
37Innovations, Technologies and Research in Education, 2019

INTERDISCIPLINARY COMPUTING FOR STE(A)M:
A LOW FLOOR HIGH CEILING CURRICULUM

Francesco Maiorana
Kansas State University, University of Catania, Italy

Department of Pure and Applied Science

Università di Urbino Carlo Bo 1506

ABSTRACT

There is an international, 360° effort to sustain and support education involving citizens of
every age, all educational systems (formal, not formal, and informal), all levels of education
(from primary schools to higher education), all disciplines (from Math to Latin), and all
stakeholders (from educational institutions to industries and businesses).
In the paper, after reviewing the state of the art in Computing (C), Computational Thinking
(CT), Computer Science (CS) and Digital Literacy (DL), a curriculum suited for a first course in
computing, rooted in international frameworks and curricula, will be discussed. The work will
present a detailed discussion of the content of a computing curriculum, suited for education
across Europe, and its interdisciplinary applications. The curriculum can be useful for pre-
service teachers’ preparation, teachers’ Professional Development (PD) and high school
students. It develops along three strands: C, CT, and CS; DL used as a tool to document and
present the artifacts produced in the C, CT, and CS projects, and soft skills introduced by
contributions from leading researchers and educators around the world. The assessment
practices, learning path, pedagogical approaches, and technologies, will be presented in
order to aid teachers in their pre-service studies, PD, and daily teaching practice.

Keywords: Computing; Computational Thinking; Interdisciplinary Computer Science, Teacher
preparation; Subject Knowledge; Model curricula; Interactive ebook.

Computing, Computational Thinking, Computer Science,
and Digital Literacy

There is an international, 360ᵒ effort to sustain and support education
which involves: all citizens, starting from children at pre-school to
grandparents; all education systems, from formal to informal and even non-
formal; all levels of education, from primary schools to higher education
and lifelong learning; all disciplines, from Math to Latin and Ancient Greek:
all stakeholders, from the education system to industries and businesses.

Parallel to this effort, a worldwide movement is striving to introduce
the study of computing (Luxton-Reilly et al., 2018) from the first day of

https://doi.org/10.22364/atee.2019.itre.03

Francesco Maiorana

Interdisciplinary Computing for Ste(a)m ...

38 Innovations, Technologies and Research in Education, 2019

school, alongside reading, writing and basic arithmetic, and sustain this
study throughout the life-long learning journey. This strong effort has
produced a revision of mandatory state level curricula such as the Computing
Curricula in England (DFE, 2013), the Australian curriculum (ACARA,
2016), the New Zealand Technology curriculum (TKI, 2017), the Computer
Science Teacher Association K-12 Framework (CSTA, 2016) and Standard
(CSTA, 2017). In the USA, code.org (Code.org) has been one of the most
important non-profit organizations pushing for the introduction of CS
across all states.

In Europe, a key role in this process has been taken by the European
Commission and the European Schoolnet in cooperation with leading
educational organizations such as OECD (OECD, 2018) and ACM Europe
(Caspersen, et al., 2018). In this scenario, a question naturally arises about
what are the competencies and skills that 21st-century citizens have to develop
in their life. Among these competencies and skills, Computational Thinking
(CT) (Wing, 2016)continues to plays a key role (Bocconi, et al., 2016),
despite the long debate (Tedre & Denning, 2016) going back to the 1940s
(Denning, 2017). All disciplines could potentially benefit from CT in a vision
advocating for a shift “from STEM to STE(A)M (where ‘A’ includes all other
disciplines)” (Hazelkorn, et al., 2015) bringing into the educational loop
all stakeholders, from educators to industries and Ministries of Education
(European Schoolnet, 2016). In this, the Scientix project (Baldursson &
Stone, 2015) has a leading role ensuring, among many other things, that
“no teacher faces unaided the hard but most needed task of getting kids to
know, like and dream about science”. According to the various operational
definitions of CT (Csizmadia, et al., Computing At School, 2015), (Computer
Science Teachers Association, 2011), (International Society for Technology
in Education, s.d.) it is possible to argue that

•	 CT can be interpreted as a transversal set of skills that can be used as
a means to acquire and to develop broad competencies like the ones
proposed in (Binkley, et al., 2012).

•	 “more tools in the mental toolbox seems like a worthy goal”
(Denning, 2017).

In order to realize this world-wide effort it is necessary to leverage
teachers, the heart of the education system, and by leveraging their
pedagogical and professional experience, offer resources for filling content
gaps that could be present when teachers have majored in a different field
than computing. Pre-service (Blamire & Cassells, 2019), (Maiorana, et al.,
2019) and in-service Professional Development (PD) (Morelli, et al., 2014),
(Lucarelli, et al., 2017), (Maiorana, et al., 2017) represent another way to
enhance teachers’ confidence in teaching computing. Other great examples
of supporting initiatives of this widespread movement are represented by

39Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

informal and outreach actions offered by international movements and
initiatives like CoderDojo (CoderDojo, 2013), Europe code week (Europe
code week, 2014), and communities of practices like Scientix (Scientix, s.d.).

All this effort has been supported by a strong, international 50-year
research effort documented in (Luxton-Reilly, et al., 2018), (Becker & Quille,
2019), (Medeiros, et al., 2018). In this process a tension in the school system
is apparent: on one side the need to offer a quality and inclusive education
accessible to all students (UNESCO, 2017), (Burgstahler & Cory, 2010),
(Burgstahler S., 2013) and, on the other, the necessity to increase the level
of abstraction and cognitive demand in order to prepare the students for
the higher cognitive skills required by the job market (Manca, 2018),
(Ferrari, 2013).

The necessity of this synthesis is confirmed in many educational
frameworks such as JRC (Bocconi, et al., 2016), the assessment in teaching
of 21st century schools project (ATC21S) (Griffin & Care, 2014), Advanced
Placement Computer Science Principles (College Board, 2017), Computer
Science Teachers Association (CSTA) (CSTS, 2016) (CSTA, 2017), Orga
nisation for Economic Co-operation and Development (OECD) (OECD,
2018), United Nations Educational, Scientific and Cultural Organization
(UNESCO) (UNESCO, s.d.) that highlight a rich set of skills that students
have to nurture.

In this paper the author presents a curriculum suited for a first course
on computing by highlighting the design principles, and the learning trajec
tories. The three principal strands of the curriculum, namely Computational
Thinking, digital literacy, soft and social skills are then presented. An
evaluation of the proposed curriculum, a discussion summarizing main
lessons learned, and conclusions and further work considerations complete
the work.

Design principles

The curriculum aims to offer content and learning materials for a first
course in computing suitable for all teachers and their students which, with
adequate motivation, can be supported in climbing the learning pyramid
from mere knowledge to creativity.

The fundamental ideas inspiring the curriculum are:
1)	 A low floor entry point suitable for all students and a high ceiling

supporting the curiosity of all learners
2)	 Inquiry-based approach
3)	 Emphasis on design supported by many design tools
4)`Different expressive registers
5)	 Block based languages supporting high cognitive skills

40 Innovations, Technologies and Research in Education, 2019

6)	 Many programming languages with a common interface
7)	 Many advanced topics
8)	 Multiple learning trajectories that can be personalized to the needs

of each student
9)	 Interdisciplinary applications

10) Multiple delivery media, e.g. book, interactive ebook, online course,
etc …

In order to reach the low floor, high ceiling goal we envisage a cycle in
the design process involving unplugged activities (Bell, et al., 2015), design
tools such as flowgorithm (Cook, 2015), visual block languages and puzzles
with an increasing level of difficulty, supporting students in their problem
solving process.

The choice of using visual block languages leverages on the necessity,
which has arisen from the rapid technological growth and exponential
growth of the amount of available information, to sharpen the high order
cognitive skills sought after by today’s labor market (Manca, 2018). Visual
block languages allow learners to focus on problem solving and high-
order cognitive skills, avoiding the necessity to acquire syntactical details
required by textual languages. Those languages become necessary when
other considerations, e.g. efficiency of execution, are of primary importance.

The learning material can be used for:
1)	 A first high school course on computing, e.g. for K9-K10 grade band

(CASTA, 2016), (CSTA, 2017)
2)	 Pre-service teacher training without a major in computing
3)	 Teacher Professional Development (PD)
4)	 A first undergraduate course for students majoring in fields other

than computing, e.g. the humanities.

The learning trajectories

Figure 1 depicts the main concepts in the curriculum and how they are
linked.

The concept maps can be navigated along many routes leaving
the teachers the possibility to adapt the content to the class and each
individual student.

We envisage a learning trajectory with a focus on developing CT. This
will be produced by guiding students in acquiring a broad set of skills, useful
not just to future computing professionals (Denning, 2017). The curriculum
has the following strands:

•	 Computational thinking
•	 Digital literacy
•	 Soft and social skills

41Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

Figure 1. Curriculum concept map

The Computational Thinking strand
The CT strand uses a constructivist, student-centered approach

grounded in cognitive theory/constructivism (Guzdial, 2018), and is based
on the following activities:

•	 Reading, tracing, modifying and designing programs and algorithms
expressed by means of:
–	 Flow diagram (e.g. Flowgorithm)
–	 Natural language
–	 Pseudocode

Supported by activities requiring learners to translate from one
representation to the others or to a visual block language

•	 Coding:
–	 deluge of block languages, to experiment with core concepts in

computing
–	 translating the programs into a textual language

•	 Puzzle based learning:
–	 algorithm design techniques: backtracking, divide and conquer,

greedy, dynamic programming, invariant and so on.
The coding is supported by a deluge of block languages that, by sharing

a common interface, allow teachers to leverage on their peculiar features
to present and reason around core concepts in computing. Teachers can
use the mutual support and reinforcement of the different programming
and design tools, plugged and unplugged activities to offer a rich variety.
For example, for parallelism unplugged activities such as the one proposed
in (Bell, et al., 2015), (Tennessee Tech, s.d.) can support the plugged
activities.

42 Innovations, Technologies and Research in Education, 2019

The author envisages in the curriculum the mutual support of plugged
and unplugged activities, visual block-based and textual languages, multiple
design tools to provide teachers and students with a richer set of design
methodologies, tools, and expressive registers allowing each one to find
the one most suited to her/his needs.

Table 1. A partial list of visual block languages used with a suggested
progression and the key features of each language













Block language Key features

Scratch (Resnick, et al., 2009) Easy to use. Movement, Pen, Control,
Procedures

Scrible (Lane, Meyer, & Mullins,
2017)

Write on the stage. Create shapes

NetsBlox (Broll & Ledeczi, 2017) Message with data. Distributed
programming

Snap! (Harvey & Mönig, 2010) Function. Recursion and functional
programming. Parallel programming
(e.g. map – reduce)

Tunely (Trower & Gray, 2015) Multimedia data manipulation in one
dimension

Pixly (Trower & Gray, 2015) Multimedia data manipulation in two
dimensions

App Inventor (Patton,
Tissenbaum, & Harunani, 2019)

Event programming. Mobile app
development. NoSQL database. IoT

Cellular (Lane, 2012), Biological system simulation

Blop (Federici, Gola, & Ilardi,
2014)

Block language for C/C++. Step
towards textual languages

BlockPy (Bart, Tibau, Tilevich,
Shaffer, & Kafura, 2017)

Data manipulation. Automatic
translation in Python

Edgy (Cox, Bird, & Meyer, 2017) Data structures. Bridge between
unplugged and plugged

GP (Monig, Ohshima, &
Maloney, 2015)

Multimedia manipulation. Introduction
to class without inheritance

Parallel programming (Feng,
Gardner, & Feng, 2017)

Blocks for parallel execution

The puzzle-based approach is a leitmotiv of the whole curriculum
with puzzles proposed in all chapters and modules. Table 2 lists some of
the major algorithm techniques and the puzzles used to introduce them.
All the CT, and puzzle activities in the same module and across the whole
curriculum, shows a progression from core to intermediate and advanced

43Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

with a clear indication provided in the companion teacher’s book. For
students, an icon indication can guide them in choosing the preferred
activities. The progression is supported by clear and sharp classification
and progression provided in (Levitin & Levitin, 2011).

Table 2. Algorithmic techniques with some examples of puzzles proposed in
the curriculum

Algorithmic techniques Puzzle

Greedy Pearson, bridge crossing and lamps; Huffman code

Decrease and conquer A fake among eight coins, fake coin detection with
a spring scale;

Divide and conquer Tromino puzzle, 2n counters in a nxn board

Change of representation Two jealous husbands, Stack of fake coins, Drawing
a figure without lifting the pen; sequence of words

Dynamic programming Shortest path counting; Knapsack problem; Common
subsequence, Palindrome counting

Invariant Break a chocolate bar; Colour of last marble; Knight
movements; domino and tetromino tiling

Inference Sequence of facts and conclusion;

Backtracking Four and n queens; CriptoAlgorithms &
CryptoArithmetica

Induction, proof of
correctness

Knapsack problem, divide a rect�angle in triangles

Figure 2. Sorting algorithm animations: a) Merge sort; b) Bubble sort

44 Innovations, Technologies and Research in Education, 2019

An inquiry-based approach is used to give the students a central role.
Figure 2 shows a snapshot of two animations of merge-sort and bubble-sort.
Students are requested to watch the animation and, before any educational
intervention, are guided by a set of questions in discovering the algorithms
behind this sorting processes. The set of questions goes into deeper detail
in successive runs, e.g. midterm and final.

A similar approach is useful for algorithmic techniques such as
backtracking. Figure 3 shows an example of a graph created with Edgy
and its topological order.

Figure 3. A graph and its topological order obtained with Edgy

The Digital Literacy strand

The digital literacy strand covers the following topics:
–	 Conduct bibliographic research.
–	 Being able to search, select, summarize, visualize and reference

quality information. Particular emphasis is given to a rigorous
process with clear and objective indications for every step: from
selecting the search engine to selecting the best key phrases, for
judging the source of information, verifying it and so on.

–	 Office automation. The major suites for office automation are
presented, both proprietary, such as Microsoft, and open source
such as LibreOffice and OpenOffice. Emphasis has been given to
online and cloud-based tools as a way to hone collaboration and
group work skills. To present the suites, an explorative approach
is suggested, asking the students to find ways to accomplish tasks,
either by exploration of the interface or by searching through
the technical documentation. This is the best way to cope with

45Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

different interfaces changing over device, over software and over
time. The explorative approach is always preferred and the correct
solution, e.g. the sequence of steps to accomplish the task is given
at the end of the activities, frequently only in the companion
teacher’s guide. Interface design principles are given by comparing
the different interfaces available in the different devices (desktops,
tablets and smartphones) and by analysing commonalities both intra
applications inside the same family of software tools and inter office
suites.

–	 Particular emphasis is given to searching, retrieving, analysing,
visualizing and storing data. The importance of open and linked data
is used as the key starting idea. Data are searched and retrieved and
then analysed and visualized using Excel, Libre and Google sheets.

–	 Finally, storing data in databases (both relational and NOSQL)
is considered. Activities for designing and querying a relational
database and ways to visualize the data via an ad hoc designed
interface are presented and suggested. The difference with a NOSQL
database are explored and practical mobile applications are designed
and developed by means of App Inventor and available NOSQL
database components.

The soft and social skills strand

The importance of soft skills as well as social skills is recognized
worldwide. For this reason, these topics are discussed through contributions
from leading experts to open a window onto the world for students, giving
them the possibility to compare the experiences from different countries
and cultures. Among the topics covered, to cite just a few, it is possible to
recall:

•	 Professional ethics
•	 Informal education
•	 Humanitarian Free and Open Source Software (HFOOS) – Free

and Open Source Software (FOSS) (Hislop, Jackson, & Ellis, 2015),
(Morelli, et al., 2009)

•	 Computer Science and its impact on society
•	 Inclusive education
•	 Mens sana in corpore sano (Healthy brain in healthy bod). Importance

of sport
•	 Sustainable development
•	 Technologies and well-being
Contributions come from leading experts from: Australia; Canada;

Europe: England, Ireland, Italy, Lithuania, Spain, Switzerland; New Zealand

46 Innovations, Technologies and Research in Education, 2019

and USA working in universities, international organizations, international
institutions, enterprises.

This contribution can be used as Content Language Integrated Learning
(CLIL) activities for students learning English as a second language.

Evaluation of results and discussion

The content derives from several experiences described and qualitatively
and quantitatively evaluated in different studies (Giordano & Maiorana,
2014), (Giordano & Maiorana, 2015), (Maiorana, 2019). The positive
effects of a first version of the curriculum have been evaluated by means of
student progress on assessment evaluation and student survey (Giordano &
Maiorana, 2015). Starting from the 2013 academic year, the curriculum
was iteratively designed, developed, deployed, evaluated and improved.
Each year the curriculum was field-tested in at least one class with an
average of 25 students. Students, majoring in CS, where in either the first
or second year (K9 or K10) of an Italian high school. The average female
population was 15%. An average of 15% of students with disadvantaged
socioeconomic status can be estimated. K9 students approached the course
without mandatory prerequisites. For K10 students, a mandatory knowledge
of basic problem-solving techniques and major programming constructs in
an imperative language including procedures and functions were required.
On average in each class, there were two students with learning disabilities
(dyslexia or dysgraphia) and one student with special education needs.
Curriculum effectiveness was qualitatively evaluated through student
surveys and pre-test post-test assessment. When possible, comparisons
with other classes in the same school taught by different professors were
performed. The main conclusion that can be drawn from the evaluation
process is that overall 14/16 years old students at the beginning of
the course tend to underestimate blocks languages, considering them too
simple, useful for younger people, not teenagers. As the progression of
the topic becomes tougher and challenges the students, their appreciation
of block languages increases since these languages allow the students to
easily reason on the problems, construct artifacts and test them without
worrying about too many details (Giordano & Maiorana, 2014).

Teacher feedback was obtained from five anonymous teacher reviews
regarding the curriculum. The reviewers were located in Italy and
the reviews were collected from mid 2017 to mid 2018. Other feedback
was obtained from direct observations, informal unstructured teacher
interviews inside a pre-service and professional teacher development course
run in 2015. The teacher development course was attended by 40 teachers.
Thanks to a Google CS4HS grant, the project run a teacher workshop

47Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

where by means of surveys, and meeting with teachers the author obtained
feedback about learning resources, teachers’ needs, and expectations, and
features desired for a curriculum. Analysing the teachers’ feedback, it is
possible to summarize the following key ideas:

1)	 On first impression, the quality of the proposed material and
the diversity of the materials seem to disorientate some of them. For
this purpose, indications of different progressions and a teacher guide
offer a way to get acquainted with the curriculum. This guide can be
used just as an ice-breaker; the experience and teachers’ knowledge
of their students will allow them to navigate the curriculum and find
the best activity suited for the next steps in the zone of “Proximal
development” for each individual student.

2)	 The ample diversity of communication channels and expressive
registers, tools and technologies coupled with clearly stated
progression and levels of difficulties allows for an inclusive and
equitable approach. This approach is strengthened by an attention
to learners with special abilities (UNESCO, 2017) in content delivery
(edX, 2019).

3)	 The teaching approach sustained by inquiry-based pedagogies
(Hazelkorn E., et al., 2015), Peer Instruction (Porter, et al., 2016),
(Peer Instruction, 2019) and Process-Oriented Guided Inquiry
learning (Education ambivalence, 2010), (Computer Science
POGIL, s.d.) has the advantage of giving students an active role. By
flipping the classroom (Bishop, Verleger, & others, 2013), (Karabulut-
Ilgu, Jaramillo Cherrez, & Jahren, 2018) teacher-led and peer-led
classroom time can be focused on problem-solving activities. Solving
puzzles, engaging in projects (Blumenfeld, et al., 1991) and realizing
artifacts to solve real world problems (Wolber, 2011), alone, in
pairs and in groups allows learners to hone their collaboration and
communication skills (Griffin & Care, 2014).

4)	 The interdisciplinary approach seems to be a promising way to
expose students to computing, especially in school streams (e.g.
classical studies) where computing is not a mandatory topic. In this
case, where there is a lack of teachers with a specific certification in
computing, approaching computing with applications in the teachers’
and student’s comfort zones represents a low floor entry point.

5)	 Use of formative assessment (Giordano D., et al., 2015), (Oates,
Coe, Peyton Jones, Scratcherd, & Woodhead, 2016) supported by
the above-mentioned pedagogies greatly supports students’ activities
and teachers’ instructional process.

Undergraduate students with a major in the Humanities (Maiorana F.,
Computational Thinking and Humanities, 2018), most of them exposed

48 Innovations, Technologies and Research in Education, 2019

for the first time to computing, reported, after overcoming foreseeable
difficulties, joy and fulfillment in developing real work applications related
to their subject of study and future profession and appreciated the design
methodologies, the block language (Patton, Tissenbaum, & Harunani,
2019) and the possibilities to create mobile apps and sites showcasing their
project portfolio.

Conclusion and further work

This work has presented the content, assessment, pedagogies, techno
logies and equity of a curriculum suited for a first course in computing, e.g.
K9-K10 students, pre and in-service teachers, and undergraduate students.
The curriculum is enriched by video, animation, assessment questions, and
a companion website. The curriculum has been evaluated and improved
during a multiyear and multidisciplinary teaching experience in high
schools, undergraduate courses and informal education. A synthesis of
the feedback received from students, teachers and reviewer and main
lessons learned has been reported.

As a further study, the author plans to fine-tune the curriculum
evaluation and improve it by leveraging different inputs, e.g. an inter
national teacher surveys (Falkner, 2019) publish it and fully deploy
and publish the companion web site (Maiorana F., Compucogito, 2019).
The curriculum will be enlarged by designing, developing, deploying and
evaluating learning resources suitable for a second and successive computing
course. These courses will leverage on multiple design tools and on the use
of visual block languages, as design and scaffolding tools. These tools will
be coupled with textual language to develop interdisciplinary projects and
real-world applications of interest for domains different from computing.

References
ACARA (2016) Australian Curriculum, Assessment and Reporting Authority.
(2016, December 16). F-10 Curriculum: Technologies. Retrieved from https://www.
australiancurriculum.edu.au/umbraco/Surface/Download/Pdf?subject=Digital%20
Technologies&type=F10.

Baldursson, R., & Stone, M. (2015). Scientix 2 results: How Scientix adds value to
STEM education. European Schoolnet, Brussels: http://files. eun. org/scientix/scientixworks/
publications/Scientix_Results_Nov2015_Publication_ ONLINE. pdf.

Bart, A., Tibau, J., Tilevich, E., Shaffer, C., & Kafura, D. (2017). Blockpy: An open
access data-science environment for introductory programmers. Computer, 50(5), 18–26.

Becker, B., & Quille, K. (2019). 50 Years of CS1 at SIGCSE: A Review of the Evolution
of Introductory Programming Education Research. Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, (p. 338–344).

49Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

Bell, T., Witten, I., & Fellows, M. (2015). CS Unplugged: An enrichment and extension
programme for primary-aged students.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M.
(2012). Defining twenty-first century skills. In M. Binkley, O. Erstad, J. Herman,
S. Raizen, M. Ripley, M. Miller-Ricci, & M. Rumble, Assessment and teaching of 21st century
skills (p. 17–66). Springer.

Bishop, J., Verleger, M., & others. (2013). The flipped classroom: A survey of
the research. ASEE national conference proceedings, Atlanta, GA, 30, p. 1–18.

Blamire, R., & Cassells, D. (2019). INNOVATION IN INITIAL TEACHER EDUCATION. Emerging
trends, issues and recommendations. http://itelab.eun.org/documents/452109/470959/
ITELab_deliverable_v3.pdf/1edcaca7-3a82-4e19-b5bb-f5988406744d.

Blumenfeld, P., Soloway, E., Marx, R., Krajcik, J., Guzdial, M., & Palincsar, A. (1991).
Motivating project-based learning: Sustaining the doing, supporting the learning.
Educational psychologist, 26(3–4), 369–398.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., & others. (2016).
Developing computational thinking in compulsory education-Implications for policy and
practice. Joint Research Centre (Seville site).

Broll, B., & Ledeczi, A. (2017). Distributed Programming with NetsBlox is a Snap!
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education,
(p. 640).

Burgstahler, S. (2013). Universal design in higher education: Promising practices.
Seattle: U of Washington.

Burgstahler, S., & Cory, R. (2010). Universal design in higher education: From principles to
practice. Harvard Education Press.

Care, E., Griffin, P., & McGaw, B. (2012). Assessment and teaching of 21st century skills.
Springer.

Caspersen, M., Gal-Ezer, J., McGettrick, A., & Nardelli, E. (2018). Informatics for All
The strategy.

Chaiklin, S. (2003). The zone of proximal development in Vygotsky’s analysis of learning
and instruction. Vygotsky’s educational theory in cultural context, 1, 39–64.

Code.org. (s.d.). https://code.org/.

CoderDojo. (2013). https://coderdojo.com/.

College Board. (2017). AP Computer Science principles. Including the curriculum framework.

Computer Science POGIL. (s.d.). http://cspogil.org/Home.

Computer Science Teachers Association. (2011). Operational Definition of Computational
Thinking. http://www.csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf.

Cook, D. (2015). Flowgorithm: Principles for Teaching Introductory Programming Using
Flowcharts. Proc. American Society of Engineering Education Pacific Southwest Conf.(ASEE/
PSW), (p. 158–167).

Cox, R., Bird, S., & Meyer, B. (2017). Teaching computer science in the victorian
certificate of education: A pilot study. Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, (p. 135–140).

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, H., Ng, T., Selby, C., & Woollard, J.
(2015). Computing At School. Computational Thinking: A guide for Teachers: https://
community.computingatschool.org.uk/resources/2324/single.

50 Innovations, Technologies and Research in Education, 2019

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J.
(2015). Computational thinking – A guide for teachers.

CSTA. (2017). K-12 Computer Science Standards. Retrived from https://www.csteachers.
org/page/standards.

CSTA (2016) Computer Science Teachers Association K–12 Computer Science Frame
work. (2016).Retrived from http://www.k12cs.org.

Denning, P. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33–39.

DFE (2013) U.K. Department of Education.. National curriculum in England: computing
programmes of study. Retrieved from https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-study.

Education ambivalence. (2010, 6 2). Nature, 465, 525.

edX. (2019). Accessibility Best Practices Guidance for Content Providers. https://edx.
readthedocs.io/projects/edx-partner-course-staff/en/latest/accessibility/index.html.

Europe code week. (2014). https://codeweek.eu/.

European Schoolnet. (2016). ICT in STEM Education – Inpacts and Challenges: Setting
the scene. A STEM Alliance Litterature Review. Brussels.

Falkner, K., Sentance, S., Vivian, R., Barksdale, S., Busuttil, L., Cole, E., Liebe, C.,
Maiorana, F., McGill, M., Quille, K. An International Benchmark Study of K-12
Computer Science Education in Schools. Working Group, Extended Abstract 24th Annual
Conference on Innovation and Technology in Computer Science Education, Aberdeen,
UK, July 2019, in press.

Federici, S., Gola, E., & Ilardi, E. (2014). Build Your Own Block Programming Language.
Scratch@ MIT 2014 Conference, (p. 26).

Feng, A., Gardner, M., & Feng, W.-c. (2017). Parallel programming with pictures is
a Snap! Journal of Parallel and Distributed Computing, 105, 150–162.

Ferrari, A. (2013). DIGCOMP: A framework for developing and understanding digital
competence in Europe. Publications Office of the European Union Luxembourg.

for Economic Co-operation, O., & (OECD), D. (2018). The future of education and skills:
Education 2030. Directorate for Education and Skills, OECD Paris, France.

Giordano, D., & Maiorana, F. (2014). Use of cutting edge educational tools for an initial
programming course. Global Engineering Education Conference (EDUCON), (p. 556–563).

Giordano, D., & Maiorana, F. (2015). Teaching Algorithms: Visual Language vs Flowchart
vs Textual Language. Global Engineering Education Conference (EDUCON), 499–504.

Giordano, D., Maiorana, F., Csizmadia, A., Marsden, S., Riedesel, C., & Mishra, S. (2015).
New horizons in the assessment of computer science at school and beyond: Leveraging
on the ViVA platform. ITiCSE-WGP 2015 – Proceedings of the 2015 ITiCSE Conference on
Working Group Reports.

Griffin, P., & Care, E. (2014). Assessment and teaching of 21st century skills: Methods and
approach. Springer.

Guzdial, M. (2018). Constructivism vs. Constructivism vs. Constructionism. https://computinged.
wordpress.com/2018/03/19/constructivism-vs-constructivism-vs-constructionism/.

Harvey, B., & Mönig, J. (2010). Bringing “no ceiling” to scratch: Can one language serve
kids and computer scientists. Proc. Constructionism, 1–10.

51Francesco Maiorana. Interdisciplinary Computing for Ste(a)m ...

Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C., Deca, L., Grangeat, M., ...
others. (2015). Science Education for Responsible Citizenship: Report to the European
Commission of the Expert Group on Science Education. Luxembourg: Publications Office
of the European Union.

Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C., Deca, L., Grangeat, M., ...
Welzel-Breuer, M. (2015). Science education for responsible citizenship. Report to
the European Commission of the expert group on science education.

Hislop, G., Jackson, S., & Ellis, H. (2015). FOSS Artifacts for Evaluating Students on
Team Projects. Proceedings of the 16th Annual Conference on Information Technology
Education, (p. 57).

International Society for Technology in Education. (s.d.). ISTE Standards for Students.
http://www.iste.org/standards/standards/for-students-2016.

Karabulut-Ilgu, A., Jaramillo Cherrez, N., & Jahren, C. (2018). A systematic review of
research on the flipped learning method in engineering education. British Journal of
Educational Technology, 49(3), 398–411.

Kožuh, I., Krajnc, R., Hadjileontiadis, L., & Debevc, M. (2018). Assessment of problem
solving ability in novice programmers. PloS one, 13(9), e0201919.

Lane, A., Meyer, B., & Mullins, J. (2017). Generative Art with Scribble. https://www.
alexandriarepository.org/syllabus/scribble/.

Lane, A., Meyer, B., Mullins, J., & Albrecht, D. (2012). Simulation with Cellular.
A Project Based Introduction to Programming: http://www.flipt.org/.

Levitin, A., & Levitin, M. (2011). Algorithmic puzzles. OUP USA.

Lucarelli, C., Rosato, J., & Beckworth, C. (2017). “Virtual Visits”: Promising practices
and lessons learned in the use of video teaching samples for online professional
development. E-Learn: World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, (p. 978–983).

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B., Giannakos, M., Kumar, A., ... Szabo, C.
(2018). A Review of Introductory Programming Research 2003–2017. Proceedings
of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education (p. 342–343). New York, NY, USA: ACM.

Maiorana, F. (2019). “Low floor high ceiling” Computer Science. Didamatica,
(p. 219–228).

Maiorana, F., Richards, G., Lucarelli, C., Miles, B., & Ericson, B. (2019). Interdisciplinary
Computer Science pre-service Teacher Preparation. 24th Annual Conference on Innovation
and Technology in Computer Science Education. Aberdeen, UK: ACM.

Maiorana, F. (2019 b) CompuCogito. compucogito.net.

Maiorana, F. (2018). Computational Thinking and Humanities, pp. 87–96. Didamatica
2018.

Maiorana, F., Berry, M., Nelson, M., Lucarelli, C., Phillips, M., Mishra, S., & Benassi, A.
(2017). International perspectives on CS teacher formation and professional
development. Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE, Part F1286.

Manca, F. (2018). Skills for Job. OECD.

Medeiros, R., …, G.-I., & 2018, u. (s.d.). A systematic literature review on teaching and
learning introductory programming in higher education. ieeexplore.ieee.org.

52 Innovations, Technologies and Research in Education, 2019

Monig, J., Ohshima, Y., & Maloney, J. (2015). Blocks at your fingertips: Blurring
the line between blocks and text in GP. 2015 IEEE Blocks and Beyond Workshop (Blocks
and Beyond), (p. 51–53).

Morelli, R., Tucker, A., Danner, N., De Lanerolle, T., Ellis, H., Izmirli, Ö., ... Parker, G.
(2009). Revitalizing computing education through free and open source software for
humanity. Commun. ACM, 52(8), 67–75.

Morelli, R., Wolber, D., Rosato, J., …, C.-P., & 2014, u. (s.d.). Mobile computer science
principles: a professional development sampler for teachers. dl.acm.org.

Oates, T., Coe, R., Peyton Jones, S., Scratcherd, T., & Woodhead, S. (2016). Quantum:
tests worth teaching to.

OECD. (2018). The future of education and skills. Education 2030. http://www.oecd.org/
education/2030/oecd-education-2030-position-paper.pdf.

Patton, E., Tissenbaum, M., & Harunani, F. (2019). MIT App Inventor: Objectives,
Design, and Development. In E. Patton, M. Tissenbaum, & F. Harunani, Computational
Thinking Education (p. 31–49). Springer.

Peer Instruction. (2019). https://www.peerinstruction4cs.org/.

Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., ... Simon, B. (2016).
A multi-institutional study of peer instruction in introductory computing. Proceedings of
the 47th ACM Technical Symposium on Computing Science Education, (p. 358–363).

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ...
others. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Scientix. (s.d.). http://www.scientix.eu/.

Tedre, M., & Denning, P. (2016). The long quest for computational thinking. Proceedings
of the 16th Koli Calling International Conference on Computing Education Research,
(p. 120–129).

Tennessee Tech. (s.d.). iPDC modules. https://www.csc.tntech.edu/pdcincs/index.php/
ipdc-modules/.

TKI (2017) Ministry of Education. (2017). Technology in the New Zealand Curriculum.
Retrived from http://technology.tki.org.nz/Technology-in-the-NZC.

Trower, J., & Gray, J. (2015). Blockly language creation and applications: Visual
programming for media computation and bluetooth robotics control. Proceedings of
the 46th ACM Technical Symposium on Computer Science Education, (p. 5).

Tsan, J., Rodr\’\iguez, F., Boyer, K., & Lynch, C. (2017). Let’s work together: Improving
block-based environments by supporting synchronous collaboration. 2017 IEEE Blocks
and Beyond Workshop (B&B), (p. 53–56).

UNESCO. (2017). Moving forward the 2030 agenda for sustainable development.

UNESCO. (s.d.). Competency Framework. https://unesdoc.unesco.org/ark:/48223/
pf0000245056.

UNESCO, A. (2017). A guide for ensuring inclusion and equity in education. UNESCO
Paris.

Wing, J. (2016). Computational thinking, 10 years later. Microsoft Research Blog,
March, 23, 2016.

Wolber, D. (2011). App inventor and real-world motivation. SIGCSE, 11, p. 601–606.

