined a Horn clause model of concept lattice based ontology expression in

order to enhance ontology expression with descriptions of non-taxonomic

relationships between concepts. According to this model, a given lattice based

ontology expression can automatically be transformed to logical expression in first-

order language.

Validation of ontology, reasoning about ontology and search can be done using

logical inference. As our approach uses first-order language, then it is possible to

attach different ontology inference engines for practical applications by translating

ontology representation to any inference engine rule language.

Our future work is concentrated to experimental application of the provided

logical model using the first-order theorem prover Gandalf [Tammet 1997].

Acknowledgements

This research was partially funded by Estonian Research Foundation by the Grant no

5766.

References

[Assadi 1999] Assadi H., Construction of a regional ontology from text and its use within

documentary system, N. Guarino (Ed), Formal Ontology in Information Systems, Proc. Of

FOIS-98, Trento, Italy, 1999, pp 236-249

[Baader et al 2002] Baader et al., (Eds), Desription Logic Handbook: Theory, Implementation

and Applications, Cambridge University Press, 2002

[Decker et al 1999] Decker S., Erdmann M., Fensel D., and Studer R., Ontobroker: Ontology

Based Access to Distributed and Semi-Structured Information, Meersman R. et al. (eds.):

Semantic Issues in Multimedia Systems. Proceedings of DS-8. Kluwer Academic

Publisher, Boston, 1999, 351-369.

[Fernandez-Lopez and Gomez-Perez 2002] Fernandez-Lopez M. and Gomez-Perez A.,

Overview and Analysis of Methodologies for Building Ontologies, The Knowledge

Engineering Review, Vol. 17:2, 129-156, Cambridge University Press, 2002

[Gangemi et al 1999] Gangemi A, et al, An Overview of the ONIONS Project, Data and

Knowledge Engineering, 31, 1999

[Ganter and Wille 1999] Ganter B. and Wille R., Formal Concept Analysis, Mathematical

Foundations, Springer, 1999.

[Godin 1991] Godin R., Missaoui R., and Alaoui H., Learning Algorithms Using a Galois

Lattice Structure, Proc. of the Third Int. Conference on Tools for Artificial Intelligence,

IEEE Computer Society Press, CA, 1991, pp. 22-29.

[Grüninger and Fox 1995] Grüninger M. and Fox M. S., Methodology for Design and

Evaluation of Ontologies, Workshop on Basic Ontological Issues in Knowledge Sharing,

IJCAI-95, Montreal (available at www.eil.utoronto.ca)

�)� �
�
0
����
��� ������
����� �������

[Haav 2003] Haav H-M., Learning Ontologies for Domain-specific Information Retrieval, W.

Abramowicz (Ed), Knowledge-Based Information Retrieval and Filtering from the Web,

Kluwer Academic Publishers, 2003, ch 15, pp 285-300

[Hobbs 1993] Hobbs J., The Generic Information Extraction System, Proceedings of the 5
th

Message Understanding Conference (MUC-5), Morgan-Kaufmann, 1993

[Hofmann 1999] Hofmann T., The Cluster-Abstraction Model: Unsupervised Learning of

Topic Hierarchies from Text Data, Proceedings of 16
th

 International Conference on

Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999, pp 682-587

[Jess] Jess Home Page http://herzberg.ca.sandia.gov/jess/

[Kifer et al 1995] Kifer M., Lausen G., and Wu J., Logical Foundations of Object-Oriented

and Frame-Based Languages. Journal of ACM, 1995, 42(4), pp 741-843

[Kuznetsov and Objedkov 2001] Kuznetsov S. O. and Objedkov S. A., Comparing

performance of Algorithms for Generating Concept Lattices, In: Proceedings of

Internatinal Workshop on Concept Lattices-based KDD, ICCS´2001

[Maedche 2002] Maedche A., Ontology Learning for the Semantic Web, Kluwer Academic

Publishers, 2002

[Maedche and Staab 2000] Maedche, A. and Staab, S., Discovering Conceptual Relations

from Text, Proceedings of the 14th European Conference on Artificial Intelligence, IOS

Press, Amsterdam, 2000

[Manning and Schuetze 1999] Manning C. and Schuetze H., Foundations of Statistical

Natural Langauge Processing. MIT Press, Cambridge, 1999

[Sowa 2000] Sowa J. F., Knowledge Representation, Logical, Philosophical, and

Computational Foundations, Brooks/Cole Thomson Learning, 2000.

[Stumme and Maedche 2001] Stumme G. and Maedche A., FCA-Merge: Buttom-up Merging

of Ontologies, Proceedings of the 17
th

 International Joint Conference on Artificial

Intelligence, Seattle, USA, Morgen Kaufmann

[Tammet 1997] Tammet T., Gandalf, Reference Manual, University of Göteborg, Sweden,

October 1997

[Tempich and Volz 2003] Tempich C. and Volz R., Towards a benchmark for Semantic Web

reasoners-an analysis of the DAML ontology library, Sure Y (ed) Proceedings of

Workshop of Evaluation of Ontology-based Tools (EON 2003) at 2
nd

 Int. Semantic Web

Conference (ISWC 2003), USA, 2003

Evaluating the Quality of Web-Based Ontology

Building Methods: A Framework and a Case Study*

Sari Hakkarainen, Lillian Hella, Stine Tuxen, Guttorm Sindre

Norwegian University of Science and Technology

Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

{sari, hella, stinemt, guttorms}@idi.ntnu.no

Abstract. Ontology is the core component in semantic Web applications. The

employment of an ontology building method affects the quality of ontology

and the applicability of ontology language. An evaluation approach for

ontology building guidelines is presented in this paper. The evaluation is

based on an existing classification scheme as introduced in a semiotic

framework for evaluating the quality of conceptual models. A sample of

ontology building method guidelines is analysed in general and evaluated

comparatively in a small case study at an oil company in particular. Directions

for further refinement of ontology building methods are discussed.

Keywords: semantic web, ontology building methods, quality evaluation

1. Introduction

The vision for the next generation web is the semantic Web [1], where information is

accompanied by metadata about its interpretation, so that more intelligent and more

accessible information-based services can be provided. The core components in the

semantic Web and its applications will be ontologies. An ontology can be seen as an

explicit representation of a shared conceptualization [2] that is formal [3], and will

thus encode the semantic knowledge enabling sophisticated information services.

The quality of a semantic Web application will be highly dependent on the quality of

its underlying ontology. The quality of the underlying ontology will again depend on

factors such as 1) the appropriateness of the language used to represent the ontology

and 2) the quality of the engineering environment, including tool support and

method guidelines, as provided for creating the ontology by means of that language.

There are also situated factors, such as the complexity of the specific task at hand

and the competence of the persons involved. With a small number of developers the

need for rigid method guidelines may be smaller than for larger projects. Similarly,

with highly skilled modelling experts, the need for method guidelines may be

smaller than for less experienced people. Method guidelines can thus be seen as an

important means to make ontology creation possible for a wider range of developers,

e.g., not only a few expert researchers in the ontology field but also companies

wanting to develop semantic Web applications for internal or external use.

* This research has been partially supported by a research grant from Simula Research Lab.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'()���� 	�

�'� �
�
*
����
��� ������
����� �������

Method guidelines can provide homogeneous instructions for creation of ontologies

in a federated ontology engineering environment. However, the current situation is

that while many ontology representation languages have been proposed, there is

much less to find in terms of method guidelines for how to use these languages –

especially for the newer Web-based ontology specification languages. Similarly, if

there is little about method guidelines for Web ontology building, there is even less

about evaluating the appropriateness of these method guidelines.

Hence, the objective is to inspect available method guidelines for semantic Web-

based ontology specification languages. The approach is to adapt the method

classification part of a model quality framework [4], use it to evaluate method

guidelines and to validate the evaluation framework in a case study.

The outline is as follows. Section 2 describes related work. Section 3 describes

seven categories in the classification framework. Section 4 classifies the selected

method guidelines. Section 5 analyses their means to achieve quality goals in

general and compared to the industrial case in particular. Finally, Section 6

concludes the paper and suggests directions for future work and for further

refinement of ontology building methods.

2. Ontology Building Support and Evaluation Methods

Related work for this paper can be viewed from two angles: a) ontology

representation languages and method guidelines for these, b) work on evaluating

conceptual modelling approaches in general, i.e., languages, methodologies, method

guidelines, and tools. The intersection between these two is fairly limited; the work

on Web ontology languages has contained a little about evaluation, and the work on

evaluating conceptual modelling approaches has concentrated on languages and

mainstream approaches for systems analysis and design. However, the newer Web-

based ontology languages are becoming mature enough to allow comparative

analysis of their guidelines, given a suitable instrument.

During the last decade, a number of ontology representation languages have been

proposed. The so-called traditional ontology specification languages include: CycL

[5], Ontolingua [6], F-logic [7], CML [8], OCML [9], Telos [10], and LOOM [11].

There are Web standards that are relevant for ontology descriptions for semantic

Web applications, such as HTML, XML and RDF. Finally, there are the newer Web

ontology specification languages such as XOL [12] and SHOE [13], and those that

are based on the layered architecture for the semantic Web, such as OIL [14],

DAML+OIL [15], and OWL [6]. The latter group of the so-called semantic Web

enabling languages (SWEL) for ontology building is in the focus of this study.

There exist several methodologies to guide the process of Web ontology building

that vary both in their level of generality and granularity. Some of the methodologies

describe an overall ontology development process yet not the ontology creation

itself. Such methodologies are primarily intended to support the knowledge

elicitation and management of the ontologies in a basically centralised environment:

� Fernándes-Lopez et al. 1997 [17] proposes an evolving prototype methodology

with six states as ontology life-cycle and includes activities related to project

management and ontology management.

�'+��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

� Sure and Studer 2002 [18] proposes an application driven ontology

development process in five steps emphasizing the organisational value,

integration possibilities and the cyclic nature of the development process.

� Swartout et al. 1997 [19] proposes a top-down approach for deriving domain

specific ontologies from common upper level ontologies and includes steps

for requirements elicitation and for implementing the derived ontologies.

� Uschold 1996 [20] proposes a general framework for the ontology building

process consisting of four steps including quality criteria for ontology

formalisation.

The above methodologies provide a life cycle in an overall ontology development

process as analysed in [21, 22, and 20] but only a few user guidelines for carrying

out the steps and for actually creating the ontology. In order to increase the number

and the scale of practical applications of the semantic Web technologies, the

developers need to be provided detailed instructions and general guidelines for the

actual ontology creation. A limited selection of method guidelines were found for

the Web ontology specification languages, which are at the foci of this study:

� Knublauch et al., 2003 [24] present a tutorial containing method guidelines for

making ontologies in the representation language OWL by means of the open

source ontology editor Protégé

� Denker, 2003 [23] present a user guide with method guidelines for making

ontologies in the representation language DAML+OIL, again by means of

Protégé.

� Noy and McGuinness, 2001 [25] present method guidelines for making

ontologies, called “Ontology Development 101”. Unlike the other two, this

method is independent of any specific representation language.

As for evaluation of ontology specification approaches, a comprehensive evaluation

of representation languages was done in [26], covering all the languages mentioned

above except OWL. The paper also evaluates some tools for ontology building:

Ontolingua, WebOnto, WebODE, Protégé 2000, OntoEdit, and OilEd. Similarly,

[27, 28] evaluate various ontology languages. These studies concentrate on

evaluating the representation languages (and partly tools), not hands-on instructions

or ontology building guidelines. Given the argumentation above, such studies are

targeting the audience of highly skilled modelling experts rather than the wide

spectrum of potential developers of semantic Web applications.

In the field of conceptual modelling there are, however, a number of frameworks

suggested for evaluating modelling approaches in general. For instance, the Bunge-

Wand-Weber ontology [29] has been used on several occasions as a basis for

evaluating modelling techniques, e.g. NIAM [30] and UML [31], as well as

ontology languages in [27]. The semiotic quality framework first proposed in [32]

for the evaluation of conceptual models has later been extended for evaluation of

modelling approaches and used for evaluating UML and RUP [33]. This framework

was also the one used in the evaluation of ontology languages and tools in [26]. The

framework suggested by [34] is particularly meant for requirements specifications,

but is still fairly general. There are also more specialised quality evaluation

frameworks, e.g. [35] for process models, and [36] for data / information models.

�'� �
�
*
����
��� ������
����� �������

The framework used in [33] builds on an earlier framework [32]. This early version

distinguished between three quality categories for conceptual models (syntactic,

semantic, pragmatic) according to steps on the semiotic ladder [38]. The quality

goals corresponding to the categories were syntactic correctness, semantic validity

and completeness, and comprehension (pragmatic). The framework also took care to

distinguish between goals and means to reach the goals (where, e.g., various types

of method guidelines would be an example of the latter). In later extensions by

Krogstie, more quality categories have been added, so that the entire semiotic ladder

is included, e.g., physical, empirical, syntactic, semantic, pragmatic, social, and

organizational quality. The framework has been adapted to evaluating specification

languages by means of five categories [3], here adopted for evaluation of method

guidelines as follows.

Domain appropriateness indicates whether the method guidelines address the

problems of eliciting / representing relevant facts of the problem domain.

Participant knowledge appropriateness indicates whether the method corresponds

to what the participants perceive as a natural way of working.

Knowledge externalization appropriateness indicates whether the method assists

the participants in externalizing their knowledge.

Comprehensibility appropriateness indicates whether the participants are able to

comprehend the method guidelines.

Technical actor interpretation appropriateness indicates whether the method

guidelines lend themselves to automated tool support or assist in support for

reasoning.

Since our evaluation is based on the method classification part of the framework of

[4], it is most closely related to previous work using that same framework, and

especially the evaluation of ontology languages and tools in [26]. In this paper the

framework is used for evaluating something different, namely method guidelines for

ontology building. Moreover, an interesting question is to which extent it is suitable

for this new evaluation task, so customizations to the framework are suggested in

order to improve its relevance for evaluating method guidelines in general, and

method guidelines for ontology building in particular.

3. Criteria for Seven Method Guideline Categories

As argued in the introduction above, the developers typically need instructions and

guidelines for ontology creation in order to support the learning and co-operative

deployment of the semantic Web enabling languages in practice. [4] describes a

methodology classification framework consisting of seven semiotic categories of

modelling methodologies. We adapt the categories for classification of the ontology

building method guidelines. The principle modification here is that the concept of

application system (as the end product of the development process) is consequently

replaced by ontology (as the end product of applying the method guidelines). In the

following, the adapted criteria for each category are described briefly and the

method guidelines are classified accordingly in the next section.

�''��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

Weltanschauung describes the underlying philosophy or view to the world. For a

method we may examine why the ontology construction is addressed in a

particular way in a specific methodology. In the FRISCO report [38], three

different views are described, namely the objectivistic, the constructivistic and

the mentalistic view. Objectivistic view claims that reality exists independently of

any observer. The relation between reality and the model is trivial or obvious.

Constructivistic view claims that reality exists independently of any observer, but

what each person possesses is a restricted mental model only. The relationship

between reality and models of this reality are subject to negotiations among the

community of observers and may be adapted from time to time. Mentalistic view

claims that reality and the relationship to any model is totally dependent on the

observer. We can only form mental constructions of our perceptions. In many

cases, when categorizing a method, the Weltanschauung will not be stated

directly, but should be derivable from the documentation.

Coverage in process concerns the method’s ability to address 1) planning for

changes, 2) single and co-operative development of ontology or aligned

ontologies, which includes analysis, requirements specification, design,

implementation and testing, 3) use and operations of ontologies, 4) maintaining

and evolution of ontologies, and 5) management of planning, development,

operations and maintenance of ontologies.

Coverage in product is described as the method concerns planning, development,

usage and maintenance of and operate on 1) one single ontology, 2) a family of

related ontologies, 3) a whole portfolio of ontologies in an organization, and 4) a

totality of the goals, business process, people and technology used within the

organization.

Reuse of product and process is important to avoid re-learning and recreation. A

method may support reuse of ontologies as products or reuse of method as

processes. There are six dimensions of reuse. Reuse by motivation answers the

question - why is reuse done? Different rationale are for example productivity,

timeliness, flexibility, quality, and risk management goals. Reuse by substance,

answers the question – what is the essence of the items to be reused? A product is

the set of deliverables that are produced during a project, such as models,

documentation and test cases. Reusing a development or maintenance method is

process reuse. Reuse by development scope, answers the question – what is the

coverage of the form and the extent of reuse? The scope may be either external or

internal to a project or organization. Reuse by management mode, answers the

questions - how is reuse conducted? Reuse may be planned in advance with

existing guidelines and procedures, or ad-hoc. Reuse by technique answers the

question - how is reuse implemented? The reuse may be compositional and/or

generative. Reuse by intentions, answers the question - what is the purpose of

reused elements? There are different degrees of intention. The elements may be

used as they are, slightly modified, used as a template or just used as an idea.

Stakeholder participation reflects the interests of different actors in the ontology

building activity. The stakeholders may be categorized into those responsible for

developing the method, those with financial interest and those who have interest

in its use. Further, there are different forms of participation. Direct participation

means every stakeholder has the opportunity to participate. Indirect participation

�'� �
�
*
����
��� ������
����� �������

uses representatives, thus every stakeholder is represented through other

representatives that are supposed to look after their interests.

Representation of product and process can be based on linguistic and non-

linguistic data such as audio and video. Representation languages can be

informal, semi-formal or formal, having a logical or executional semantics.

Maturity is characterized on different levels of completion. Some methodologies

have been used for a long time; others are only described in theory and never

tried out in practice. Several conditions influence maturity of a method, namely

1) if the method is fully described, 2) if the method lends itself for adaptation,

navigation and development, 3) if the method is used and updated through

practical applications, 4) if it is used by many organizations, and 5) if the method

is altered based on experience and scientific study of its use.

4. Method Guidelines for Ontology Building - General Evaluation

Three method guidelines among the semantic Web-based ontology specification

languages are categorized, namely Knublauch et al., 2003 [24], which is based on

OWL and Protégé, Denker, 2003 [23] which is based on DAML+OIL and Protégé,

and Noy and McGuinness, 2001 [25] which is language independent yet uses Protégé in

the examples. Protégé20001 is an open-source ontology editor developed at Stanford

University and uses Java technology. All the method guidelines meet the selection

criteria as supporting semantic Web applications as SWEL and assume RDF/XML

notation rather than HTML or plain XML as the underlying Web standard. The

studied method guidelines are shortly described and characterised in the sequel.

Knublauch et al., 2003 is a tutorial that was originally created for the 2
nd

 International

Semantic Web Conference. The ontology building method is based on OWL

language and assumes Protégé as the ontology development tool. The ontology

building process consists of seven iterative steps, namely determine scope,

consider reuse, enumerate terms, define classes, define properties, create

instances, and classify ontology.

Comment: The development activity requires some experience and foresight,

communication between domain experts and developers, and a tool that is both

comprehensible and powerful, including support for ontology evolution.

 Denker, 2003 is a user’s guide of the DAML+OIL plug-in for Protégé2000. The

ontology building method is based on DAML+OIL language and Protégé as the

ontology development tool. The ontology building process consists of three basic

steps; create a new ontology, load existing ontologies, save ontology. The

creation of new ontology consists of five types of instructions; define classes,

properties (slots), instances, restrictions, and Boolean combinations.

Comment: The method does not contain any explicit description of the development

process. However, the sequence of the sections in the documentation gives an

indication of how to create an ontology.

1 Hereafter abbreviated Protégé as in http://protege.stanford.edu/

�'���� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

 Noy and McGuinness, 2001 is a guide to building ontologies, called Ontology

Development 101. The ontology building method is language and ontology

development tool independent yet it uses Protégé in the examples. The ontology

building process consists of seven iterative steps, namely determine the domain

and scope of the ontology, consider reusing existing ontologies, enumerate

important terms in the ontology, define the classes and the class hierarchy, define

the properties of classes – slots, define the facets of the slots, and create instances.

Comment: The methodology provides three fundamental rules, for making

development decisions, namely that 1) there is no single correct way to model a

domain, that 2) ontology development is necessarily an iterative process, and that

3) concepts in the ontology should be close to objects, physical or logical, and to

relationships in the domain of interest.

The classification of the selected method guidelines into the semiotic categories of

[4] is summarized in Table 1. The columns of the table are the classification criteria

as described above. The rows are the selected method guidelines. The intersection,

i.e. the cells in the table, describes how the method meets the criteria. The studied

method guidelines are characterised as follows.

Weltanschauung is similar in the studied methods. (Knublauch et al., 2003) is based on

constructivistic worldview. The first step in the development method is to

determine the scope. By doing that, the domain that is to be covered in the

ontology will be explicitly stated. Further, the method states that communication

between domain experts and developers is necessary. (Denker, 2003) is based on

undefined worldview. The method does not explicitly state its worldview and it is

not possible to implicitly deduce the worldview. However, this does not indicate

that the guidelines have different worldview compared to the others. It merely

indicates that the guideline is lacking information, which should be explicit or at

least implicitly provided. The method does not define the term ontology, and it

does not describe why an ontology is needed. (Noy and McGuinness, 2001) is based on

constructivistic worldview. It presents a list of different reasons for creating an

ontology, e.g. to make domain assumptions explicit. The method argues that an

explicit specification is useful for new users. Thus, there is need for explanation,

where the relation between the domain and the model is not obvious.

Coverage in process varies clearly between the methods. (Knublauch et al., 2003) covers

seven iterative steps. It has a detailed yet unstructured and incomplete description

of ontology development. The first three steps: determine scope, consider reuse

and enumerate terms, are just mentioned. It describes the evolution and use of

Protégé. The tool guidance does not follow the steps in the building process, but

is presented rather ad hoc. There are no explicit procedures to prepare for

changes. The process is described as iterative, which indicates the method

awareness of and the need for modification. (Denker, 2003) covers three plus five

steps. It has an unstructured and incomplete description of ontology development.

The method contains no explicit description of the development process yet the

sequence of the sections in the documentation indicates how to proceed in order

to create an ontology. A detailed yet incomplete, description of how to create a

DAML+OIL ontology with Protégé is provided. The importance of reuse is not

covered and it does not describe how to plan for changes. It describes the

�'4 �
�
*
����
��� ������
����� �������

evolution and use of Protégé. It links to the syntax of DAML+OIL when its

concepts in the development are described. Further the coherence between the

development tool and the ontology language is considered important, i.e.,

resolving differences between the concepts of DAML+OIL and the representation

in Protégé. There are explicit rules, e.g. that DAML+OIL properties are mapped

to Slots in Protégé. (Noy and McGuinness, 2001) covers seven iterative steps, each of

which is described in detail. It has good coverage in process. For example, step 1

(determine the domain and scope) is illustrated in different domains and the

competency questions technique is suggested as a method to determine the scope.

Reuse is considered, but there is no plan for changes. The actual implementation

of an ontology is not covered. The method is an initial guide to help creating a

single new ontology. It provides three fundamental rules in ontology design in

order to make decisions. The process steps are covered in sufficient detail. For

example, there are several guidelines for developing a class hierarchy. This

feature provides participants a checklist to avoid mistakes such as creating cycles

in a class hierarchy.

Coverage in product is medium (cover a single ontology) in both (Denker, 2003) and

(Noy and McGuinness, 2001). (Knublauch et al., 2003) includes an example scenario that

describes the use of ontologies in relation to agents with reasoning mechanisms.

It has high coverage in product. Protégé is described as a toolset for constructing

ontologies that is scalable to very large knowledge bases and enables embedding

of standalone applications in the Protégé knowledge environment. It does not

describe the relationship between heterogeneous ontologies, nor the requirements

the tool should fulfill prior to use in larger context. It refers to yet do not explain,

description logics. (Denker, 2003) describes situations where the user would like to

import concepts created in another ontology. The method does not allow

references to resources located in another ontology except for four explicitly

stated URIs2. The method covers single ontology. (Noy and McGuinness, 2001) regards

an ontology as a model of reality and the concepts in the ontology must reflect

this reality. It mentions projects built with ontologies, and ontologies developed

for specific domains and existing broad general-purpose ontologies. Reuse is

considered important if the ontology owners need to interact with other

applications that have committed to particular ontologies or controlled

vocabularies. Thus, there is awareness of the possible integration to other

ontologies and applications. Further, translating an ontology from one formalism

to another is not considered a difficult task. Instructions for this are not provided.

Reuse of product and process varies between the methods. (Knublauch et al., 2003)

consider reuse partially in the ontology building activity. The development scope

and technical prerequisite of reuse are covered. It does not describe why, when or

how to consider reuse. It does not provide examples of how reuse is carried out in

practice. It describes how to import existing OWL files that are developed with

another tool or developed with some previous version of Protégé. It also lists

formats from which ontologies may be read (imported), written to (exported) or

inter-converted (transformed) between. (Denker, 2003) only considers technical

2 http://www.daml.org/2001/03/daml+oil#, http://www.w3.org/1999/02/22-rdf-syntax-ns#,

http://www.w3.org/2000/01/rdf-schema#, and http://www.w3.org/2000/10/ XMLSchema#

�'5��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

aspect of reuse. It explains how to import existing DAML+OIL files that are

developed with another tool or developed with a previous version of Protégé. The

process is described using images that guide the participants. However, the

support tool, i.e. the plug-in only reads DAML+OIL ontologies and only allows

such files to be manipulated and saved. (Noy and McGuinness, 2001) covers reuse in

step 2: “consider reusing existing ontologies”. Reusing existing ontologies is a

requirement if the system needs to interact with applications that have already

committed to some ontologies. Reuse is not fully covered yet references to

available libraries of ontologies are given.

Table 1. Classification of method guidelines

Stakeholder participation discriminates the methods. (Knublauch et al., 2003) is

developed by members of the Protégé team at Stanford University School of

Medicine. The method assumes use of Protégé and provides a number of

screenshots from the development tool. The tutorial is comprehensible for

inexperienced stakeholders with development or financial interests and supports

the interests of novice user participants. Since it is written by those responsible

for developing the tool, the guide has a deep and detailed description of practical

use. Several members of the user community, i.e. those who have interest in its

use , have contributed to the method indirectly through material such as

visualization systems, inference engines, means of accessing external data

sources and user-interface features. (Denker, 2003) is available through the Artificial

��� �
�
*
����
��� ������
����� �������

Intelligence Center at SRI International, and is linked through the DAML

homepage. The physical editor(s) author(s) are unknown other than the contact

person regarding the plug-in and the user guide. In (Noy and McGuinness, 2001) one

co- author is a member of the Protégé team and the other is co-editor of the Web

Ontology Language (OWL). The method guideline provides introduction to

ontologies and describes why they are necessary. The method is suitable for

experienced as well as novice participants since it mainly uses informal

languages, yet provides comprehensive descriptions.

Representation of product and process is only partially covered in all the methods.

(Knublauch et al., 2003) is based on OWL and Protégé and the representations are

influenced by these notations. It is mostly informal, written in natural language

yet presents a narrow description of the Semantic Web and ontologies. On the

visual part it has a multitude of screenshots that explain and make the semi-

structured tool concepts and the formal language elements comprehensible. The

development process is covered in a graphical representation yet not explained. In

overall, the method is mostly informal and provides feasible graphical

representation. (Denker, 2003) is influenced by the representations of DAML+OIL

and Protégé. The document is basically written in natural language on top of

screenshots that explain the ontology building method with Protégé. The user

participant does not need to be aware of the underlying syntax of the ontology

language. The document is accessed through links to the different sections that

are to be opened/printed separately. The overall language and layout of the

methodology are informal. (Noy and McGuinness, 2001) makes no explicit reference to

any specific ontology language. It is written in natural language, with only a few

logical or executable statements. The language is informal and the method offers

adequate description of each concept presented. There are illustrations based on

screenshots from Protégé that support comprehensibility. A semi-structured

scenario is given and used as a reference throughout the guideline.

Maturity is covered on a medium level in all the methods. (Knublauch et al., 2003) is

based on OWL, the newest contribution in this field. The language itself has

hardly been examined yet. However, guidance for OWL modeling benefits from

experiences with guidelines for Protégé, RDF and OIL. The plug-in that is used in

Protégé is also new, but the core Protégé is well-examined. The method covers

the latest release, and is up-to-date in both regarding the language and the tool.

The method is not complete, since not all the steps in the development process are

fully described. (Denker, 2003) is based on DAML+OIL as ontology language,

released in December 2000. It has been subject for evaluation. Protégé is used by

a large community and is a well-examined system. The method is not complete.

However, the method guideline describes the uncovered or unimplemented

functionalities. (Noy and McGuinness, 2001) was published in March 2001, and is

older than the other two method guidelines. It is still valid when using ontology

languages developed after the methodology was published, e.g. OWL. Many

researchers in the field reference the method guideline, many readers examine it,

and acknowledged Web sites such as the Protégé Web site provide hyperlinks to

it. The method does not claim it has been tried out in practice, but by searching

on the Web, several projects that use the method can be located. However, it has

not been updated in response to such experiences.

��(��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

In summary, the discriminating classification criteria between the studied method

guidelines are in 1) weltanschauung , where the world view is explicit

(constructivistic) in two of the method guidelines and undefined for (Denker, 2003), in

2) coverage in process, where none of the guidelines are fully complete, but (Denker,

2003) is the least complete, in 3) reuse of product and process, where (Denker, 2003)

only mentions the support of import functionality, whereas the other two include

reuse as one step in the building process, where (Noy and McGuinness, 2001) provides

more description and functionality, and in 4) maturity, where (Noy and McGuinness,

2001) is the most mature. None of the method guidelines are even close to complete

concerning coverage in product whereas all of them cover representation of product

and process on a good or medium level.

4 Method Guidelines for Ontology Building – the edi Case

The case study is based on edi (engaging, dynamic innovation) which is a system

developed by a student project group. edi is intended to support exchange of

business ideas between the employees within a large Norwegian company, which is

an integrated oil and gas company with business operations in 25 countries. At the

end of 2002, there were over 15 000 employees in the company. Consequently, the

amount of information and knowledge provided by the employees is rapidly

increasing. There is an increasing need for more effective information retrieval and

efficient sharing of knowledge. edi intended as idea management tool and a

motivator for elicitation and generation ideas, as well as for enabling the employees

to focus on the relevant aspects of their activities.

The overall approach for the e d i system is to create a connection for

communication and knowledge sharing between employees from different business

areas as well as domain experts and department managers. The current plan is to

utilize semantic Web and Web service technology for that purpose. Ontologies will

play a crucial part in the edi system, both in supporting common access to

information and enabling implementation of Web and ontology-based search. The

participants will be experts on ontology building, on enterprise processes, on

creativity and on processes that support creativity, all of which possess different

qualities, modeling skills and domain knowledge.

edi requirements The status is that the functional requirements for edi have been

analyzed. However, before the system can be developed a thorough analysis need

to be conducted, and a decision about the purpose of the ontology has to be made.

Information about the domain plays an important role in this process and it can be

gathered in various ways. Unavoidably, there will be many different participants

involved in such a process; for instance end users such as possible idea

contributors and people in the edi network for evaluating proposed ideas. This is

analogous to software development in general [27], hence starting with ontology

requirements analysis. The requirements specification should describe what the

ontology must support, sketching the scope of the ontology application and

identifying valuable knowledge sources. Oil industry is a business in constant

change, and the large international coverage of the company makes the changes

��� �
�
*
����
��� ������
����� �������

even more complex. edi needs to have high durability, be adaptable to changes in

the environment, be maintainable and have high reliability in order to secure the

investment. Thus, a careful analysis needs to be made early in the process, which

places elaborate requirements on the ontology development environment.

Quality-based requirements An ontology should be built in a way that supports

automatic reasoning and provides a basis for high quality Web-based information

services. The underlying assumption is that a high quality engineering process

assures high quality end product. The quality of ontology building process

depends on the environmental circumstances under which the ontology is used.

Further, a model is expected to have high degree of quality if it is developed

according to its specification. Similarly, a method guideline is expected to have

high quality degree if it describes a complete set of steps and instructions for how

to arrive at a model, which is valid with respect to the language(s), it supports.

Table 2. Classification of method guidelines according to edi requirements

As placed in the classification framework, the key criteria that are candidates for

meeting edi requirements with high utility are coverage in process, coverage in

product, reuse of product and process, and representation of product and process.

In table 2, we have summarized which of the studied ontology building methods that

meet the situated, quality-based requirements for the edi system. In the table, M1

refers to (Denker, 2003), M2 refers to (Knublauch et al., 2003), and M3 refers to (Noy and

McGuinness, 2001). The values in the first row of the table translate the edi requirements

as categorized according to the evaluation criteria, whereas the values in the second

row are based on the observations in the above section as contrasted to the above edi

requirements. The values of the bottom row, i.e. the quality characteristics of the

studied method guidelines in table 1 compared with the corresponding edi

requirements in table 2, are explained in the sequel.

Weltanschauung - ontology building method for edi should be based on a

constructivistic view. The end users may have different models of the reality

depending on for example, their geographical location or the business area in

which they are involved. - Both M2 and M3 meet this requirement, whereas the

criterion is undefined for M1.

Coverage in process - ontology building method for edi should be extensively

covered to support large development teams and heavily illustrated to support

��+��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

inexperienced project participants. - Both M2 and M3 meet this requirement; M2

partially, whereas it is not well covered by M1.

Coverage in product - ontology building method for edi should cover a single

ontology. - All the studied methods, M1, M2, and M3 guide creation of a complete

single ontology.

Reuse of product and process - ontology building method for edi should provide

feasible guidance including illustrative examples, and the procedures should be

integrated into steps in the development process. - Both M2 and M3 meet this

requirement; M3 partially, whereas it is not well covered by M1.

Stakeholder participation - ontology building method for edi should cover the

participants’ development and financial interests of the involved creators of the

method as well as the low experience of its user group participants. Both M2 and

M3 meet this requirement, M2 partially, whereas it is not covered at all or

unknown by M1.

Representation of product and process - ontology building method for edi should

cover informal (natural language) representation and rich illustration.

Independent of the method, the language will cover the required level of

formality in the product to support automated reasoning. - Each of the studied

methods, M1, M2, and M3 uses both natural language and rich illustrations to

support novice participants.

Maturity - ontology building method for edi should be widely adopted and well-

examined in order to support evolution, co-operation and management of the

ontology. - Relative to the other methods, M3 covers best the maturity criteria.

In summary, out of the key requirements for edi, the discriminating criteria are

coverage in process, and reuse of product and process. M 3 meet the both criteria

completely, and M2 partially, whereas M1 fail in both cases. All the guidelines

support completely coverage in product as required for e d i and support the

representation of product and process in a range, where M3 and M2 meet the

requirements completely, and M1 only partially. Out of the remaining categories of

edi requirements M1 fail to meet any of them, M2 meet two completely and fail in

one, whereas M3 meet two completely and one partially. Thus, the situated

evaluation is in favor of M3 and will be selected to guide the edi ontology creation.

5 Concluding Remarks

An evaluation of three method guidelines for semantic Web ontology building was

conducted. The evaluation was instrumentalized adapting the method classification

part of a framework previously proposed for evaluating modelling languages, e.g. as

used in [33] for evaluating UML. Evaluation of method guidelines was performed in

two steps, one general evaluation, i.e. their applicability for building ontologies in

general, and one particular, i.e. how appropriate are they for ontology development

in a real world project - how applicable is the framework in practice. The main

results are as follows.

��� �
�
*
����
��� ������
����� �������

� The method classification part of the semiotic framework [4] has potential

for evaluating method guidelines. Some adaptation was needed in the 1) re-

definition of the various appropriateness-criteria, and in the 2) application of

the categories defined in [4], here diverting from the mainstream applications

of the semiotic quality framework, e.g. in [32, 33, 36].

� The categorization according to Weltanschauung, i.e. the applied modelling

worldview, was expected to be the same for all the method guidelines, but

turned out to be discriminating as selection criteria in the case study.

However, the Weltanschauung most probably is the same for the studied

guidelines, since they support languages, which all are constructivistic; it was

merely not derivable for one of the guidelines.

� In both steps, in the general classification and in the evaluation against the

situated requirements, the method “Ontology Development 101” [25] came

out on top, since meeting most of the evaluation criteria. This was also the

only method guideline, which is independent of any specific representation

language and has the longest history.

� Major weaknesses were identified for all the methods, as expected because of

the current immaturity of the field of Web-based ontology construction.

None of the method guidelines are complete concerning coverage in product

whereas all of them cover representation of product and process fairly well.

The main contribution of this paper has been to try out an existing evaluation

framework with other evaluation-objects than it has been used for previously. This

experience suggest that, given the small adjustments, the framework intended for

model evaluation is fully applicable in evaluation of method guidelines regardless if

the classification is used for their selection, quality assurance, or engineering.

The concrete ranking of methods may be of limited use, as new ontology

languages and method guidelines are developed and the existing languages evolve

and some of them became more mature. Nevertheless, it can be useful in terms of

guiding the current and future creators of such languages and their method

guidelines. Drawing attention to the weakness of current proposals, these can be

mended in future proposals, so that there will be higher quality languages and

method guidelines to choose from in the future. The underlying assumption for our

work is that high quality method guidelines may increase and widen the range and

scalability of the semantic Web ontologies and applications.

There are several interesting topics for future work, such as supplementing the

theoretical evaluations with empirical ones as larger scale semantic Web

applications arise utilizing the empirical nature of [32], as well as evaluating more

methods as they emerge. The experiences from the case study, which here was

intended as validation tool, suggest that numerical values could be used even for the

classification and thus qualify weighted selection such as the [39] PORE

methodology. Further possibilities are in investigating the appropriateness of the

formalisation quality criteria in the [20] Unified methodology as a complement to

the semiotic quality framework in order to conduct evaluation of the process

oriented methodological frameworks that were out of scope of this study.

��'��� ��������	
	�� ��� �

��� ��� ���
	�� ��� ��	��
�� �,�-.��%�/� �0�� 1.�-%�&� "!� 2��3*��� � ��

References

[1] Berners-Lee T, Handler J, Lassila O. The Semantic Web. Scientific American, May 2001.

[2] Gruber T R. A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition. 5(2), 1993.

[3] Uschold M, Gruninger M. Ontologies: Principles, methods and applications. Knowledge

Engineering Review, 11(2). 1996.

[4] Krogstie J. Conceptual Modeling for Computerized Information System Support in

Organizations, PhD Thesis 1995:87 NTH, Trondheim, 1995.

[5] Lenat D.B., Guha R.V.: Building large knowledge-based systems, representation and

inference in the cyc project. Addison-Wesley, reading, Massachusetts. 1990.

[6] Farquhar A, Fikes R. and Rice J.: The Ontolingua Server: A Tool for Collaborative

Ontology Construction. Technical Report KSL-96-26, Knowledge Systems Laboratory,

Stanford, CA, 1996.

[7] Kifer M., Lausen G., Wu J.: Logical Foundations of Object-Oriented and Frame-Based

Languages. Journal of the ACM 42(4): 741-843, 1995.

[8] Schreiber G., B.J. Wielinga, J.M. Akkermans, W. Van de Velde and A. Anjewierden :

CML: The CommonKADS Conceptual Modelling Language, In Proceeding of the 8th

European Knowledge Acquisition Workshop, Belgium, 1994.

[9] Motta E.: Reusable Components for Knowledge Models. IOS Press, Amsterdam, 1999.

[10] Mylopoulos J., Borgida A., Jarke M., Koubarakis M.: Telos -- a language for

representing knowledge about information systems, In ACM Trans. Information Systems,

8(4), pp. 325--362, 1990.

[11] MacGregor, R. and Bates, R.: The LOOM knowledge representation language. Technical

Report RS-87-188, Information Sciences Institute, University of Southern California, 1987

[12] Karp P., Chaudri V. and Thomere J.: XOL: An xml-based ontology exchange language.

http://ecocyc.panbio.com/xol/xol.html, 1999.

[13] Heflin J., Hendler J., and Luke S.: SHOE: A Knowledge Representation Language for

Internet Applications, Technical Report CS-TR-4078 (UMIACS TR-99-71), 1999.

[14] Fensel D., Horrocks, I., van Harmelen F., Decker S., Erdmann M., and Klein M.: OIL in

a nutshell In: Knowledge Acquisition, Modelling, and Management, R. Dieng et al. (eds.),

Proceedings of the European Knowledge Acquisition Conference (EKAW-2000), LNAI,

Springer-Verlag, October 2000.

[15] Horrocks, I., Patel-Schneider, P. F., Harmelen, F. v. : Reviewing the Design of

DAML+OIL: An Ontology Language for the Semantic Web. AAAI/IAAI 2002: 792-797

[16] McGuiness D.L., and van Harmelen F. OWL Web Ontology Language Overview, W3C

Recommendation, February 10, 2004.

[17] Fernándes-López M, Gómez-Péres A, Juriso N. METHONTOLOGY: From Ontological

Art Towards Ontological Engineering. Proceedings of AAAI-97 Spring Symposium on

Ontological Engineering. Stanford University, 1997.

[18] Sure Y, Studer R. On-To-Knowledge Methodology – Final Version. Institute AIFB,

University of Karlsruhe. September 26, 2002.

[19] Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward Distributed Use of Large-Scale

Ontologies. Symposium on Ontological Engineering of AAAI. Stanford (California).

March 1997.

[20] Uschold M. Building Ontologies: Towards a Unified methodology. The 16th Annual

Conference of the British Computer Society Specialist Group on Expert Systems.

Cambridge. United Kingdom, 1996

[21] Corcho O., Fernández-López M., Gómez-Pérez A. (2003) Methodologies, tools and

languages for building ontologies: where is their meeting point?, Data & Knowledge

Engineering, 46:1 July 2003, pp 41 – 64.

��� �
�
*
����
��� ������
����� �������

[22] Fernández-López M. Overview Of Methodologies For Building Ontologies, Benjamins

V.R., Chandrasekaran B., Gomez-Perez A., Guarino N., Uschold, M. (Eds.), Proceedings

of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5)

Stockholm, Sweden, August 2, 1999.

[23] Denker G. DAML+OIL Plug-in for Protége 2000 – User’s Guide. SRI International AI

Center Report 7/8/03, 2003.

[24] Knublauch H, Musen M A, Noy N F. Creating Semantic Web (OWL) Ontologies with

Protégé. Tutorial at 2nd International Semantic Web Conference. Sanibel Island Florida

USA. October 20-23, 2003.

[25] Noy N F, McGuinness D L. Ontology Development 101: A Guide to Creating Your First

Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05, 2001.

[26] Su X and Ilebrekke L. A comparative study of ontology languages and tools. Halpin T,

Siau K, Krogstie J (Eds.) Proc. EMMSAD’02, Toronto, Canada, May 27-28, 2002.

[27] Davies I, Green P, Milton S, Rosemann M. Using Meta-Models for the Comparison of

Ontologies. Proc. EMMSAD’03, Velden, Austria, June 16-17, 2003.

[28] Gómez-Péres A, Corcho O. Ontology Languages for the Semantic Web. IEEE Intelligent

Systems, 54-60, 2002.

[29] Wand Y, Weber R. Mario Bunge’s Ontology as a formal foundation for information

systems concepts. In: Weingartner P and Dorn G (ed.): Studies on Mario Bunge’s Treatise,

Rodopi, Atlanta, 1990.

[30] Weber R, Zhang Y. An analytical evaluation of NIAM’s grammar for conceptual schema

diagrams. Information Systems Journal 6(2): 147-170, 1996.

[31] Opdahl A L and Henderson-Sellers B. Ontological evaluation of the UML using the

Bunge-Wand-Weber model. Software and Systems Modelling (SoSyM) 1(1): 43-67.

Springer, 2002.

[32] Lindland O I, Sindre G, Sølvberg A. Understanding Quality in Conceptual Modeling.

IEEE Software, 11(2): 42-49, 1994.

[33] Krogstie J. Using a Semiotic Framework to Evaluate UML for the Development of

Models of High Quality. Siau K and Halpin T (Eds.) Unified Modeling Language: Systems

analysis, design, and development issues. IDEA Group Publishing, 2001.

[34] Pohl K. Three dimensions of requirements engineering: a framework and its applications.

Information Systems 19(3): 243-258, 1994.

[35] Becker J, Rosemann M, von Uthmann C. Guidelines of Business Process Modeling. In

W. Aalst, J. Desel, A. Oberweis (Eds.): Business Process Management: Models,

Techniques and Empirical Studies. Berlin, 1999.

[36] Moody D, Shanks G, Darke P. Evaluating and Improving the Quality of Entity

Relationship Models: Experiences in Research and Practice. Proc 17th International

Conference on Conceptual Modelling (ER ‘98), Singapore, 1998.

[37] Schuette R. Architectures for evaluating the quality of information models – a meta and

an object level comparison. In Proc. ER’99, Paris, France, 1999.

[38] Falkenberg E D, Hesse W, Lindgreen P, Nilsson B E, Han Oei J L, Rolland C, Stamper R

K, Van Asssche F J M, Verrjin-Stuart A, Voss K. FRISCO - A Framework of Information

Systems Concepts. IFIP WG 8.1 Technical Report. December 1997.

[39] N. Maiden, C. Ncube, “Acquiring COTS Software Selection Requirements”, IEEE

Software March/April 1998, pp 46-56.

�����������		
�
���

��
	
�������

e-EDU – An information system for e-learning services

Tarmo Robal, Ahto Kalja

Department of Computer Engineering at Tallinn University of Technology

Raja 15, 12618 Tallinn, Estonia

tarmo@pld.ttu.ee, ahto@cs.ioc.ee

Abstract. There have been many different educational and learning support

systems, some of them have failed, and some have been more or less

successful. The general practice among lecturers has been to develop their

own systems to manage tasks, study results, materials. The e-EDU provides a

general approach to solve these problems, taking into account the real needs

of the lecturers of TUT. The e-EDU system proposes a new and localized

approach as a service to enliven the daily studies at the university as well as

offers means for distance learning.

Keywords. e-learning, distance learning, study systems, web applications,

information systems, XML, RUP, service- oriented systems

1. In need for new approach

Over the years, universities have developed several different kinds of information

systems, including systems that were supposed to support learning processes via

providing materials, links and other information valuable during an educational

course.

The majority of universities’ information systems concentrate on the management

of study process results, students and the subjects they have performed. These kinds

of systems actually deal with the students’ information at the beginning of the

course, when students have to declare courses in the inception of a new semester.

The next phase, when these systems deal actively with students’ information is the

end of the term, when the results need to be entered into the system. As we see,

usually there is no support service for the course itself. The general practice has

been that each lecturer has his or her own system, how to manage the course:

students, their tasks and results, course materials. It is rather a lecturer-central

system than an online service.

With the WebCT, Lotus LearningSpace [1,2] and other systems alike, these

problems can be revealed. However, in most cases they are rather difficult to use and

do not satisfy the real needs of the academic personnel of a particular university,

country, region or an educational system.

The e-EDU stands for an online learning support service being developed at the

Department of Computer Engineering at Tallinn University of Technology (TUT).

Its purpose is to provide a supporting service for students and lecturers. Two

lecturers, who had similar systems on their own, invoked the e-EDU development.

Today, the system, which grew out of these two early versions, is being used as an

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� ��'(�)�� 	�

��� �
�
*
����
��� ������
����� �������

active learning support system in seven subjects taught by the department. The

subjects are Informatics I and II, Computers I and II, Digital Systems Design and

Test, Testing of digital systems, Fault-tolerant systems. These courses are being

taught to more than 200 students each semester. The system has been under

development from the year 2002. The e-EDU takes into account the real needs of the

lecturers of the department and in the nearest future will compete with WebCT as

the basic learning system for distance learning. It’s not yet another WebCT!

We have to take an advantage of tomorrow’s technologies already today!

2. Access from everywhere

One of the advantages of the e-EDU system is that it is a web-based system with

many interfaces. Therefore, it can be accessed from almost everywhere, regardless

of whether you are using a PC, Workstation, PDA, or Laptop. The system is built up

on the assumption of service-based architecture in a way that several interfaces are

supported. For example, lecturers do not need to have any student information on

paper, instead they have their PDA, Laptop or other portable device and can have an

access to the IS via LAN or WiFi. The majority of premises of Tallinn University of

Technology are covered with WiFi network, which is a good prerequisite for such a

system development and exploitation.

PDAPC / WS / MAC LAPTOP

WiFi

Internet
E-EDU

ITA

Service

Environments

LAN

Figure 1. Ways to access the service.

3. System functionality

The functionality of the e-EDU system is based on the needs of students and the

academic personnel. The main goal of the service is to decrease and mitigate the

information processing of student data performed by the academic personnel. On the

other hand, as technological potential improves, we need to consider today’s and

tomorrow’s means for making the study process more effective.

��+��� �����	�
�� ������� �,���� (�
�� %�!"#$��%"�� �&���$� !"#� �,-��#�%�.� ��#/%0��

As far as the system development is concerned, the concepts of web applications

development discussed in the author’s earlier paper: The Rational Unified Process

with the “4+1” view model of Software Architecture – a Way for Modelling Web

Applications [3], are being applied. The system’s architectural design is described

using the Unified Modelling Language, the graphical user interface as mock-up

pictures.

The e-EDU system has three major views, according to the users, that are

implemented via different web services. The views are as follows:

ī The students’ view, as a web application edu.pld.ttu.ee;

ī The teachers’ view, as a part of the department’s intranet application

ITA;

ī The administrator’s view, as a part of the ITA intranet application;

The functionality provided by the e-EDU can be grouped as follows:

ī User authentication via a general authentication system or using the

Estonian Citizen ID-card;

ī Course registration management;

ī Registered students management;

ī Course material management;

ī Assignments and students’ results management;

ī Communication between academic personnel and students;

ī Tests generation and crediting;

ī General course management – administrators only;

ī Archived data management – administrators only;

ī System back-up management – administrators only.

As we are dealing with a system that is rather laborious and risky to implement

fully, system elaboration has been divided into development cycles by functional

modules according to the demand for certain functionality. The development is

based on the RUP technology. The system development started off with the most

critical part: assignments and results management. The next development cycle

added the management system for course materials. Today, a third cycle of

development of this module has been finished. In the nearest future, other functional

modules will be developed in the following order: announcements subsystem, test

generation and evaluation subsystem, communication subsystem for data exchange

with other e-learning systems. Further development of already existing modules will

continue, in order to add functionality step-by-step, improve the systems functional

behaviour and to make the applications user-friendlier.

Both, the e-EDU web portal and the ITA intranet application are represented over

the Internet using the HTTPS protocol with applied security certificates to attain

more secure connection than the regular HTTP protocol would provide. Also,

organizational measures are applied to enforce the security. As we see later in this

article, the lecturer can perform the majority of activities with the course; however,

there are operations, which can be carried into effect only by an administrator.

System development and testing are rigorously separated from the operative “LIVE”

system. As security descriptions are not the aim of this article, we will not discuss

them in further detail.

��� �
�
*
����
��� ������
����� �������

Intranet ITA

Student

Lecturer

Manage course registrations

Manage materials

Manage assignements

Manage announcements

Manage tests

Manage results

Authenticate users

Administrator

Manage courses

Exchange data

Manage archive

Back-up the system

e-EDU

Figure 2. Main functional groups of the e-EDU system.

e-EDU

<<webserver>>

Internet

ATI

<<webserver>>

ITA

<<webserver>>

dbATI

<<DBserver>>

dbEDU

<<DBserver>>

Authentication

server

<<webserver>>

dbUsers

<<DBserver>>

An external 'computer- resource users'

system is used for regular authentication. dbEDU

back-up

<<DBserver>>

dbArchive

<<DBserver>>

Back-up

webserver

<<webserver>>

Figure 3. Architecture of the e-EDU system.

3.1. The students’ view

The students’ view is implemented as a standalone web portal edu.pld.ttu.ee

accessible all over the world via Internet. The system has a built-in language

support, so that users can select the language in which they prefer to interact with

the system already at the stage of login. The default language is Estonian. To be able

��1��� �����	�
�� ������� �,���� (�
�� %�!"#$��%"�� �&���$� !"#� �,-��#�%�.� ��#/%0��

to work in the web application, users first need to authenticate themselves, which

can be done in three different ways:

ī User enters his or her account information for the computer resources

at The Computer Centre of TUT and can have an automatic access to

the system;

ī User enters his or her e-EDU username and password;

ī User identifies himself or herself using the Estonian Citizen ID-Card.

A Personal Key Infrastructure (PKI) [4] is used for identification.

After a successful authentication, users can access the functionality of the

students’ view of e-EDU. They can manage their personal data in the system, for

instance change their e-mail address, customize the e-EDU application for their

preferences (preferred system language, colours, remainder, whether they want to

get the announcements also to their e-mail, etc), subscribe to subjects and of course,

manage the courses they have registered for.

In order to be able to operate with a certain course, users are required to register

for it. During the registration process they have to choose the lectures and the study

group in which they will take part of the lessons. This allows the academic

personnel to know the actual distribution of students of a particular course. On the

other hand, students can freely choose another time, study group or lecturer to take a

course with. After a successful registration, users can:

ī Take their personal assignments and view the state of taken

assignments;

ī View the results of the assessments;

ī View reports about their success compared to other course students;

ī Surf the study materials, both, free and password protected materials;

ī Take online tests;

ī Check-in for a lesson online (computer classes only);

ī Activate the remainder function, not to miss the deadlines for the

assignments;

ī Take part in the subject communication board;

ī Read course announcements, descriptions (extended course

information cards) and calendars.

Each student gets his or her own personal version of a task. After a successful

registration procedure students are able to take their assignments. If there is more

than one assignment in a course, lecturers have the possibility to set preconditions to

assignments release. For example, in order to take task 3, student has to have task 2

defended and its status set to “OK”. This will unable students to perform tasks,

which have prerequisites, and the acquiring of needed knowledge in the right order

can be assured more accurately. At the same time, it acts as an external motivator –

each task has its deadline and preconditions. Moreover, the length of the term is

limited (at TUT it is 16 weeks), which leads to restricted time limitations. Each

assignment can be viewed as a web page, printed out or saved as a PDF-file. The

assignments are presented as personal forms: it has a student’s name, task body,

variable task part, task deadline, date of task taking and the current status of the

assignment among with other information on it. Also, barcodes can be generated for

the tasks. For example, students get their personal home tasks (for instance a blank

form with student’s name, task information and barcode on it), print them out with a

��� �
�
*
����
��� ������
����� �������

barcode on it and submit them to the lecturer. The barcode then makes the procedure

of evaluating and results entry easier and more efficient.

The tests system acts like the assignments subsystem. If there are tests put up by

the lecturer, and they are made available, students can take them. Tests can be either

online web forms for filling in or in a printable format, labelled with student

information and barcode.

General course description represents the extended information card of a subject.

The course calendar shows the topics for an active study week, highlighting them

among the rest of the records. Course materials are represented by their type,

whether they are materials given during a lecture, materials needed in tutorials or

labs. A search form is also provided.

Each course is provided with a communication board, where students and

lecturers can exchange knowledge and discuss problems with each other. It acts

more or less like a public forum, with the exception, that each course has its own

independent section.

The e-check-in is a feature, which is only usable with a direct access to computer

resources. It can be used in daily study process as well as with distance learning. For

instance, lecturer and students of the distance learning have agreed to be online at

the same time to hold an online lecture. In daily study the e-check-in feature allows

to check the presence of students in a lecture without sending out a special list with

names. Teachers can set the timeframe for e-check-in service or manually open the

e-check-in for a period of time, when participants can sign their presence. The

system has a built-in feature to allow signing only from certain address range (i.e.
IP-addresses), if needed. For example, daily study e-check-in can take part only in

the computer classes of TUT.

The functionality of the students’ view is elaborated taking into account the needs

of daily study students as well as the needs of those of distance learning. The central

line is to keep everything as simple as possible, providing as much information as

needed. In comparison with WebCT and other e-learning systems, e-EDU is more

flexible, more automated, user-friendlier and which is most significant, it is in

Estonian language. The latter is a key success factor in exploiting such a system,

making it as user friendly as possible and at the same time escaping the confusion in

users.

Search materials

Consolidated report

Front page (shortcuts)

Check-list

View by type

Register to a subject Manage my details

Manage my preferences
Student

(from Use Case View)

Manage course registrations

(f rom Use Case View)

Manage my settings

Send messages

Receive messages

Read / Send a message to a

discussion group

View course materials

<<extend>>

<<extend>>

My results

<<extend>>

<<extend>>

Check-in

Read announcements

e-EDU

(f rom Use Case View)

<<extend>>

Communication center

(from Use Case View)

View course description

View course calendar
Take tests

View links

Manage my course

Comparison report

Figure 4. Functionality of the student’s view.

��2��� �����	�
�� ������� �,���� (�
�� %�!"#$��%"�� �&���$� !"#� �,-��#�%�.� ��#/%0��

Figure 5. The student’s view.

3.2. The teachers’ view

The teachers’ view is a part of the department’s intranet called ITA. The section

of ITA, which deals with the e-EDU system, has also a secondary interface to work

with PDA-s. Through the system, lecturers can:

ī Easily see students who attend their courses,

ī Upload, delete and reassign course materials,

ī Evaluate students’ assignments,

ī Carry out automatic assessment,

ī Send announcements to the course participants,

ī Compose and evaluate tests,

ī Generate statistical reports,

ī Manage examination information in the Examination Centre

(Sessikeskus),

ī Import and export data in CSV format (for example exchange data

with WebCT, Excel, OpenOffice)

ī Manage course descriptions, course calendar and schedule.

��� �
�
*
����
��� ������
����� �������

Figure 6. The teacher’s view.

Although each course has its general description in the central registry of the

university, each year minor modifications are being made to the course program and

actual content. Therefore, lecturers are ordered to compose extended course content

and schedule plans, called extended course information cards. The idea is to provide

a description of a course, sufficient for students, so that they are able to make

rational subject selections. On the other hand, extended course information cards

keep lecturers “on the track” assuring that students attain the knowledge needed. In

addition to extended cards, course calendar provides an overview of the course

structure as a timeline. There are two different approaches to choose:

ī Timeline as academic hours: describes how many academic hours are

spent on each topic;

ī Timeline as lecture topics: describes what topics will be discussed in a

concrete lecture.

The timeline itself shows the logical order of covering the topics during the whole

course.

The most significant part of the system is the assignments management. The

subsystem uses XML-based documents description technology. Tasks are described

as XML-based documents; a coherent style is assigned using XSLT-s. As a result,

the assignment management system gives us the following benefits:

ī Due to the use of XML and XSLT, tasks have a general coherent

outlook, but may have a different style, if needed,

ī Tasks can be represented in various forms: HTML, PDF, etc.

������ �����	�
�� ������� �,���� (�
�� %�!"#$��%"�� �&���$� !"#� �,-��#�%�.� ��#/%0��

ī The stationary task body and variable version information are kept

separately until a student takes an assignment,

ī The distribution system guarantees even allocation of different

assignment versions,

ī Each student gets his or her own personal version of an assignment,

composed from the task body and variable task part, which can be

easily stored in an archive,

ī Teachers do not have to print out and distribute tasks; everything is

organized by the assignment management service and is available in

e-EDU.

The exploitation of XML-based document description technology also provides

simple interfaces for communication with other systems.

The composition of assignments and tests is implemented also by a web

application, where the lecturer has to make selections to provide the system with

needed information (i.e. number of task variants) to produce the basic template.

After the basic template has been generated, the task information can be entered into

the database. By default the tasks are unavailable and lecturer has to give a special

order to the system to make the tasks available. The task sub-system generates

needed XML structures as well as makes necessary entries into the database.

Results management is common for both, assignments and tests. If a student has

taken an assignment or a test, his or her name appears automatically in the task’s

results list. This way the system assures the integrity of data and implementation of

the rules, decrementing the workload of academic personnel. Of course, there is a

possibility to add tasks to students or predefined student groups as well. The default

assessment types are:

ī Defended and passed;

ī In proceeding;

ī Cancelled;

ī Indefinite.

When a student takes a task, it is in an indefinite state, after the evaluation it may

have other states. The final state is either Defended and Passed or Cancelled. With

the cancellation, student has to take the task again. The system assures, that the

version does not mach with the cancelled one.

Teachers are able to upload materials in any form they like; it does not matter

whether the materials are HTML-files, PDF-files, PowerPoint slide presentations or

other types of file. While uploading, they need to specify, whether the materials are

for public use or are secured (accessible only through e-EDU). The files can also be

classified as lecture, tutorial or lab materials, to provide a better overview of them.

The aim of statistical reports in the teachers’ view is to provide a general

overview of the progress of students, which is useful and needed information for a

lecturer. It enables to adjust the course according to the success of students during

the teaching process.

The teachers’ view provides a lot of useful tools to make the teaching process

easier, simpler and lessen the workload, but it can only provide the functionality

built in it, which is rather general and may not correspond to all of the needs of a

particular lecturer. However, the system is developed by the actual needs of the

department’s lecturers and therefore can answer the demands better than any other

outsourced software.

��) �
�
*
����
��� ������
����� �������

Intranet ITA

(from Use Case View)

Export data Import data

Send announcements

List course students

Create a new course

Mark course as ended

Add/modify extended course

information card

Plan the course (calendar)

Add/Modify/Delete course links

Add materials Delete materials
Reassign materials

Evaluate tasks

Lecturer

(from Use Case View)

Communication center

(from Use Case View)

Exchange data

(from Use Case View)

Manage announcements

(from Use Case View)

Manage assignements

(from Use Ca se View)

Manage course registrations

(from Use Case View)

Manage courses

(from Use Case View)

Manage materials

(from Use Case View)

Manage results

(from Use Case View)

Compose tasks

e-EDU

(f rom Use Case View)

Manage tests

(from Use Case View)

Examination Center

"Sessikeskus"

Figure 7. Functionality of the teachers’ view.

3.3. The administrator’s view

The role of an administrator in the e-EDU system is principally to act as the

supervisor and technical assistant for the academic personnel as well as for the

students. As there should be some kind of superintendence implemented over the

two other user groups, the administrator is the only actor, who has the rights to set

up new and erase old courses, add, delete and modify data concerned with users,

both, students and academic personnel. Moreover, the administrator’s tasks are not

limited with simple course and user management. They can be extended to auditing

certain actions taken by the academic personnel. For instance, administrators may

have the right to audit and certify the extended course information cards and course

calendars created and modified by the academic personnel.

It is evident that with this kind of systems, we are most probably interested in

several types of statistics over the applications usage, or even more, there might be a

need to get information about the applications usage for a concrete user. Obviously,

this sort of information might be delicate and everyone should not have access to

such a data.

One year after the course has ended, administrator transfers the course

information into archive. After archiving, the data will be available only for

administrators, who can excerpt reports, if needed. This approach frees the active

server from huge data loads, on the other hand, provides a mechanism, where all the

data remains obtainable.

Despite of the technological possibilities and regulations of the department, the

role of the administrator should be as minimal as possible, incrementing the

independence and responsibility of the academic personnel. Divided responsibility is

more or less irresponsibility. As we have shown, the role of an administrator is

mainly to function as a superintendent and plays a crucial role in such systems.

��'��� �����	�
�� ������� �,���� (�
�� %�!"#$��%"�� �&���$� !"#� �,-��#�%�.� ��#/%0��

Create new courses Delete unneeded courses

Add users

Delete users

Modify users

Provide online support

Excerpt reportsArchive courses

Administrator

(from Use Case View)

Manage courses

(from Use Case View)

Manage statistics

Manage users

Validate extended course

information cards

Validate course calendar

Manage archive

(from Use Case View)

e-EDU

(from Use Case View)

Back-up the system

(from Use Case View)

Figure 8. Functions of an administrator.

3.4. Overview of the physical implementation

The e-EDU system implementation involves many database and web servers as

can be seen on Fig. 3. The system is implemented using mainly Apache web servers

with PHP modules (currently version 4.x) added [5]. The database servers are

implemented using the MySQL database engines (currently versions 3.23.x and

4.0.x) as the most popular open source and the fastest growing database systems in

the industry [6]. MySQL has proved to be suitable for such systems, however

presently there are some restrictions: there are no triggers, functions or possibilities

to run sub-queries. These restrictions do not hold back the development, as there are

other possibilities to implement the needed functionality, and hopefully these

restrictions will be eliminated by future versions of MySQL.

The main line has been and will be to keep the system as simple as possible,

using the available freeware and implementing the functionality mainly by PHP,

Javascript and MySQL.

4. Future work

In the future, further development of the system will be continued, in order to add

more functionality, make the system more efficient and more open for integration

with other information systems, first and foremost with the department’s

information systems but also with the university’s systems. It has been planned to

develop a communication link between the e-EDU system and the study information

system (OIS, http://ois.va.ttu.ee) of TUT. Moreover, the e-EDU can be easily

integrated with the Career Service Web Portal (CSWP, http://www.ttu.ee/karjaar) of

TUT. In the future it would enable the users of e-EDU to access the services offered

by CSWP without registering for another username and maintaining another

password.

�)� �
�
*
����
��� ������
����� �������

In the next version we have planned to introduce the Estonian Digital Signature

for the communication between lecturers and students to enable digital signing of

documents. It is highly likely that the future also brings M-Services (Mobile

Services) to e-EDU, allowing, for instance, students to access their data by just

sending a SMS or accessing the portal using the WAP.

5. Conclusions

The rapid IT development has provided us with tools to improve our lives, our

possibilities to teach and learn. Web applications are one of the many possible

approaches. Because of their open nature, users usually do not need anything more

than just a web browser and access to Internet - web based applications have become

very popular, also in the field of education.

The e-EDU system provides a new and localized approach to enliven the daily

studies at the university. In addition, it provides means for distance learning. As has

been shown, the e-EDU system lessens workload of teachers, providing general

means for tasks, materials and results management among with other tools. There is

no need for every teacher to manage his or her own mini-systems in Excel, Access

or in any other program. Students have a continuous overview of their progress and

in case of errors made by a teacher, can quickly announce of it.

There have been many steps towards implementing today’s technological means

in providing education and e-education. Many of them have failed, whenever the

systems have been too complex to manage or just from lack of interest by users. The

e-EDU system is making its first steps and until now has been successful.

6. Acknowledgements

The project has partly being supported by the Estonian Scientific Foundation

grant no. 5766. We would like to take this opportunity to thank all those people who

have collaborated and supported this project: Margus Kruus, Elmet Orasson.

References

[1] WebCT.com, http://www.webct.com/ (03.12.2003)

[2] LearningSpace, http://www.lotus.com/products/learnspace.nsf/wdocs/homepage/

(03.12.2003)

[3] Robal, T., Viies, V., Kruus, M. The Rational Unified Process with the “4+1” View

Model of Software Architecture – a Way for Modelling Web Applications. In.:

Proceedings of the Fifth International Baltic Conference, BalticDB&IS 2002, Tallinn,

June 3-6, 2002, Vol. 2., pp.119-132

[4] Kalja, A., Vallner, U. Public e-Service Projects in Estonia. In.: Proceedings of the Fifth

International Baltic Conference, BalticDB&IS 2002, Tallinn, June 3-6, 2002, Vol. 2., pp.

143-154.

[5] PHP Hypertext Preprocessor, http://www.php.net/ (23.11.2003)

[6] MySQL, http://www.mysql.com/ (23.11.2003)

A Contribution to Web Digital Archive Integration from
the Parliamentary Management System ‘SIAP’

Carmen Costilla
1
, M.ª José Rodríguez

2
, Juan P. Palacios

2
, José Cremades

3
, Antonio

Calleja
3
 and Raúl Fernández

3

1
Titular Professor, Information Systems and Databases (SINBAD) Research Group

Dept. Ingeniería de Sistemas Telemáticos (DIT), ETS Ingenieros de Telecomunicación (ETSIT),

Technical University of Madrid (UPM), www.sinbad.dit.upm.es, costilla@dit.upm.es

2
 Ph. Researchers at the SINBAD- DIT-ETSIT-UPM

www.sinbad.dit.upm.es, mjrodriguez@sinbad.dit.upm.es; jppalacios@sinbad.dit.upm.es

3
 Ph. Researchers at the SINBAD-DIT-ETSIT-UPM and

Founder Partners of CRC Information Technologies

(www.crcit.es), {jcremades, acalleja, rfernandez}@crcit.es

Abstract. Nowadays, millions of users choose the web as their main

communication channel. As a consequence, everyday we find more activities

(government, commerce, finance, digital libraries…) developed through the

web. Archives are an example of this trend. They are being digitized and there

is already an important initiative to standardize web access to them. Firstly,

this paper introduces the SIAP system we have built; it has been running at the

Asamblea of Madrid since 1999. Secondly, we present DAWIS-UPM
1
 project

(Digital Archive Web Information System) whose main goal is to design a

web architecture providing integrated access to different digital archives. This

architecture is based on mediators and wrappers making the virtual, flexible

and dynamic ‘on-the-fly’ integration of digital archives possible. Finally, a

semantic integration -based on ontologies, according to current international

archival standards- is here proposed.

Keywords: Semantic Web, Ontologies, Web Information Systems (WIS), Integrated

web architecture (Mediator & Wrappers), DCMI, ISAD(G), ISAAR(CPF), Digital

Archives (DA), Parliamentary Information Systems (SIAP), e-government.

1. Introduction and Motivation

The web is a universal information space that every day freely incorporates new

server sites that may contain very different Web Information Systems (WIS). Web

data management is a relevant topic for governments, museums, libraries, businesses

and other institutions. As the current web is inherently heterogeneous in data formats

and data semantics, the semantic web is very necessary.

The web is anarchic with regard to the capabilities of linking semantic affinity

information contents of a specific domain. However, the fundamental is that -on the

1
 DAWIS-UPM stands for Digital Archives Web Information System, the TIC2002-04050-C02-02 national research project (2002-

2005), funded by the Spanish Ministry of Science and Technology within Communications and Information Technologies National
Programme, developed at the DIT-ETSIT-UPM.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� 481(�'�� 	�

�)� �
�
*
����
��� ������
����� �������

web- these domains could have a universal scope, and this is one of the most

important communications and computer science goals you can get. Today, the

semantic web constitutes an important challenge for future web intelligence [7, 49].

Current research proceeds quickly in this direction.

Research into analyzing web sites faces two challenges due to the huge amount of

on-line published data and the complex structures found in them [3]. We think it is

absolutely essential to improve the virtual integration of heterogeneous and

distributed WIS [46]. Focused on a specific domain, the web will allow the

dissemination of unified and useful information to the user [27].

We have today new web technologies related to interoperable web, such as XML

and web services [4]. However, web data integration has to improve considerably.

WIS are being still integrated by hand –with tedious processes and ad hoc work-

that produce highly vulnerable results. To cover current needs -when many different

sources are offering a wide variety of semantics- it is not enough. Besides, the

related software applications also present a high degree of diversity.

In this context, archives are a very interesting and representative WIS

investigation area. From a technical point of view, archives hold huge amounts of

documentary information, where the multimedia, the diversity of material and

format aspects is the summit of all its splendour. The (semi-) automatic integration

of many web Digital Archives (DA) permits user easily access to global information.

This paper describes some aspects of web DA integration, thanks to the

experience acquired from our recent lines of research. A just finished project is due

to a Parliamentary Integrated Management System, -SIAP2-, that we have built.

SIAP was funded by the Parliament of Madrid, whose first product (called SGP) has

been running successfully at the Asamblea of Madrid since 1999 (www.crcit.es/ SIAP).

Nowadays, our ongoing research is focused on heterogeneous web data source

integration and semantic web, applied to web DA virtual integration.

We have investigated DA conceptual modeling in order to define a virtual web

integrated architecture through a unified semantic mediator layer (made up of

ontologies, mappings and data repositories) and wrappers (coupling heterogeneity

between data sources, using XML). We are starting this current investigation, and

our final (and future) idea is the implementation of our results as different web

service levels (Java libraries) of a web DA integration architecture.

We think that building a web DA integrated architecture of distributed

heterogeneous data integration, with dispersed components and services, running

very different web functions is a paradigmatic application [44]. As well as the

services, the overall functionality depends on the ability of the specification and

implementation of semantics that each web query requires.

Section 1.1 briefly introduces the international standard regulating archive

content description, and section 1.2 summarizes the DA concept. Section 2

introduces the SIAP system containing a Parliamentary Digital Archive
Management System. In Section 3, we describe the Web Integrated Architecture
proposed for the DA. We remark here on the ontological aspects that we have

considered, applied to some archival standards (DCMI, ISAD, ISAAR) and SIAP

system. Finally, the conclusions are given.

2
 SIAP Parliamentary Information Management System, a CRC Information Technologies product

(www.crcit.es)

�)+��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

1.1. Archives

Archives constitute a worthy and representative application area. They contain a

huge amount of documentary information on human activity. Archives hold different

contents such as culture, business, living and relaxing. However, their main and

common goal is: the propitiation of an easy access to the information content,
guaranteeing the safety and custody of what they hold. Consequently, when you

want people to access archive content (such as a catalyst of cultural and historical

heritage), undoubtedly the web is the optimal media for a universal safe propagation

of content.

The General International Standard Archival Description ISAD(G) (2
nd

 ed.) [24]

is the most important one for archivists. Its main goal is the identification and

description of the content and context of archive material, in order to promote its

management and accessibility. ISAD(G) is developed by the International Council

on Archives (ICA) [24], a worldwide organization of archival community

professionals. ISAD(G) defines a set of elements (metadata terms) for archive

description that may be applied regardless of the format of the archive material.

Some combinations of these elements constitute the unit of description.

Figure 1 represents the ISAD hierarchical unit of description levels. Every level has

different degrees of

detail. Additionally, the

International Standard

Archival Authority

Record for Corporate

Bodies, Persons and

Families ISAAR(CPF)

is a second one. Section

3 describes how to use

these two standard

concepts. (http://www.ica.

org for ISAD and ISAAR)

High
volume

Subsection

File

Fonds

File

items

File File

items

SeriesSeries

De-
scrip-
tion
Levels

Sub-FondsSub-Fonds
Sub-

Fonds

Series

Guide

Guide

Inventory

Catalogue

CatalogueInventory

 Figure 1. ISAD(G) Hierarchical Description Levels of Archive Organization.

1.2. Digital Archives

The DA holds a collection of documentary data in digital format joined to

descriptive data on the organization, its goal and the content of these documents.

The descriptive data are metadata for archive description at any level that ISAD(G)

proposes, as shown in figure 1.

Any DA can store many different contents (corporate databases, data warehouse,

thesaurus for information retrieval, web pages, e-mails, documents, maps, photos,

etc.). It is true that, in some archives, the process of digitizing could be difficult,

slow and may be impossible obtain completely. However, currently more and more

institutions are trying to do it in order to offer a higher degree of accessibility.

Hence, the web DA is disseminating certain contents that, generally, consist of

metadata such as: descriptive data for indexing thesaurus of Information Retrieval,

�)� �
�
*
����
��� ������
����� �������

summaries, index, keywords, synonymous and antonyms lists (broader terms,

narrow terms, etc.) and other related terms [1]. All this information is stored in what

we call DAs, as digital data source repositories. Nowadays, this information is what

-through web sites- users are accessing in order to get certain relevant aspects on any

fixed unit of description combination (item or collection of items, file or collection

of files, Sub-Series, Series, Sub-Series and/or Series collections, Sub-Fonds,

collection of Sub-Fonds and Fonds).

2. ‘Asamblea of Madrid’ Parliamentary Archive

The Asamblea of Madrid parliamentary archive has totally digitized its

documentary fonds, since the beginning of our democracy. This DA management

system is powerful and ideally advanced for the web.

The DA management system runs at the Asamblea de Madrid as a part of a

broader system called SGP (Parliamentary Management System). SGP was funded

by the Asamblea de Madrid (1997-2000) and was built at our research group

together with people from Spanish businesses CRC Information Technologies
(CRC IT). Nowadays, CRC IT commercializes SGP as SIAP and this product is

sponsored by our Technical University of Madrid (UPM), by our Technical High

School of Telecommunication Engineering (ETSIT) and by Oracle and Cronos

Ibérica entreprises.

SIAP manages and controls the workflow of overall parliamentary documentary

information and automatically creates the many types of parliamentary document

produced by political activity. For the SIAP design we used methodologies [13, 26]

and CASE tools; in addition, the main design guidelines were: the proper political

activity, institutional norms, Political Initiative typology and the nature of political

documentation. In order to provide useful information, as intelligent as possible, we

follow the guidelines in [3, 12, 45, 46] and our experience from previous systems

[10, 11] among others.

The SIAP system structures Political Initiative and Parliamentary jobs (Plenary

sessions, Committees, etc.). It has many applications (www.crcit.es/siap). SIAP

workflow sends the document to be considered established by the regulation,

according to each type of political initiative. Moreover, it is controlled when a

document is sent to be published into the Official Bulletin, the Sessions Journal and

on dynamic web pages automatically created for a specific user type. SIAP

associates the document to the respective File (Expediente in Spanish), to the

corresponding Daily Order, to the pertinent Official Bulletin, to the previous scripted

political sessions, etc. Besides, SIAP also knows where the original document is

stored and where the multiple document copies are held.

Section 2.1 summarizes the more general aspects of SIAP, successfully running

at the Asamblea of Madrid since 1999, and section 2.2 describes its Archive
Management System.

�),��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

2.1. SIAP system: Objectives and Architecture

SIAP models Parliament’s overall structure and organization. It has demonstrated

a high degree of security and effectiveness for those procedural steps in every

political initiative. The main goal of SIAP is to obtain a perfect integration of the

parliamentary information with the proper activity of the Parliament.

SIAP controls input documents and produces a huge amount of output documents,

some of them with a public nature. It makes the entire Parliament of Madrid Official

Bulletin, and the greatest part of Sessions Journal. Besides, SIAP applies

documentary searching to other external Official Bulletins (from foreign

institutions). If it were

convenient, all this

information would be

dynamically published on

the web.

SIAP has an open

architecture to be implemented into the Institution network. It has an underlying

object-relational database running into the Database Server and its applications

could also work on its own (Law Budget Project, Archive Management, Registers,

etc.).

-Management of information generated by political Institution’ activity,

- Control of regulated workflow,

- Design and implementation of Parliament structure and organization

and its perfect integration into the parliamentary documentary flow,

- Semantic control, applications and GUIs software.

SIAP runs on Oracle in Client/Server (C/S, two ties) and in Internet/Intranet

(three or four ties). In C/S, for providing services to civil servants that update the

information system (with a high degree of protection and security). In C/S, protocols

SQL*Net8 and OCA and, in Web OAS (Oracle Application Server and IAS of

Oracle 9i) are used. For both, IntermediaText for information retrieval (before

Oracle Context) is used. Figure 2 represents the documentary workflow and SIAP

open architecture; where BOAM means Asamblea of Madrid Official Bulletin and

DDSS means Sessions Journal.

BOAM and DDSS

External

Publications
Archive Photos / Maps / Plans, etc.

Registers

Audio and Vídeo

Parliamentary Table

LAN, C/S

Audio

Joint of Spokesman

Plenary Session Committees Parliamentary Groups

Network: C/S and

Web

 Figure2. Documentary workflow and SIAP open architecture (C/S and Web)

2.2. SIAP Digital Archive Management System

Parliament activity produces documents tailored to a specific type of

Parliamentary Initiative. SIAP Archive Management System holds especially

relevant information organized in files (descriptive folders) according to the

�)� �
�
*
����
��� ������
����� �������

initiative typology and objective. The file collects related information on political

activity and marks the procedure type to schedule with all documents that are held

inside it (initiatives, photographs, maps, graphics, audio, video, etc.).

Additionally, the file incorporates other descriptive information. Concisely, it

includes the following: 1) Identification, 2) Censure or judgment of the
contained documents, 3) Schedule, 4) File Classification and its respective
documents, 5) Allocation: topographical, informatics and address of Institution,

departments, dependencies, etc., 6) File prosecution made up of: a) Workflow

considering all states that must or should be adopted by the file and any of the

related documents annexed to the file, b) Current status, c) History and, finally, 7)

Relationships between files by subject, type, date, state, descriptors, etc.

This DA handles queries against the underlying object-relational database (SQL)
and/or to the thesaurus with a powerful information retrieval. It searches thousands

of publications and locates the subject of interest in a few seconds; locates the

annexed document to the file in an almost instantaneous response, independently of

the Legislature where it is stored [1]; and, finally, creates a lot of report results [9]
(www.asambleamadrid.org).

SIAP controls the all of the information from any Legislature and knows the

topographical key signatures of its complete archive fonds. For example, The

Madrilenian Court can instantaneously locate all files and documents dealing with

anorexia, since the beginning of the Spanish democracy and can reproduce video

fragments of the political sessions (Plenary and Commissions) in which this illness

was discussed.

Through web applications, the parliament can negotiate the information exchange

between similar institutions at any

level, in an integrated and intelligent

way. SIAP can offer global
information produced by many

others Institutions, as well as its own

[20, 36, 40].

The SIAP Digital Archive was

tested for three hours in a

Parliamentary Archives and
Political Parties Conference (Nov.

1999) held at the Asamblea of

Madrid, and it was considered a

powerful and complete system.

Figure 3 shows its main screen.

Figure 3. The SIAP Digital Archive at the

Asamblea of Madrid

If SIAP runs in other institutions, web information capabilities will grow in a

spectacular way. We want to remark on how easy is

to get dynamic interoperability on the web when

data sources have the same WIS (same design and

semantic control, similar software, etc.) (See Fig.

4). On the other hand, in heterogeneous WIS

environments it could be hard to provide easy and

powerful access to global information.

Figure 4. Web Multi-parliamentary

�)���� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

3. Integration of Web Digital Archives

As the current web is inherently heterogeneous, semantic web will be absolutely

necessary, mainly where you need a certain conceptual organization. Besides, public

DA integration should allow access to inherited cultural content without distances,

languages and cultures barriers.

There are many important initiatives based on DA (OAI, DCMI, EAD, etc.) in

order to make them accessible to the web user. The systematic and (semi-) automatic

generation of web DA allows the administration of the huge documentary legacy

held into the Archives to be improved, as well as facilitating the creation of new DA

available to any web user.

However, we still do not have a good integrated web solution for making it

possible for any DA in the world to be ‘added’ to a web environment (integrating

several DAs), independently of DA content and description level. A web user is still

unable to access a virtual, global, integrated DA, whose semantics will be

universally guaranteed by a web-integrated system.

Due to the large amount of non-digitized, nor computerized Archives; an ad hoc

solution to develop a concise DA or to integrate ‘n’ certain pre-existing archives is

not enough. For this reason, we are seeking a generic solution allowing any DA be

published on the web, as well as their generic integration. This kind of integration

sends the user queries to ‘n’ DA just as if they were a single virtual archive.

3.1 Virtual Integration of Web Heterogeneous Data Sources

Research on the dynamic and virtual web integration of multiple heterogeneous

DA represents a very different challenge to the classic database static schema

integration. The latter is obtained by using a fixed federation of local participant

databases schemata in a global static schema [40].

In the virtual integration of web heterogeneous data sources there is neither

centralized information management, nor federated information, nor integration

information systems dealing with materialized data [15]. In the virtual integrated

systems, data sources remain as autonomous data inside every locality. Integration is

only virtual (not materialized), as we describe later.

In spite of having many standards in databases and static schema integration

reference models, a systematic solution for web dynamic integration, requires a

standard that does not yet exist (solutions are often static and ad hoc).

However, the question of the non-existence of a standard web is old [20]. Since

the first attempts to regularize data exchange on the Internet (EDI) until the

proliferation propitiated by the web (http, html, xml, obi, cxml, etc), it has still not

been possible to model the interactions among a system components properly [33].

We are dealing with many independent WIS, whose first requirement for becoming

part of any integration is to guarantee total autonomy to each local participant in the

dynamic and virtual integration (DAs, in our case). Therefore, the DA does not

federate in an integrated static global schema. On the contrary, it is produced by a

Web Mediator System [47]. By doing so, data remains in local data sources, and

integration takes place on-the-fly, during the query pre-processing in the mediator.

�)) �
�
*
����
��� ������
����� �������

3.2 Introduction to DAWIS-UPM

DAWIS-UPM [6, 43, 18] is a project which global objective is the definition of a

web-integrated architecture, providing a virtual and dynamic access to many

different DA. DAWIS-UPM is the successor of SIAP, now looking for the web

integration of multiple DA. In this sense, we find the acquired experience in the

previous project we have carried out for the Parliament of Madrid very valuable.

So, heterogeneous web data source integration and semantic web, applied to DA

is the focus of our current research. We are investigating DA conceptual modeling in

order to define a virtual web integrated architecture through a unified semantic

mediator layer (made up of ontologies, mappings and data repositories) and

wrappers (coupling heterogeneity between data sources). Communication and

interoperability are based, among others, on web services and XML respectively.

As well as other aspects, DAWIS-UPM needs to provide a systematic and (where

possible) automatic definition of the underlying reference architecture [6], through

which the web user could access a lot of heterogeneous DA [17] transparently. This

means the consideration of the following aspects: web architecture, DA model

specification, query processing, wrappers, and “mediators”.

The generic goal is mainly to provide a semantic unification and web knowledge

enrichment. To obtain this, we do not need to start from scratch. There are

interesting proposals such as FEDORA and OAI, that offer current interoperable

architectures limited to providing remote access and C/S, to a determined DA [19,

38, 39, 42]. Undoubtedly, they are an important first step.

Figure 5 represents the proposed architecture, that will be service-based and

compliant to current web-centric architectures (J2EE).

Wrapper 1
(XML translator)

Data Source

Digital Archive 1

Data Source (Asamblea of Madrid)

Digital Archive N

Mediator:

Global and

Dynamic

Integration

Virtual Integrated
Metadata

Ontologies

Mappings

URL +

Query
Request

Query

Web
Server

HTML Form

(Results)

Wrapper 1
(XML translator)

Web
Browser

Figure 5. Web Digital Archive Integrated Architecture through Mediator and Wrappers.

We are aware of the achievement of a Dynamic, Global and Virtual Web DA
Integration. It constitutes an important challenge for current WIS. To give an

example, we are researching in order to make it possible for a web user to query

something like this: "Find all documents dealing with equestrian statues of the King
Carlos V", avoiding the consideration of which physical archive he/she needs to

refer to for this query. If it were necessary, the system would be in charge of

informing about the origin of each document that makes up the overall answer.

�)'��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

The final idea is the implementation of this architecture as Java libraries based on

service-levels [18], where “mediator” and “wrappers” will be dynamically generated

starting from the web user query. In order to achieve these goals, it is necessary to

consider the following architectural topics: flexibility, integration and their related

semantic problem (considered in section 3.3), interoperability and cooperation, and

efficiency, as we discussed in [6].

We want to remark that a web services architecture does not solve the semantic

integration problem [4, 29]. Web services allow data between remote applications to

be exchanged, but they do not guarantee that the receiver application will be able to

understand them. As pointed out in [44], the problem is the lack of a global

ontology.

Since the Web Application term appeared (WebApp) [33], its capabilities have

been growing continuously. For example, initially some WebApp supported only

static pages, while now, in J2EE mark, a combination of Servlets and JSPs allows to

generate dynamic pages.

In DAWIS-UPM, Servlets are of special interest, because they have a certain

semantic orientation. Servlets are Java classes for request processing and

corresponding answers generation, supporting part of the application logic (although

it will be only in an explicit way) [29]. Moreover, CORBA is another standard that

needs a wide range of services providing design and development of current

distributed systems [4]. However, the puzzle is not yet complete. Again, the weakest

part is the semantics of the systems, business logic rules of any participant

application. Therefore, it is not surprising that it were in the server applications

environment where the alarm first sounded. Thus, in order to solve the dynamic and

virtual web integrated access problem, semantics of the systems is an important and

preliminary characteristic, which must be considered.

Thus, we consider ontologies that contribute to reinforcing these semantic

necessities. This consideration is different to current distributed architecture

approaches, which only consider defined static interactions between software

components (during the compilation) and between programs and users [41].

As well as the semantic problem, it is also necessary to provide mediation

services [47] for web query processing [32]. Considering figure 6 and coming first

from the front-end browser to the back-end DA, the next main services are needed:

a) From the portal web, the global query arrives at the mediator where the query
concepts and relationships are matched to a certain ontology (coded in OWL) and
the information that repository holds (pre-processing).

b) The mediator, taking into account the related mappings with terminological
semantic unification, is able to inference knowledge at this virtual integrated
level.

c) The mediator, once the user query is pre-processed, and making use of the
mappings between mediator concepts and concepts coming from each DA; knows
which local queries (as web query components) need to be invoked –via wrapper-
for any DA manager execution. Each locality returns the answer to the mediator,
in a well-known format, previously specified by the mediator.

Now, coming from any back-end DA to the front-end browser, DAWIS should have,

at least, services offering the following functionalities:

d) Any DA establishes the query types it wants to offer to the mediator, in order to
be a specific dynamic integration participant.

�'� �
�
*
����
��� ������
����� �������

e) In each DA, every XML schema contains the extracted concepts that make its
query capabilities possible (tailored to the measurement of each possible local
participant integration). These schemata determine the way any DA is taking part
of any global architecture.

f) These XML schemas must to be compliant to those “mappings” defined between
the “wrappers” and mediator ontology.
Finally, we want to remark here that we are making only a preliminary

requirement specification on the necessary web architecture. This justifies our

contribution to the semantic web focused on DA application that we discuss in the

rest of this paper.

3.3. Ontologies in semantic web

According to [2], the web will evolve unavoidably toward a semantic web. Then,

computers will find the meaning of data following the links to the definitions of the

terms and key rules. With this, designing automatic services will be easier; because

the main bottleneck, for getting the semantic web, is the modeling of the

information. To solve this problem and to be able to code the necessary information,

we have XML and ontologies as better options [21].

An ontology describes shared knowledge on a specific domain in order to

establish a communication via between humans and programs [1, 8]. Each ontology

provides a precise definition of the terms (concepts) of a specific domain; that is to

say, it facilitates a common language for sharing and to re-using knowledge of some

phenomenon in the domain of interest [21, 49] between applications and groups.

Consequently, applications can speak to each other and interpret, without

ambiguity, the information they exchange. For this reason, they have been accepted

as powerful description tools that allow to make explicit the semantic web. Since the

early 1990s, a lot of research [2, 5, 7, 22, 23, 49] deals with these semantic

problems, where ontologies play a fundamental role.

Moreover, XML is a more mature technology than ontological languages

(DAML+OIL, OWL) because of the amount of user communities and available tools

(http://sws.mcm.unisg.ch/links.html#daml). Kim affirms that ontologies should be

adopted where the capability to represent semantics will be as necessary as

forgetting the maturity advantages that XML already offers (http://www.xml.org/)

[27].

We need to build ontologies [48] because DA domain is not simple and it needs

to be used for a wide audience. We adopt ontologies as a paradigm that reduces

complexity, and XML is the technology used for the interoperability of archive data.

3.4. Ontologies in DAWIS

As with the aforementioned architectural aspects, the archival conceptual

modeling does not start from scratch either. On the one hand, we have the well-

known DCMI (Dublin Core Metadata Initiative) ontology. On the other hand,

ISAD(G) and ISAAR(CPF) are international standards specifying how archival

�'-��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

content should be described. These standards are widely followed by archivists.

Finally, a fourth special Parliamentary ontology - coming from the SIAP

Parliamentary DA - is also being undertaken.

All these items will be considered for achieving the wide ontological unification

of DA domain that we are looking for.

DCMI Ontology
The Dublin Core Metadata Initiative (DCMI) [14] promotes metadata standards

and develops specialized vocabularies for describing resources. According to the

RFC 2396, a resource is "something that has identity".

The DCMI proposal was came about in 1995 inside the Online Computer Library

Center (OCLC). Since then, DCMI collaborates with the normalization and the

development of technologies that allow a bigger efficiency of the use of metadata.

Today, DCMI is a pillar inside a semantic web, an obligatory reference to all

ontology groups that want to adopt a common standard for the semantic description

of any very general resource. DCMI ontology was formally adopted by the

European Committee of Normalization. In 2001 it was accepted as the ANSI/ISO

Z39.85 norm and, since February of 2003, it is the ISO 15836-2003 standard.

Although DCMI is not a specific ontology for describing archival material, it

could be perfectly adapted to describe any kind of resources. Since 2000, DCMI is

already a free ontology that we have taken through the Protégé tool.

ISAD(G) & ISAAR Ontologies
Since 1999, ISAD(G) has been widely used as unquestionable classification base

of national archives [31]. Standardization models play a very important role for the

future success of accessibility. ISAD(G) defines twenty-six descriptive elements

(metadata terms) specific to archival description. Only six of these elements are

considered essential and must be used in any archival unit of description.

ISAD(G) specifies the identification, content and context of archival information

units. It also provides links in order to fix any combination of archival information

elements. One of the main archivist activities is the description of record creators, a

independently record the creator(s) of a unit of description and then link this to the

related unit of description. This practice enables the creator description to be shared

difficult job in documentation and maintenance. In this sense, it is good practice to

Figure 6. ISAD Ontology Partial Graph

�'� �
�
*
����
��� ������
����� �������

between different archival documents, or repositories, only adding linking

information.

Moreover, ISAAR(CPF) [25] can be considered as a complement to ISAD(G) to

specifically manage the description of authority records. It defines twenty-seven

descriptive elements; where the concept “Authority record” is similar to the concept

of Unit of Description in ISAD(G). In this sense, an Authority Record describes an

archival authority (Corporate Bodies, Persons and Families) as well as the Unit of

Description describing an archival unit of information.

Regarding ISAAR(CPF) and ISAD(G) elements, in [43] we have defined the

UML respective models. Starting from these, we have developed ISAD(G) and

ISAAR(CPF) ontologies. Figure 6 shows a partial graph of this ISAD(G) Ontology.

SIAP Ontology
Both, ISAD(G) and ISAAR(CPF), propose general rules that can be adapted to

describing any archive; nevertheless, these rules are not considered for the peculiar

description of special archives. In our case, Parliamentary archives have a part of

their concept that are particular, due especially to the workflow that has to follow

each Parliamentary file and peculiar parliamentary organization. In this sense, we

have developed a SIAP ontology that comprises particular Parliamentary concepts.

In order to define this specific ontology, we start from the SIAP DA conceptual

model (see Figure 7). Parliamentary DA type has certain particular information, and

also specific description rules, where the semantics of the terms and the elements

can be different from other kinds of archives.

But the interest extends further on, because -in the future- the integration way, here

considered, will allow us to conceive a system able to offer rules to integrate these

specialized concepts of a diverse nature (police, government, etc.). Ontologies are

complex to build all in one go. So, building them bit a bit, testing each new (kind of)

addition empirically and developing appropriate learning techniques for each bit,

you may automate the process; and, next time, you may build a new one in a more

systematic way.

Summarizing, we have the DCMI ontology (free on the web) and three original

Figure 7. SIAP Ontology Partial Graph

�'+��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

ontologies based on ISAD(G), ISAAR(CPF) and SIAP that we have developed [21,

28]. The majority of current semantic web is built in this way. In fact, ontologies are

now singular web “hot-spots” whose semantics are bigger than usual. Today, that

web has several hundred of these isolated ontologies [49]. We consider this kind of

semantics as a worthy first step that we call the single-ontologycal-centric approach.

Generally speaking, an important requirement of all different ontologies -closely

related to a specific domain- should converge in only one semantic unification and,

where possible, with a universal scope. In our DA case, it will allow a semantic,

powerful and really open integrated web ontology inside the mediator layer to be

guaranteed [22].

3.5. Ontological Integration Kernel

According to the previous semantic unification we have stated, this section

discusses our preliminary approach concerning to the definition and development of

a global ontology [49], unifying the semantics of the diverse existent ontologies

related to DA domain [5].

Regarding this, we consider two important previous works: Observer [34, 35, 37]

(http://sol1.cps.unizar.es:5080/OBSERVER) and Harmony [16, 30] (http://metadata.

net/harmony). They constitute an important contribution to our current research.

Observer considers ontologies as if they were on only one horizontal plane. Then,

inter-ontological mappings could be also considered in a parallel plane. For this

reason, we call this kind of relationships “inter-ontological-horizontal-mappings”.

As well as this, Observer provides the capability to query many specific ontologies

from different domains. Only if the user wants, the system allows a new query

formulation referring other ontology concepts. In this sense, the answer enrichment

is provided. We want to recognize the Observer’s great improvement regarding

query processing against many ontologies.

On the other hand, Harmony -a digital library project- defines a common “ABC
metamodel” for metadata integration coming from many other ontologies. Harmony

considers the ABC model as if it were on a higher plane, acting as an umbrella

(containing very general concepts), allows other more specific ontologies to be

attached on a lower plane (CIDOC/CRM, MPEG7, IMS,). Then, inter-ontological

mappings are always provided on a vertical plane. For this reason, we call this kind

of relationship “inter-ontological-vertical-mappings”. Again, we want to appreciate

this valuable contribution.

Considering these two project results as pillars, we propose to develop specialized

techniques and methodologies that can guarantee a correct shared and common
semantic integrity between current DA ontologies. Our ontological integration

kernel implementation will be carried out on the definition of an ontological

unification approach, operating as a kernel in which current (more or less)

specialized ontologies could be semantically connected, as figure 8 represents.

The distinctive feature DAWIS presents is the semi-automatic ontological kernel

generation for a global integration that does not have to be defined in either a

manual or static way. Thus, this ontological kernel will be in charge of providing a

common understanding for fundamental DA concepts. In order to obtain a flexible

�'� �
�
*
����
��� ������
����� �������

and scalable integration, "bridges or steps" between ontologies - such as an

intelligent and generic "crosswalk"- need to be provided. This allows knowledge

inference from any ontology to another.

We are aware that inter-ontological semi-automatic mapping definition can turn

out to be a difficult and expensive task, caused by the semantic heterogeneity. So,

today, our research is continuing in this direction applying the bit-by-bit empirical

methodology we have previously mentioned.

Global Ontological
Kernel

(High-Integrated Semantic
Description Level)

Specific DA Ontologies
(First Semantic

Description Level)

Local Translator
(Adapting & Hiding

Heterogeneity Level)

Digital Archives
(Data Sources Level)

PS
C File

Static Web
Page

DB

SIAPISAD(G)
Repositories of

Specific DA

Ontologies

Inter Ontological
Mappings

Universal

DA

Repository

 Global OntologicalKernel

(Unified global semantic integration)

XML Schema i

Wrapper i Mappings Wrapper n Mappings

XML Schema n

 Figure 8. Integration model based on the ontological unification of the mediator

4. Conclusions

This paper focuses on current Web Information Systems (WIS) applied to Digital

Archives (DA) looking for a virtual, flexible and dynamic integration by means of a

Mediator and Wrapper architecture. We start from the Parliamentary Integrated

Management System that has been running at the Asamblea of Madrid since 1999.

After this, the paper presents four current ontologies closely related to DA domain.

Applying an empirical step-by-step methodology, a high-integrated semantic

description level is proposed by means of a global ontological kernel inside the

Mediator layer.

This research is still in its early stages. However, we consider the adopted

empirical method as a preliminary corner stone, to establish a solid foundation for

the achievement that this web architecture is looking for (Java libraries and web

services).

�',��� �������	
� ��� ���
��������
� ��� ��� �	�	����
� ��� ����	���
� ��� �	����	
�
�� ����	����

Acknowledgments

The authors would like to thank the anonymous reviewers. Their valuable

comments and suggestions greatly improved the quality of this paper.

This work is partially granted by the Ministry of Science and Technology

(MCYT-TIC2002-04050-C02-02, DAWIS-UPM project), by Community of Madrid

(07T/0056/2003/3, EDAD-UPM project) and by Spanish NoE Databases, RedBD,

MCYT-TIC2000-3250-E.

References

[1] Baeza y Berthier, Modern Information Retrieval. Addison Wesley, 1999.

[2] Berners-Lee T, Hendler J, Lassila O, The semantic Web. Scientific American 284, 5, pp.34-43, May

2001.

[3] P. Bernstein, A. Halevy and R. Pottinger, A Vision of Management of Complex Models. ACM Sigmod

Record, pp. 55-63, Vol. 29, N. 4, Dec. 2000.

[4] Brittenham P, Web Services Development Concepts (WSDC 1.0), IBM Software Group, May 2001

[5] Calvenese D, Giacomo de G and Lenzerini M, A Framework for Ontology Integration. In Proc.of the

First Semantic Web Working Symposium, pp 303-316 – 2001.

[6] Costilla C, Eibe S, Menasalvas E, Sáenz J, Marcos E, Cavero J y Vela B, DAWIS: Enfoques
Preliminares sobre la Arquitectura de Referencia para la Integración de Archivos Digitales en Web,

Taller de la Red de Excelencia de Bases de Datos en España (RedBD) dentro de VII JISBD’02, El

Escorial, Madrid, Nov. 2002.

[7] Chandrasekaran B, Josepheson J, Benjamins VR, Ontologies: What are they? Why do we need them?

IEEE Intelligent Systems, 14(1):20-26, 1999.

[8] Clyde W, Hossapple, Joshi KD, A collaborative approach to Ontology design. Communications of

the ACM. Vol. 45 n. 2, pp.42-47, Feb. 2002.

[9] Costilla C, Calleja A, Cremades J, SIAP: Sistema de Información para Ayuntamientos y Parlamentos,

Revista Círculo de Usuarios de Oracle, CUORE, Sección ‘Vivat Academia’, 8 pages, Oct. 2003.

[10] Costilla C, Bas MJ, Villamor J, SIRIO: A Distributed Information System over a Heterogeneous
Computer Network. ACM SIGMOD RECORD, Vol. 22, N. 1, pp. 28-34, March 1993.

[11] Costilla C, Bas MJ, Villamor J, The Object Data Model and its Graphical User Interface for an
Object Database System. Proc. of Data Management System’ Biwit’95, pp. 161-172, IEEE

Computer Science Press, 1995.

[12] Costilla C, A Contribution to Knowledge Communication in Distributed Knowledge-Based Systems,

in Research into Networks and Distributed Applications (R.Speth ed.), North-Holland, pp.1153-

1162, 1988.

[13] Costilla C, Sistemas de Bases de Datos. Conceptos, Técnicas y Lenguajes, ed. Serv. Publicaciones

ETSI Telecomunicación-UPM, ISBN: 84-7402-271-1, Madrid, 1999.

[14] DCMI. Dublin Core Metadata Element Set, V. 1.1: Ref. Desc. Feb. 2003

http://dublincore.org/documents/2003/02/04/ dces/

[15] Domenig R, Dittrich KR, An Overview and Classification of Mediated Query Systems. ACM

SIGMOD RECORD, Vol. 28, N. 3, pp. 63-72, Sep.1999.

[16] Doerr M, Hunter J and Lagoze C, Towards a Core Ontology for Information Integration, JODI 4(1),

April 03

[17] Doan A and McCann R, Building Data Integration Systems: A Mass Collaboration Approach, 18
th

Int. Joint Conf. on Artificial Intelligence (IJCAI), 2003. Aug. 2003, http://www.isi.edu/info-agents/

workshops/ijcai03/papers

[18] Eibe S, Costilla C, Menasalvas E y Acuña C, DAWIS: Una Arquitectura de Integración Web para el
Acceso Integrado a Archivos Digitales. VIII Jornadas de Ingeniería del Software y Bases de Datos,

JISBD’03, pp. 583-591, Alicante, Nov. 2003.

[19] The Mellon Fedora Project: Digital Library Architecture Meets XML and Web Services,
Forthcoming European Conf. on Research and Advanced Technology for Digital Libraries, Rome,

Sept. 2002.

[20] Florescu D, Levy A and Medelzon A, Database Techniques for the World Wide Web: A Survey.

ACM Sigmod Record, Sept. 1998.

[21] Gruber, T. R. Towards principles for the design of ontologies used for knowledge sharing. Int.

Workshop on Formal Ontology, 1993.

�'� �
�
*
����
��� ������
����� �������

[22] Guarino N and Welty Ch., Evaluating Ontological Decision with ONTOCLEAN. Communications

of the ACM. Vol. 45 n. 2, pp. 42-47, Feb. 2002.

[23] J. Hammer, J. McHugh, H. Garcia-Molina, Semistructured Data: The TSIMMIS Experience, Proc. I

East-European WS on Advances in Database and Information Systems, ADBIS'97, St.Petersburg,

Russia, Sept. 1997
[24] International Council on Archives, ISAD(G) General International

Standardization Archival Description, 2nd ed, ISBN 0-9696035-5-X, Ottawa

2000. http://www.ica.org/biblio/cds/isad_g_2e.pdf
[25] International Standard Archival Authority Record for Corporate Bodies, Persons and Families,

2
nd

ed. Feb. 2003 http://www.hmc.gov.uk/icacds/eng/ISAAR(CPF)2. pdf

[26] Jacobson, Booch y Rumbaugh, The Unified Software Development Process. Adison Wesley, 1999.

[27] Kim, H. Predicting how ontologies for the semantic web will evolve. Communications of the ACM.

Vol. 45, n. 2, pp. 47-51, Feb. 2002.

[28] Knoblock C, Minton S, Ambite JL, Ashish N, Modi P, Muslea I, Philpot A, and Tejada S, Modeling
web sources for information integration, Proc. 15th National Conf. on AI and Tenth Innovative

Applications of AI Conf. (AAAI-98), pp. 211-218, Wisconsin USA 1998

[29] Kreger H, Web Services: Conceptual Architecture (WSCA 1.0), IBM Software Group, May 2001.

[30] Lagoze C and Hunter J, The ABC ontology and model, Journal of Digital Information, JODI, Nov.

2001, 2(2), http://jodi.ecs.soton.ac.uk/Articles/v02/i02/Lagoze/

[31] Landis B, What is ISAD(G)?, Description Section, Society of American Archivists, 2000.

[32] LeFurgy, Levels of Service for Digital Repositories, D-Lib Magazine, 8(5), May 2002.

[33] Leymann F, Web Services Flow Language (WSFL 1.0), IBM Software Group, May 2001.

[34] Mena E, and Illarramendi A, Ontology-Based Query Processing for Global Information Systems.

Kluwer Academic Publishers, July 2001.

[35] Mena E, Observer: An Approach for Query Processing in Global Information Systems based on
Interoperation across Pre-existing Ontologies. Tesis Doctoral, Universidad de Zaragoza, 1998.

[36] Mendelzon A, Mihaila G and Milo T, Querying the World Wide Web. Journal of Digital Libraries,

(1,1) 1997.

[37] Mena E, Illarramendi A, Kashyap V, and Sheth A, OBSERVER: An Approach for Query Processing
In Global Information Systems Based on Interoperation across Pre-Existing Ontologies, Distributed

and Parallel Databases, vol. 8, pp. 223-271, 2000

[38] Open Archives Initiative. Implementation Guidelines for the Open Archives Initiative Protocol for
Metadata Harvesting Protocol Version 2.0 of 2002-06-14 Document Vers 2002/06/13T19:43:00Z

[39] OAI, The OAI Protocol for Metadata Harvesting Protocol Vers. 2.0., Feb. 2003
http://www.openarchives. org /OAI/2.0/ openarchivesprotocol.htm

[40] Özsu MT, Valduriez P, Principles of Distributed Database Systems, 2
nd

 ed, Prentice-Hall, 1999.

[41] Payette S and Lagoze C, Flexible and Extensible Digital Object and Repository Architecture,
Second European Conference on Research and Advanced Technology for Digital Libraries,

Heraklion, Crete, Greece, Sept. 21-23, LNCS, Vol. 1513, Springer, 1998

[42] Prom CJ and Habing TG, Using the Open Archives Initiative Protocols with EAD, JDCL’02, July

13-17, 2002, Portland, Oregon, USA, 2002.

[43] Sáenz J, Costilla C, Marcos E y Cavero J, Una Representación en UML del Metamodelo Estándar
ISAD(G) e ISAAR(CPF) para la Descripción de Archivos Digitales. VIII Jornadas de Ingeniería del

Software y Bases de Datos, JISBD’03, pp. 519-528, Alicante, Nov. 2003. http://sinbad.dit.upm.es

[44] Shirky C, Web Services and Context Horizons. IEEE Computer, pp. 98-100, September 2002.

[45] Wand Y, Storey VC and Weber R, An Ontological Analysis of the Relationship Construct in
Conceptual Modelling. ACM Transaction on Database Systems, pp. 494-528, Vol. 24, N. 4,

December 1999.

[46] Wiederhold G, Weaving Data into Information. Database Programming & Design, Freeman pubs,

September 1998.

[47] Wiederhold G and Genesereth M, The conceptual basis for mediation services. IEEE Expert, (12,5),

pp.38–47, Sep.-Oct. 1997

[48] Wache H, Vögele T, Visser U, et all., Ontology-Based Integration of Information –A survey of
Existing Approaches. Proc. IJCAI-01 Workshop: Ontologies and Information Sharing. Seattle, WA,

2001, pp 108-117. http://www.isi.edu/info-agents/ workshops/ijcai01/ papers

[49] Zhong N, Liu J, Yao Y (eds.), Web Intelligence, Springer Verlag, 2003

Supporting Security in an Electronic Market System

on the Base of Web Services

Michael Christoffel, Moritz Killat

Institute for Program Structures and Data Organization

University of Karlsruhe

76128 Karlsruhe, Germany

{christof, killat}@ipd.uka.de

Abstract. Security is a precondition for the success of an electronic market

system. Unless the system is able to provide some mechanism to ensure

authentication, authorization, and secure data transmission, the system will

have problems to be accepted by both customers and providers. In this paper,

we will discuss some ideas how to add security to a distributed electronic

market system that is designed platform-independently on the base of web

services. We will show how we have implemented these ideas in a system for

an electronic market for scientific literature.

Keywords. Security, Electronic Market, Web Services, Digital Libraries

1. Introduction

In recent years, the mention of problems in the field of computer security has

become quite often in newspapers and even in the TV news. They report on

dangerous viruses, computer crime, new security holes in standard software

products, and network attacks that make a company’s computer system collapse.

Practically every Internet user feels the consequences of security lacks day after day:

The masses of spam email sent every day attest a misuse of personal data.

Every computer system should be able to consider security systems in some way.

This is especially true for electronic commerce systems. Hereby, customers and

providers have the same intentions. Customers do not want other people monitor

what they are doing, and they want their personal and financial data kept secret.

Companies want to provide reliable services in order to content their customers, and,

of course, they do not want that others know their company secrets.

However, the big handicap is that the Internet is not secure at all. It is relatively

easy to intercept a message while it is transported through the Internet. The message

can be read or manipulated without giving sender or receiver the chance of notice. It

is even possible to fake complete messages.

Network security encompasses four properties:

Á Authentication: Both sender and receiver of a message must be able to clearly

identify themselves.

Á Authorization: Each person allowed to access the system can do this only within

the range of the given rights or privileges.

�����������	
	�������
�����������
�
�
��������
���������������������� ���!"#$��%"���&���$�

� �'�()�'� 	�

�'* �
�
+
����
��� ������
����� �������

Á Privacy: Private data must not be given in the hands of any other person without

the permission of the owner.

Á Integrity: Messages transmitted between sender and receiver must not be changed

during transmission.

It is not possible to guarantee the latter two properties in an Internet application.

However, it is possible to weaken the properties without losing the practical

consequences:

Á Privacy: In the case that a person’s private data falls in the hands of a third person

without the permission of the owner, the third person must not be able to use

these data.

Á Integrity: When a message has been changed during transmission, the receiver

must be able to notice the change. Therefore, he/she will be able to throw the

message away and ask the sender for a new transmission.

In this paper, we will show how to implement these security properties in an

electronic market system, namely the UniCats system which aims to assist a market

of scientific literature [3].

The work presented in this paper is supported by German Research Association

(DFG) as a part of the national German research initiative “Distributed Processing

and Delivery of Digital Documents (V3D2)”.

We will continue as follows: In the next section, we will shortly describe the

UniCats system in the stage before we added security concepts. Then we will

discuss the cryptographic algorithms and standards which can be used for the

solution of the security problems. In section 4, we will introduce the main ideas of

our security improvements, and in section 5, we will describe how we have realized

these ideas. In section 6, we will shortly mention some related approaches. We will

conclude this paper with a summary of the main points of this work and a discussion

of future work.

2. The UniCats System

Background of the UniCats1 approach is the investigation of information markets.

Information has an important role in the modern society, where many professions

depend on a steady supply with actual information.

The application domain are markets of scientific literature. These markets have

received much attention in the last years due to the success of the Internet, which

allows publishing houses, booksellers, and libraries to offer their goods and services

world-wide. Additionally, we can observe the growth of completely new kinds of

information providers such as delivery services, bibliographic databases, and

citation servers. At the same time, the amount of scientific literature demanded by

students and scientists at university and research institutions has increased rapidly.

However, the customers in these markets are confronted with the problem of

information overload. Often they are not able to survey the multitude of information

1 a Universal Integration of Catalogues based on an Agent-supported Trading and Wrapping

System

�''��� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

Providers

PA PA PA PA PA PA PA PA Provider Agents

U
n

iC
at

s
en

v
ir

o
n

m
en

t

IA IA Integration Agents

Provider Selection Agents PSA PSA PSA

CA CA Customer Agents

Customer Interface Agents CIA CIA CIA CIA CIA

Customers

Figure 1. The UniCats environment

sources available or to find the providers most appropriate for their demands. In

order to proceed with their search task, they have to apply several services in a

sequence, evaluate and compose search results, and find ways of document delivery.

Doing all this manually can be expensive in time and money.

The UniCats approach intends to develop a system for the integration of

information services and sources, handling heterogeneity and distribution,

automating search processes, and providing the customers in these markets a

uniform access to the information available [4].

We have developed an agent-oriented platform for the support of an open

information market, which we refer as the UniCats environment. In our market

model, both customers and providers are autonomous and independent and can enter

and leave the market on their own decision without further notice. A discussion of

this market-oriented approach can be found in [1]. Although we have considered

only markets of scientific literature until now, both the market model and the agent

platform are general enough so that they could also be applied to other scenarios and

application domains.

Figure 1 contains a simplified view on the UniCats environment, showing the

most important agent types. Customer Interface Agents (CIA) are the connection of

the customers to the system. This connection is established by a set of user

interfaces that can be customized to the customers’ personal preferences. Different

user interfaces can be used in different situations. So a customer might have a

favorite user interface that uses all the capabilities of his/her desktop computer, but

)�� �
�
+
����
��� ������
����� �������

will use a different user interface when he/she will have to contact the UniCats

system through a mobile devise during a business travel.

Customer Interface Agents are connected to customer agents (CA) that act as the

re

cted providers to

an

 example of possible

in

mented some more

ag

ypes that can be derived from existing agent types

or

tion of the UniCats environment see [3].

ng language.

Th

m that can encompass several

co

presentatives of the customers in the system and provide a personal workplace for

each customer. In order to perform queries in behalf of the customers, Customer

Agents can ask a Provider Selection Agent (PSA) for recommendations on those

providers, which are most appropriate for the customer’s demand.

A Customer Agent sends a query together with a list of the sele

 Integration Agent (IA). The Integration Agent sends the query in parallel to the

Provider Agents (PA) that act as the representatives of the providers. The Provider

Agents translate the incoming query into the native protocol of the provider and re-

translates the delivered results into the common protocol. The Integration Agent

collects the incoming results from the different information sources and integrates

them to a uniform result list. The final result list is sent back to the Customer Agent,

which can use the results for the further task execution or present the results to the

customer with the help of the Customer Interface Agent.

It is important to consider that this scenario is only an

teractions. A more complex scenario may contain several customers who operate

with the system at the same time, require the combination of different queries

including order and delivery, and involve many different agents.

In addition to the agents shown in Figure 1, we have imple

ents: Customer Organization Agents (COA) represent the interests of customer

organizations (such as universities, research institutes, and companies) and their

members. Billing Agents (BA) manage financial transactions among the agents of

the environment. External Payment Agents (EPA) provide interfaces to financial

institution for the access to external accounts and methods of digital payments.

Agent Naming Agents (ANA) and Group Naming Agents (GNA) provide a naming

service for agents and groups of agents. System Administration Agents (SAA)

monitor the entire environment (or a part of the environment) and assist the system

administrator in case of a failure.

It is possible to add new agent t

 from the agent basic class.

For a more detailed descrip

We implemented the UniCats environment using Java programmi

is brings the advantage that our agents can run platform-independent on most

computers. There is also a large set of free tools and class libraries available.

However, the development of agents does not depend on the chosen programming

language. It is also possible to implement agents using other platforms and

languages, and these agents will work together in one environment. We tested this

with a sample environment encompassing different hardware platforms and agents

written in seven different programming languages.

The UniCats environment is a distributed syste

mputer nodes. Each computer node can hold one or more UniCats communities.

)�2��� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

Administration Module Agent Container

Communication Module

External Communication Web

Service

Interface

Figure 2. The UniCats community (without security extensions)

Figure 2 shows the basic structure of a UniCats community. The community

consists of an agent container and three modules: Administration Module,

Communication Module and External Communication Module. The agent container

can hold any number of UniCats agents, sharing resources. Agents can be added and

deleted at runtime. It is also possible for agents to migrate from one agent

community to another.

The administration module is the main module of the community. It is

responsible for the initialization of the community and controls startup and

shutdown of the agents. The communication module is responsible for the

communication of all agents in the community and manages outgoing and incoming

messages. There are four different ways of message interchange among the agents:

Á Agent communication is used between two agents.

Á Group communications is used between an agent and a group of agents.

Á Community communication is used between an agent and all the agents in a

community.

Á System communication is used between an agents and a community itself.

While messages directed to an agent inside the own community are forwarded to

this agent on a direct way, the Communication Module delegates messages that are

supposed to be delivered outside the community to the External Communication

Module. Similarly, the External Communication Module receives all messages

coming from outside the community and forwards them to the Communication

Module.

)�� �
�
+
����
��� ������
����� �������

Figure 3. Administration control panel of a UniCats environment

Each module and each agent has a graphical interface, the control panel. The

control panels are used to survey and administer the agents of one community. They

are hierarchically structured with the administration control panel as the parent

frame (Figure 3). In addition to the direct control through the control panel, it is also

possible to configure the agents and the community with human-readable

configuration files. Important commands can also be applied through a text-based

command prompt.

Any communication between different UniCats communities is operated by web

services. Each community has a Web Service Interface which is controlled by the

External Communication Module. This way, every transmitted message – including

all parameters – is automatically converted into an XML document which is

delivered to the receiver web service using standard Internet protocols. The use of

web services as transport layer is the main reason for the ability of the UniCats

system to build cross-platform applications. Another advantage is that we can

overcome the firewall problem. While many network administrators close Internet

ports for safety reasons, UniCats is not touched by this, because the web service

communication uses only those standard ports that are accessible at every system.

However, we have seen that the Internet does not provide privacy. Messages

transmitting as XML documents through the Internet are free for unauthorized

reading and manipulation. Moreover, the openness of the UniCats environment

allows agents and market participants to penetrate uncontrolled into the system. If

UniCats should really be recognized as a platform for electronic commerce, we need

)�3��� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

a solution for these security problems. Before we will present the solution we have

developed, we will first introduce some basics in cryptography.

3. Cryptography

When a message, which content is supposed to be kept secret, has to be

transmitted through an unsafe medium (such as the Internet), then it is not possible

to exclude the danger that this message comes in the hand of a third person. A

solution for this problem is to use encryption: The sender transforms the message

into a cipher text, and only a receiver who knows the right key can re-transform the

message into a readable form. For all other persons the cipher text is useless.

The easiest way to establish encryption is symmetric encryption, which uses only

one key for both encryption and decryption. Principally, symmetric encryption bases

on a revertible XOR operation between message and key. One of the most popular

symmetric encryption algorithms is DES (Date Encryption Standard), which has

been standardized in the year 1977 and uses a 56 bit key. However, due to the

relatively short key length and the increased power of the contemporary computer

systems, DES can be defeated by a brute-force attack. Therefore, a modified

algorithm has been published under the name 3DES (Triple DES), which uses a key

length of 112 or even 168 bit. A possible successor is AES (Advanced Encryption

Standard), which has been standardized in the year 2000 and can support key length

up to 256 bit.

However, symmetric encryption has two major disadvantages. First, it is

necessary to have a separate key for each pair of sender and receiver. Second, since

both sender and receiver must know the symmetric key, this key has to be

transmitted over the network at least one time, giving an attacker the chance of

interception.

Both disadvantages can be solved using asymmetric encryption. Here two keys

are involved. A message encrypted with the first key can be decrypted with the

second key and vice versa. Usually one key is kept secret (private key), while the

second key is published (public key). When a sender intends to send a message to a

receiver, the sender uses the public key of the receiver for encryption. This way,

only the receiver who holds the corresponding private key can decrypt the message.

The most popular asymmetric key algorithm is RSA (Riverst Shamir Adleman) from

the year 1978, which bases on prime factors. Even today, RSA with 2048 bit key

length is supposed to be very safe.

The drawback of asymmetric encryption is performance. Symmetric key

algorithms are faster than asymmetric key algorithms, to be exact by the factor 100-

1000. Therefore, practical applications use a combined procedure, using asymmetric

encryption for the exchange of a symmetric key, and then use symmetric encryption

for the message itself.

An alternative way for key exchange provides the Diffie Hellman algorithm from

the year 1976, which bases on the problem of discrete logarithms. The Diffie

Hellman algorithm enables two communication partners to arrange for a common

symmetric key by an iterative protocol. With the Diffie Hellman algorithm it is not

necessary to transmit the symmetric key at all, and this algorithm is much faster than

)�� �
�
+
����
��� ������
����� �������

asymmetric key algorithms. However, the Diffie Hellman has another disadvantage:

it does not stand a man-in-the-middle attack. For an attacker, it is possible to

interrupt the communication between the two original communication partners and

make both sender and receiver arrange common symmetric keys with him/her.

Another application for asymmetric encryption are digital signatures. For digital

signatures, the sender encrypts a message with his/her private key. The receiver tries

to decrypt the message with the public key of the sender. If the receiver succeeds in

the decryption, then this is a proof that both keys belong together. The message

really comes from the owner or the public key and not from somebody else.

However, there is one difficulty left. How can a communication partner be sure

that a public key really belongs to a definite person and not to somebody else,

maybe an attacker?

The solution for this provide certificates. A certificate holds the name and the

public key of the sender and is digitally signed by a trusted third party. However, the

signature of a trusted party only proves that the certificate has been in the hands of

this third party. It does not automatically prove the correctness of the certificate (or

any other document). For example, an attacker could have caught the original

certificate and simple exchanged the contended public key by its own public key,

then sends the certificate to the trustful receiver.

In order to prevent such manipulations, it is possible to apply one-way hash

functions. The most popular algorithms for the calculation of such hash functions

are MD5 (message digest 5) from the year 1992 and SHA (Secure Hash Algorithm)

which has been published in the year 1995. They use hash values of a length of 128

and 160 bit, respectively.

In order to give a digital signature that cannot be manipulated, the author

calculates the hash value of the document that is to be signed, encrypts the hash

value with his/her private key, and adds the encrypted hash value to the document.

The receiver splits and decrypts the added hash value, then calculates the hash value

of the message on his/her own. If both values match, the receiver can be sure that the

message comes from the signing sender and has not been manipulated.

4. Security Concept

In section 1, we have exposed authentication, authorization, privacy, and integrity

as the challenges for a security concept. For the UniCats system as it has been

presented in section 2, we see the following four starting points for a security

improvement:

Á Authentication of customers: The identity of a customer must be assured.

Á Authorization of customers: Customers using the system may have different

rights. E.g., in a university library system, faculty members may have more rights

than students, and these have more rights than external users.

Á Authentication of agents: The identity of an agent must be assured.

Á Secure communication channels: It must be possible to encrypt messages

transmitted between agents so that only the intended receiver of the message is

able to understand the message and manipulations of the message can be

detected.

)�)��� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

Authentication and authorization is managed by customer passports. The

customer passport verifies that a specific customer has successfully passed login

procedure and confirms the rights of the customer in the use of the system. The

customer passport accompanies each query and order of a specific customer. After a

customer has left the system, all instances of the passport should have been deleted.

If the customers logs in again, a new customer passport is created. In addition to

that, each customer passport is equipped with an expiration date and becomes

invalid after a period of time.

Customer passports are issued by a new agent type, the Customer Authentication

Agent (CAA). During login procedure, a Customer Interface Agent contacts the

corresponding Customer Authentication Agent and sends the customer’s account

name and password (in an encrypted form). The Customer Authentication Agent

checks whether the customer is registered in its database and the passport matches.

Either it answers with a new issued customer passport, which includes the rights of

the customer, or it sends an error message, which causes the Customer Interface

Agent to refuse the entrance to the system. There is also the possibility to issue an

anonymous guest passport; however, this passport has very limited rights.

The authentication of agents can be established very similar to the authentication

of customers. An agent that is about to enter a business relation to another agent can

ask for this agent’s agent passport. The agent passport holds information about the

name, current address, and type of an agent. If an agent moves its location or the

expiration date is reached, a new agent passport must be issued. Agent passports are

issued by an Agent Authentication Agent (AAA).

Customer passports and agent passports are signed with the digital signature of

the issuing agent. A hash value is used to detect manipulations.

Since all communication inside a community is done by direct procedure calls,

secure communication is only necessary for external communication, when

messages are exchanged by means of web services. For performance reasons, we use

symmetric encryption and create the symmetric key just in time using the Diffie

Hellman algorithm. The protocol we use is the same as the protocol used for secure

communication in SSL, so it is likely that we can provide the same level of security.

For secure communication, the UniCats community has been extended and a new

module has been added, the Secure Communication Module. This module offers

message encryption and decryption by means of a symmetric key negotiated with

the community of the communication partner. When an external community is

contacted for the first time, the Secure Communication Module invokes the Diffie

Hellman protocol in order to create a new symmetric key. A symmetric key is only

valid for a pair of communities and never transmitted through the network.

In order to prevent a man-in-the-middle attack, each community should have a

communication certificate. Before the negotiation for a symmetric key starts, both

communication partner exchange their communication certificates in order to prove

the identity of the other communication partner. In contrast to a passport, the

certificate also holds the public key of the owner of the certificate. The private key

associated with the community certificate is never transmitted. Unless a community

owns a certificate, it can not provide secure communication.

Encrypted communication is not necessary in each case. An agent can decide in

each single case whether to apply secure communication or regular communication.

)�� �
�
+
����
��� ������
����� �������

Administration Module Agent Container

Communication Module

External Communication Web

Service

Interface

Secure Communication

Security Module

Figure 4. The UniCats community with security extensions

Regular communication is much faster than secure communication and always

available.

We have seen that each community needs a community certificate in order to

provide secure communication. A similar certificate is needed by the Customer

Authentication Agent and the Agent Authentication Agent in order to sign customer

and agent passports. These certificates are issued by a new community module, the

Security Module. The Security Module holds a permanent and unique certificate, the

community certificate. All certificates issued by a Security Module are signed with

the community module.

If a community does not own a community certificate, it can ask another

community to issue a certificate. This procedure leads to a hierarchy of trusted

communities. The private keys associated with the certificates are always kept

secret.

Each Security Module holds a list of trusted certificates. Hence, a Security

Module is able to prove certificates and passports without having the need to contact

the issuer. However, an agent may decide to contact the issuer instead or in addition

to proving a passport by the local Security Module, in order to become sure that the

passport has not been revoked.

Figure 4 shows the structure of the UniCats community with the two new

modules.

)����� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

5. Realization

The security extensions have been implemented using Java programming

language in line with the rest of the UniCats community. However, the security

extensions are principally independent from the applied programming language,

using only standard protocols and algorithms. For example, secure communication

can be established between an agent implemented in pure Java and a second agent

implemented in C#/.net.

The new agent types Customer Authentication Agent and Agent Authentication

Agent are implemented as extensions of the UniCats standard agent class and are

therefore compatible with the rest of the system. Both agent types can be controlled

and maintained by an agent control panel.

The Customer Authentication Agent holds an internal database with the

registered customers and their passports (in a one-way encrypted form). New

customers can be entered by a registration procedure provided by the Customer

Interface Agent. Of course, customers can edit their entry, change passports, or

delete their registration. Another possibility is to provide a connection to an external

database, containing, e.g., a list of all members of a university and their position.

The administrator of the agent can edit the registry of the registered customers at any

time, delete a customer, whose registration has been revoked, or change the rights of

a customer. The Customer Authentication Agent also holds a revocation list,

publishing those customers whose registration has been revoked, but might have a

passport still valid.

The Agent Authentication Agent is very similar to the Customer Authentication

Agent. In order to decide whether a passport is issued for a specific agent, the

issuing agent checks whether the other agent has a registered type. The Agent

Authentication Agent holds a revocation list, too.

The Security Module issues certificates to the own Secure Communication

Module, the two types of authorization agents, and other communities. Issuing a

certificate to another community gives this other community the possibility to issue

certificates on its own and can be a source for misuse. Because of this, a community

needs the confirmation of a human administrator to issue a certificate to another

community. In addition to this, each Security Module holds a revocation list of

invalided certificates, which is propagated among the trusted communities.

Each certificate saves the whole history of issuers, i.e., not only the community

which issued the certificate, but also the community which issued the certificate of

the issuer. This eases the proof of a certificate (or a passport) inside the Security

Module, because the Security Module can trust all certificates in this sequence as

long as it can trust one of the certificates. Moreover, this also works the other way:

If a Security Module cannot trust one certificate (e.g., because this certificate has

been revoked), it can also invalidate the certificates following in the hierarchy.

For the Security Module, a separate control panel (the security control panel) has

been created and integrated in the frame of the administration control panel.

)�* �
�
+
����
��� ������
����� �������

6. Related Work

The most popular protocol for providing secure transmissions through the

Internet is the Secure Socket Layer SSL [6]. SSL bases on both certificates and data

encryption, using a symmetric key that is created with the Diffie Hellman

Algorithm. SSL has two major disadvantages in regard of web services: Each

messages transfer has to be encrypted, even if this is not necessary, e.g., if the

content of the message does not need to be kept secret. The second disadvantage is

that the message is encrypted completely. For a web service application, it would be

more appropriate to encrypt only some parts of the messages, while other parts such

as the address or transport information should be readable by everyone.

For our security enhancement, we used the same protocols as SSL. Since we

implemented the encryption in the application level, we could avoid its

disadvantages.

Another important approach in the encryption of XML documents comes from

the World Wide Web Consortium W3C [8]. XML Encryption replaces any part of

the XML tree by an encrypted element that is enclosed in an EncryptedData tag.

XML Signature supports the transport of digital signatures. For a detailed

description see [5]. The XML Key Management Specification [W3C-XK] supports

the access to a public key infrastructure and provides a mechanism for the

registration of public keys independent from the actual implementation of the

certificates (compare [7]).

7. Conclusion

In this paper, we have presented the idea and the realization of providing security

to a platform for an electronic market in the field of scientific literature. The security

enhancement encompasses four objectives: authentication, authorization, privacy,

and integrity. The main parts of our solution are a combination of mutual exchange

of signed certificates and (lightweight) passports and the encrypted communication

on the base of web services.

The main advantage of our approach is the security mechanism may only be used

when it is necessary. Secure communication is only applied when private data of a

customer or agent are transmitted; an exchange of agent passports or communication

certificates only takes place the first time when two agents or communities come

into contact and the authentication is mandatory. In general, the decision whether

security mechanisms are applied or not is left to the agents.

There are several extensions worth to be considered in the future:

Á The type checking used by the Agent Authentication Agents and the Security

Module for their decision, whether to issue an agent passport or a certificate for

an authentication agent, is not safe. As long as all source code for all agents is

freely available, an attacker could simply camouflage his/her own agent with a

standard agent type, calculating the necessary hash value on his/her own. A

solution for this would be to register all agents by a central authority and include

a unique agent identifier in the source code of an agent implementation.

)�'��� �����	
���
�� ��� ��

�	�� �,--"#�%�.� ��/,#%�&� %�� ��� �0�/�#"�%/���#1��� �&���$� ��

Á We have applied authentication and secure communication only inside the

UniCats environment. There is no guarantee about the connection to customer

and providers. However, these connections are very individual and depend on the

preferences of customers and providers. It is not possible to create a general

solution.

Á In order to have a proof about the business transactions performed within the

environment, it would be necessary to have a log of all these transactions. Agents

do have a private log, but this could be faked very easily. So there should be a

separate trusted log instance, where all transactions are reported. However, since

all messages had to be sent twice, such log instance would cause a sincere

increase of network traffic. Moreover, monitoring all steps of a customer would

also be a contraction to the goal of data privacy.

References

[1] M. Christoffel: Information Integration as a Matter of Market Agents. In: Proceedings of

the 5th International Conference on Electronic Commerce Research, Montréal, 2002

[2] M. Christoffel, G. Wojke, M. Gensthaler: How Many Small Libraries Can Be a Large

Library. In: Proceedings of the 5th Russian Conference on Digital Libraries. St. Petersburg,

2003

[3] M. Christoffel, B. Schmitt, S. Pulkowski, P. Lockemann: Electronic Commerce: The

Roadmap for University Libraries and Their Members to Survive in the Information

Jungle. In: ACM SIGMOD Record 27(4), 1998

[4] M. Christoffel, B. Schmitt, S. Pulkowski, P. Lockemann, C. Schütte: The UniCats

Approach: New Management for Books in the Information Market. In: Proceedings of the

International Conference IuK99 – Dynamic Documents, Jena, 1999

[5] M. Mactaggart: Enabling XML security. http://www-106.ibm.com/developerworks/xml/

library/s-xmlsec.html/index.html

[6] Netscape: SSL 3.0 Specification. http://wp.netscape.com/eng/ssl3/

[7] M. Verma: XML Security: The XML Key Management Specification.

http://www-106.ibm.com/developerworks/xml/library/x-seclay3/

[8] World Wide Web Consortium: Homepage of the XML Encryption Workgroup.

http://www.w3.org/Encryption/2001/

[9] World Wide Web Consortium: Homepage of the XML Key Management Specification.

http://www.w3.org/2001/XKMS/

